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Joint analysis of single-cell genomics data from diseased tissues and a
healthy reference canreveal altered cell states. We investigate whether

integrated collections of data from healthy individuals (cell atlases) are
suitable references for disease-state identification and whether matched
control samples are needed to minimize false discoveries. We demonstrate
that using a reference atlas for latent space learning followed by differential
analysis against matched controls leads toimproved identification

of disease-associated cells, especially with multiple perturbed cell

types. Additionally, when an atlas is available, reducing control sample
numbers does notincrease false discovery rates. Jointly analyzing data
froma COVID-19 cohort and ablood cell atlas, we improve detection of
infection-related cell states linked to distinct clinical severities. Similarly,
we studied disease states in pulmonary fibrosis using a healthy lung atlas,
characterizing two distinct aberrant basal states. Our analysis provides
guidelines for designing disease cohort studies and optimizing cell atlas use.

Precise identification of cell phenotypes altered in disease with
single-cell genomics canyield insights into pathogenesis, biomark-
ers and potential drug targets' .

Thestandard approach toidentify altered cell statesinvolves joint
analysis of single-cell RNA sequencing (scRNA-seq) datafrom diseased
tissues and a healthy reference. This typically includes integrating
cellular profiles from different conditions into acommon phenotypic
latent space to match common cell types and minimize technical differ-
ences”', Subsequently, differential analysis is performed on matched
cell states between healthy and diseased cells to identify differences
ingene expression patterns or cellular composition . Regardless of
the methods used for these steps, the selection of the healthy reference
datasetis crucial.

Large-scale profiling of healthy samples by the Human Cell Atlas
community has yielded large, harmonized collections of data from
multiple organs, or atlas datasets (http://data.humancellatlas.org/).
In tissues like lung and blood, millions of cells have been profiled
from hundreds to thousands of individuals. Computational analyses
allow for meaningful integration of these datasets, providing a

comprehensive view of cell phenotypes in a tissue, while minimizing
technical variation. Nevertheless, the characteristics of the samples
includedinanatlas might differ greatly from those of adisease cohort
(Fig.1a). This could introduce false discoveries if confounding factors
are unknown or not appropriately handled in statistical testing. Despite
this, several studies use atlas datasets as references for discovering
disease states'*"", especially for tissues where obtaining matched
healthy controls is challenging, such as the brain***.,

Incontrast, several studies collect matched control samples from
healthy tissue alongside the disease samples®**, with similar demo-
graphic and experimental protocol characteristics. This minimizes
therisk of false positives driven by confounders. However, collection
of alarge number of healthy control samples is not always practical
or possible. Moreover, using a relatively small number of samples for
the integration step increases the risk of missing rare cell states and
overinterpreting sample-specific noise. Understanding how features
of the reference dataset impact identification of disease-associated
cellstates willguide effective datareuse, design of disease studies and
future cell atlasing efforts.
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Fig.1|Using healthy reference datasets to discover disease-associated cell
states. a, Schematic of attributes of disease, control and atlas datasets, with
regard to population-level variation, experimental protocols and heterogeneity
of cell states captured. In a disease dataset, biological samples typically originate
from tens of individuals from a relatively homogeneous population (for example,
recruited from the same hospital), and the same experimental protocol is

used across samples for dissociation, library preparation and sequencing

(or experiments are designed to minimize confounding with cohort-specific
variables). We defined a healthy reference dataset as a control if it matched the
disease dataset in terms of cohort characteristics and experimental protocols.
We defined areference dataset as an atlas if it aggregated data from hundreds

to thousands of individuals from multiple cohorts, profiled with several
experimental protocols. Typically, such integrated datasets capture alarger
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variety of healthy cell states compared to smaller cohorts. b, Schematic of the
analysis workflow to detect disease-associated cell states: a dimensionality
reduction model was trained on a healthy reference dataset (step 1); then, the
query dataset, including the disease dataset, was mapped to the reference model
with transfer learning (step 2) and finally differential analysis was performed to
contrast matched cell states from healthy and disease samples. ¢, Schematic of
the reference design options tested in this study, according to the workflow in

b, using the atlas dataset as reference (light blue), the control dataset as reference
(dark blue) or both. For the CR design, we compared latent embedding with
query mapping (as shown inb) with joint embedding training a latent embedding
model on the concatenated control and disease dataset. Panel a was created with
BioRender.com.

In this study, we compare the use of atlas and control datasets as
references for the identification of disease-associated cell states. We
demonstrate the benefits of using an atlas dataset as reference for
latentembedding and of a control dataset as reference for differential
analysis, with important implications for both experimental design
and use of single-cell disease cohorts.

Results

Reference design for disease-associated state identification

To optimize the selection of a reference dataset for the identification
of disease-associated cell states, we considered the following work-
flow (Fig.1b). First,adimensionality reduction modelis trained on the
healthy dataset (the embedding reference dataset) to learn a latent
space representative of cellular phenotypes while minimizing batch
effects. Next, this modelis used for transfer learning to map the query
dataset, which includes the disease samples, to the same latent space®™°.
Finally, differential analysis is performed to compare cells between
disease and healthy samples (differential analysis reference) to identify
disease-associated states. We defined a healthy reference datasetasa
control ifit matched the disease dataset in terms of cohort character-
istics and experimental protocols. We defined an atlas reference (AR)
dataset as one that aggregated data from hundreds to thousands of
individuals from multiple cohorts, collected with several experimental
protocols. With this workflow, we outlined three alternatives for select-
ingareference dataset (reference design) (Fig.1c): (1) the AR design; (2)
the control reference (CR) design, where either type of healthy dataset
isused as theembedding reference and as the differential analysis refer-
ence; and (3) anatlasto control reference (ACR) design, where an atlas
and a control dataset are used in different steps of the workflow. In this
analytical design, the atlas dataset serves asthe embedding reference,

while the disease and control datasets are mapped to the same latent
space; finally, differential analysisis performed contrasting the disease
dataset to the control dataset only. For the CR design, we compared a
workflow for latent embedding where the control dataset was used as
reference for query mapping, and another where the latent embedding
model was trained on the concatenated control and disease datasets
(Supplementary Note 2.4).

In the following sections, we quantify the ability of these three
designs toidentify disease-specific cell statesin simulations and real data.

Detection of out-of-reference cell states in simulations

To test a scenario with ground truth, we simulated the attributes of
atlas, control and disease datasets by splitting scRNA-seq data from
13 studies that profiled healthy peripheral blood mononuclear cells
(PBMCs) from 1,248 donors (Supplementary Table 1and Methods).
We selected one study and randomly split the donors to simulate a
pseudo-disease and a control dataset (Fig. 2a). This ensured that cohort
demographics and experimental protocols were matched, preserving
donor and library effects presentinreal data. The remaining cells (1,219
donors) formthe atlas dataset. To simulate a cell population specific to
the pseudo-disease dataset, hereafter an out-of-reference (OOR) state,
we selected one or more annotated cell types and removed cells with
those labels from the control and atlas datasets.

To identify the OOR state, we first learned a latent space embed-
ding on the chosen reference (atlas or control) using single-cell vari-
ationalinference (scVI)* (Fig. 2b, left). Then, we used transfer learning
with scArches’ to map the query dataset(s) to the trained scVI model.
For the CR design with joint embedding (CR scVI), we trained the scVI
model on the concatenated pseudo-disease and control datasets
(Fig. 2b, center). Inthe ACR design, the atlas dataset was used to train
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Fig.2|Benchmarking setup for comparison of reference designs on
detection of OOR cell states. a, Schematic of the strategy used to simulate
ground truth OOR cell states in real data from healthy human PBMCs, split

into atlas (513,565 cells), control (5,671 cells) and pseudo-disease (7,505 cells)
datasets. We tested simulations alternatively using 15 annotated cell states as
out-of-reference (OOR) cell states. b, Example outcome of latent embedding
and differential analysis with different reference designs. Left, uniform manifold
approximation and projection (UMAP) embedding of scVI latent space learned
on the embedding reference dataset. Points are colored according to cell type
clusters (asina); the iconsin the top left corner indicate the type of embedding
reference dataset used. Center, UMAP embedding of cells from the differential
analysis reference and disease datasets on scVIlatent space learned from

the embedding reference dataset, colored according to type of dataset and

to highlight (in pink) the OOR cell state. For the CR design, we differentiated
between latent embedding with query mapping (CR scArches) and embeddingin

Test for disease
enrichment

DA logFC

onestep, training an scVl model on the concatenated control and disease dataset
(CRscVI). Right, Milo neighborhood graph visualization of DA testing results:
each point represents aneighborhood, and points are colored according to the
log fold change (logFC) in cell abundance between disease and reference cells.
Only neighborhoods where significant enrichment in disease cells (10% spatial
FDR and log fold change > 0) was detected are colored. Points are positioned
based on the coordinates in the UMAP embedding of the neighborhood index
cell; the size of points is proportional to the number of cells in the neighborhood.
The horizontal dashed lines are used to separate the phases of the workflow.

¢, Scatterplot of DA log fold change against the fraction of disease-specific

cells for each neighborhood for the simulation shown in c. Each plot represents
adifferent reference design. Colored points indicate neighborhoods where
significant enrichment in disease cells (10% spatial FDR and log fold change > 0)
was detected. The vertical line is O; the horizontal line is the threshold to consider
the neighbourhood as atrue positive.

the latent embedding model; however, after mapping with scArches,
only the disease and control datasets are considered. Finally, we used
neighborhood-level differential abundance (DA) testing with Milo"
toidentify cell states enriched in the disease dataset (Fig. 2b, right).
We first considered a scenario where a single-cell-type cluster is
selected as the OOR state and removed from the healthy references
(Fig. 3a). Across simulations with different OOR states, we observed
that using the combination of the atlas and control datasets (ACR
design) led to sensitive detection of neighborhoods with a high fraction

of OOR cells (Figs.2c and 3b, and Extended Data Fig.1). Conversely, the
AR designledtoaninflated number of false positives, where significant
enrichment was also detected when the fraction of unseen cells was
low or 0. Using only the control dataset, latent embedding with query
mappingled to more balanced log fold changes, but still a higher false
discovery rate (FDR) than the ACR design, while performance with a
jointembedding was comparable to the ACR design. Notably, we found
minimal difference in the quality of integration with different designs
(Extended Data Fig. 2). The difference betweenreference design results
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was also consistent when applying alternative methods for DA analy-
sis™" (Extended DataFig. 3). Finally, as expected, the power to detect
OOR cell states depended, for all methods, on the number of cells
present, with a minimum of 250 cells per cell type needed to identify
the OOR population (Extended Data Fig. 4).

We hypothesized that the good performancein OOR state detec-
tion with the CR scVI design could be explained by feature selection.
Latent embedding models are trained on the top 5,000 highly vari-
able genes (HVGs) in the input dataset (Methods). When training on
concatenated disease and control datasets, marker genes for the
OOR population are more likely to be among the HVGs. We compared
the performance of different reference designs trained using HVGs
from the atlas dataset, from the control dataset or from the concat-
enated control and disease dataset. For all designs, the areaunder the
precision-recall curve (AUPRC) for OOR state detection was highest
when using HVGs selected on the same data used to train the model.
However, only the CR design with jointembedding showed a substan-
tial decrease in performance when selecting HVGs without using the
disease dataset (Fig. 3c). On average, 81% of the HVGs selected from
the control and disease data were shared with the set selected from
control only and 68% were shared with the set selected from the atlas
only. These results indicate that the performance of joint embedding
with CR designis sensitive to the feature selection strategy used to train
the latent embedding model.

We reasoned that this might impact performance when multiple
transcriptionally distinct OOR states are present in the disease popula-
tion. To test this, we conducted simulations where we removed a fixed
cell population (corresponding to classical monocytes) from the refer-
ence datasets and then defined asecond variable OOR cell state (shifted
OORstate) by splitting a cell type populationinto two distinct groups
(Methods and Fig. 3d). The ACR design performed best in OOR state
identification (Fig. 3e). Inparticular, inall simulations where the CR scVI
design outperformed the ACR design whenthe OOR state was removed,
the ACR design could distinguish better OOR states in the mixed case,
evenwhen considering only recovery of the shifted OOR state (Fig. 3f).
In one case (simulation with CD4" central memory T (Ty) cells as
shifted OOR state), we observed a significant drop in performance
with the ACR design if the OOR state was shifted instead of removed.

In summary, differential analysis using control datasets dras-
tically reduced the rate of false discoveries in the detection of
disease-associated cell states. Of note, studies using atlas datasets
to identify disease-associated states®'®'° might use criteria different
from DA to detect OOR cells, such as distance in the latent space, label
transfer uncertainty or differential expression analysis. We compared
these alternatives to our workflow in Supplementary Note 2.1.

Robustness of OOR detection with the ACR design
We next assessed the robustness of different reference designs to het-
erogeneity in the control and atlas datasets. We first tested whether

using the atlas reduces the number of control donors needed to detect
disease-specific states by simulating control datasets of increasing
size (Methods). While sensitivity declined for all designs when using
avery small control cohort, the ACR design maintained the highest
performance in OOR state detection compared to the CR design,
regardless of the latentembedding strategy (t-test P < 0.01 for AUPRC
distributions across control cohort sizes for both the CR scVIand CR
scArches designs) (Fig. 4aand SupplementaryFig.1). The differencein
performance was especially marked when simulating a smaller disease
cohort (Supplementary Fig. 1). These results suggest that using the
ACR design can minimize the number of control samples required. In
Supplementary Note 2.3, we tested options for cases where collecting
matched control samples is not feasible.

We also tested how OOR state detection was affected by varia-
tionin the atlas dataset. We first confirmed robustness to removal of
any given study from the atlas dataset (Supplementary Note 2.2.1).
Then, we measured performance with the AR and ACR designs when
including an increasing number of PBMC studies in the atlas dataset
(Methods). While the results were always significantly affected when
using just one or two studies as the atlas dataset, sensitivity with the
ACR design was stable when the atlas included at least 10,000 cells
(Fig. 4b and Supplementary Fig. 2). Without controls, we observed
a stronger dependency of performance with atlas size (Pearson cor-
relation of AUPRC and size: R?=0.69, P=7.2 x107 for the AR design;
R*=0.4, P=0.0017 for the ACR design). Notably, the false positive
rate (FPR) increased with smaller atlas datasets with an AR design
(Supplementary Fig. 2). We compared the use of a cross-tissue or
tissue-specific atlas for the ACR design (Supplementary Note 2.2.2),
asapractical alternative where the availability of tissue-specific data
mightbe scarce.

In summary, combining the use of an atlas and control dataset
led to robust detection of putative disease states, even with a varying
quality of the control or atlas dataset.

Detection of interferon-stimulated states in patients with
coronavirus disease 2019

We next assessed the benefits of using a healthy atlas to identify altered
statesinareal patient cohort. We used a published scRNA-seq dataset of
PBMCs from 90 patients with varying severities of coronavirus disease
2019 (COVID-19) and 23 healthy volunteers?. As an atlas dataset, we
used harmonized scRNA-seq profiles from 12 studies involving 1,219
healthy individuals (Fig. 5a). We compared the use of the healthy
PBMC atlas for latent embedding (ACR design) against using only the
COVID-19 and control datasets with joint embedding (CR design). To
quantify the ability of different designs to identify disease-associated
states, we tested whether cells expressing genesinvolved ininterferon
(IFN) signaling, akey antiviral response pathway and arecognized hall-
mark of COVID-19, could be detected among the COVID-19-enriched
neighborhoods (Fig. 5b and Methods).

Fig.3|Detection of simulated OOR cell states. a, lllustration of removed

OOR state perturbation. The dashed outlines denote the position of the OOR
cell state. b, Performance comparison of reference designs in the detection of
OOR cell states. To compare performance considering the log fold change and
confidence (10% spatial FDR), we measured the FDR, FPR and true positive rate
(TPR). To compare performance using the log fold change only as a metric for
prioritization, we measured the AUPRC. The points represent simulations with
different OOR states (eight states, excluding simulations where fewer than 250
OOR cells were present after splitting the pseudo-disease and control dataset).
Tests on the same simulated data are connected. ¢, Box plots of AUPRC to detect
OOR cell states withembedding models trained on different sets of 5,000 HVGs,
selecting HVGs in the atlas dataset, in the control dataset or in the concatenated
control and pseudo-disease datasets (control + disease). The color represents
different reference designs. Tests on the same simulated data are connected.
The gray box denotes the type of data used to train the model for each design.

d, Illustration of mixed OOR state perturbation: all simulations have a fixed cell
state removed from the control and atlas datasets (classical monocytes) and a
varying shifted OOR cell state, where cells of the OOR cell state are splitin two
groups based on principal component analysis (PCA), and only one group is
removed from the atlas and control datasets (shifted OOR state). e, Asin b, but
withmixed OOR states. f, Bar plots of the AUPRC for OOR state detection with
different types of perturbation on the same OOR cell state, colored according
toreference design. The rightmost plot shows the AUPRC for the detection of
the shifted OOR cell state, excluding the fixed removed state. The height of the
bar denotes the AUPRC computed on real data. The error bars indicate the 95%
confidence interval (Cl) calculated from bootstrapping with 1,000 resampling
iterations. Cases where the CR design outperformed the ACR design when only
the OOR state is removed are highlighted by the red dashed rectangles. In all box
plots, the center line denotes the median; the box limits denote the first and third
quartiles; and the whiskers denote 1.5x the interquartile range (IQR).
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The ACR design showed a stronger correlation between DA log fold
change and the mean IFN signature (ACR Pearson R = 0.63, CR Pearson
R=0.52,Fisher’s z-transformation P< 2.2 x 107), indicating better prior-
itization of IFN" cell states (Fig. 5¢), regardless of the latent embedding
strategy used (Fig. 5d). Stratifying according to cell type, the correla-
tion was especially strong in myeloid cells, where the strongest IFN
stimulationwas observed (Extended DataFig. 5a). Among the IFN" states
prioritized with the ACR design, we found primarily plasmablasts and
plasma cells (Extended DataFig. 5b), followed by platelets, all expected
toexpandin COVID-19 (refs.27,28).For lymphocytes, where the average

expression of IFN genes was lower thanin myeloid cells, the ACR design
outperformed the CR design in prioritizing the top 10% IFN" neigh-
borhoods in natural killer (NK) and CD8" T cells, while neither design
distinguished IFN" CD4" T cells or B cells (Extended Data Fig. 5¢). The
CRdesign prioritized IFN naive B cells over other IFN" subsets, such as
CD16" and proliferating NK cells (Extended DataFig. 5b-d), contradict-
ingthe widely reported lymphopeniain patients with COVID-19 (ref. 29).

Through iterative dataset subsetting, subclustering and differ-
ential analysis, several COVID-19 scRNA-seq studies distinguished
IFN-stimulated COVID-19-associated subclusters and normal IFN'"

b
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Fig.4 | Robustness of detection of OOR state with the ACR design.

a, Robustness to the size of the control cohort with the ACR and CR designs.
Box plots of the AUPRC for simulations with anincreasing number of donorsin the
control dataset (x axis), using the ACR (green) or CR design with query mapping
(CRscArches, orange) or joint embedding (CR scVI, yellow). The results from
simulations with five different OOR cell states, selected according to top mean
TPRacross designs in Fig. 3b and using five different samples of donors for

each number of control donors and OOR state, are shown. In these simulations,
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five, seven or nine donors were used in the disease dataset (see Supplementary
Fig.1for the full breakdown). b, Robustness to the size of the atlas dataset
withthe ACR and AR designs. Box plots of the AUPRC for simulations with an
increasing number of studies in the atlas dataset, using the ACR (green) or

AR (purple) design. The results from simulations with five different OOR cell
states, selected according to top mean TPR across designs in Fig. 3b, are shown
(see Supplementary Fig. 2 for a full breakdown).

subtypesacrossimmune cell types?*°, Yet, IFN activation is not global,
and transitional or alternative pathological phenotypes might be pre-
sent in COVID-19 PBMCs. In our neighborhood-level analysis with the
ACRdesign, we observed neighborhoods with arelatively low IFN signa-
ture that were significantly associated with the disease, notably among
classical (CD14") monocytes (Fig. 5e). We categorized CD14" monocytes
into three phenotypes: normal classical monocytes; COVID-associated
IFN" monocytes; and COVID-associated IFN" monocytes (Fig. 5f). The
proportion of CD14* monocyte phenotypes changed significantly
with different disease severity: the IFN" state was most prominent in
mild and asymptomatic cases compared to healthy cases (Wilcoxon
test P=1.19 x 107), while the IFN® state was predominant in patients
with moderate-to-critical disease (Fig. 5g). This supports the notion
thatIFN stimulation acts as a protective pathway in the acute phase of
infection®. Conversely, when using the CR design to define IFN" and
IFN" states after differential analysis, we found a high fraction of IFN'°
COVID-enriched monocytesin healthy and asymptomaticindividuals,
indicating that this design failed to distinguish IFN'° normal mono-
cytes from the IFN" phenotype in severe COVID-19 (Extended Data
Fig. 6a-c). Additionally, the fraction of IFN" cells in mild and moderate
cases was not significantly higher than in severe cases (Wilcoxon test
P=0.325743). Differential expression analysis between IFN" and IFN'
COVID-associated monocytes showed that IFN" monocytes showed
higher expression of HLA genes, leukocyte-recruiting chemokines
(CCL8,CXCL10,CXxCL1I) and markers of activation (FCGR3A) (Extended
Data Fig. 6d,e and Supplementary Table 2). Conversely, the IFN'
monocytes enriched in severe disease overexpressed SIOOA genes,
previously identified as key markers of COVID-19 severity***. This
HLA-DR" S1I00A" phenotype corresponds to asubset of dysfunctional
monocytes associated with severe COVID-19, previously described in
anindependent cohort through direct comparison of mild and severe
cases” (Extended Data Fig. 6f). These markers were not recovered
when comparing IFN' and IFN" COVID-19 monocytes defined by the
CRdesign (Extended Data Fig. 6e and Supplementary Table 3).

Detection of aberrant cell states in pulmonary fibrosis
To assess the benefit of using atlas and control datasets in other
biological contexts, we analyzed a published scRNA-seq dataset of

lung parenchyma samples from 32 patients with idiopathic pulmo-
nary fibrosis (IPF), a progressive lung disease with limited treatment
options, whichis characterized by extracellular matrix (ECM) deposi-
tion, inflammation and scarring®?*. This study included data from 28
control donors and 18 patients with chronic obstructive pulmonary
disease (COPD)’. As an atlas dataset, we used the core Human Lung
Cell Atlas (HLCA) dataset (Fig. 6a).

Our first aim was torecover the emergence of IPF-specific alveolar
macrophages overexpressing SPPI and other ECM-remodeling genes
contributing to lung fibrosis*. Comparing different designs, the ACR
designoutperformed the AR and CR designsindetecting macrophages
with the strongest profibrotic signature (Fig. 6b and Extended Data
Fig.7a). Interestingly, the CR designincorrectly prioritized neighbor-
hoods with significantly fewer samples compared to true positives
(Extended Data Fig. 7b,c), suggesting that the difference in ACR and
CR design performance is due to residual batch effects in the latent
space (Supplementary Fig. 3).

We next focused on stromal and epithelial cells. We considered
cell types with high expression of biomarker genes from diagnostic
models built on IPF lung explant RNA-seq* (Extended Data Fig. 8a,b
and Methods). The ACR design consistently led to the most precise
distinction of cell states expressing the diagnostic signature (Fig. 6¢
and Extended Data Fig. 8c). Differential analysis using control sam-
ples led to the precise identification of rare aberrant cell states
emerging in IPF, such as the KRTS-KRTI17 basaloid cells>* thought
to originate from the alveolar epitheliumin response to fibrosis®**
(Extended Data Fig. 8c,d). Furthermore, the difference in perfor-
mance between reference designs was especially notable for basal
cells (Fig. 6¢c and Extended Data Fig. 8c). These were on average sig-
nificantly enriched in the IPF samples, in agreement with previous
reports>?’. However, by using the ACR design, we distinguished the
neighborhoods of normal basal cells (with a mix of cells from patients
with IPF and controls) and IPF-enriched neighborhoods with high
biomarker expression (Extended Data Fig. 8c). We found that basal
cellsinthe ACR design IPF-enriched neighborhoods overexpressed
marker genes for KRTS'KRT17" aberrant basal cells identified in bron-
chial brushings of patients with IPF*° (Fig. 6d). Marker gene expres-
sionwas especially high inthe neighborhood showing the strongest
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enrichmentin IPF cells. DA analysis with the CR or AR design did not
distinguish this aberrant phenotype (Fig. 6d).

While the study describing KRTS*KRT17" basal cells highlighted their
transcriptional similarity to basaloid cells*°, we identified both aberrant
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phenotypesasdistinct states (Fig. 6e and Extended DataFig.8d). There-
fore, we further characterized their specific markers and functional
differences. Specifically, we identified genes differentially expressed
between aberrant basal-like states and overexpressed compared to
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Fig. 5| Detection of cell states associated with COVID-19 in a case-control
cohortwithahealthy atlas. a, Overview of composition of disease (48,083 cells),
control (14,426 cells) and atlas dataset (513,565 cells). b, UMAP embedding of cells
from the COVID-19 and healthy datasets integrated with a CR (joint embedding,
top) or ACR (bottom) design. Cells are colored according to disease condition
(left), broad annotated cell type (middle) and expression of IFN signature (right).
Mono, monocyte; prolif., proliferative; RBC, red blood cell; T,.,, regulatory T.

¢, Scatterplot of neighborhood DA log fold change against the mean expression
of IFN signature with the ACR (left) and CR (right) designs. Neighborhoods where
enrichment in COVID-19 cells was significant (log fold change > 0 and 10% spatial
FDR) are colored. Pearson correlation coefficients and Pvalues for the significance
ofthe correlation are reported (two-sided test). d, Precision-recall curves for the
detection of IFN-activated neighborhoods with DA log fold change for alternative
designs (ACR or CR) and usingjoint embedding of reference and disease datasets
(scVI) or transfer learning (scArches scVI). The AUPRCis reported in the legend,
with the 95% Cl calculated from bootstrapping with 1,000 resamplings shownin

brackets. The dashed lines denote the baseline value for the AUPRC, indicating

the case of arandom classifier. e, Scatterplot of neighborhood DA log fold

change against the mean expression of IFN signature with the ACR design for
neighborhoods of CD14* monocytes. The colored points indicate neighborhoods
where the enrichment in COVID-19 cells was significant (10% spatial FDR).
Neighborhoods are colored according to IFN phenotype. f, Distribution of IFN
signature score for cells belonging to neighborhoods assigned to three alternative
CD14" phenotypes. g, Distribution of COVID-19-enriched CD14" phenotypes across
patients with varying disease severity (healthy: n = 23 patients; asymptomatic:n=9
patients; mild: n=23 patients; moderate: n = 30 patients; critical: n = 15 patients;
severe: n =13 patients). Each point represents adonor; the y axis shows the

fraction of all CD14" monocytes in that donor showing an IFN" COVID-19-enriched
phenotype (orange) and an IFN' COVID-19-enriched phenotype (yellow). The
remaining fraction represents monocytes with a healthy phenotype (not shown).
Inthe box plots, the center line denotes the median; the box limits denote the first
and third quartiles; and the whiskers denote 1.5x the IQR.

normal basal cells (Methods). We identified 981 significantly differen-
tially expressed genes (DEGs) (FDR =5%) (Fig. 6f and Supplementary
Table 4), including six previously described markers for KRT17" aber-
rant basal cells and 35 previously described markers for basaloid cells.
Several other previously described markers were only overexpressed
compared tonormal basal cells (SupplementaryFig. 4). KRT17" basal cells
overexpressed genes associated with Myc signaling, in agreement with
Jaeger et al.*°, and genes involved in keratinization, including keratins
and desmoplakin genes (Extended Data Fig. 9a). Similar processes have
beenidentifiedin lung carcinoma* andin the lung epithelium of smok-
ers*, indicating that this might be a widespread response to epithelial
injury. Basaloid-specific markers showed significant enrichment in
the genes involved in ECM organization and epithelial-mesenchymal
transition (EMT), including collagens and metalloproteases, as well as
morphogenesis factors, including SOX11, SOX4 and TGF-beta signal-
ing genes (Extended Data Fig. 9b). These markers also include genes
linked to genomic variants associated with lung function, including
the EMT-inducer /L32 (ref. 43), neurotrimin (NTM), GPC5 and DCBLD2
(refs. 44-46). Some of the newly identified markers encode targets
of drugs approved or in trial for other lung pathologies. For example,
CSF2, strongly overexpressed in basaloid cells, has been implicated
in the pathogenesis for asthma and COPD, and is being investigated
in phase 3 trials for pneumonia treatment (ClinicalTrials.gov registra-
tion: NCT04351152)*; the CCL2-inhibitor carlumab has completed a
phase 2 trial for pulmonary fibrosis (ClinicalTrials.gov registration:
NCT00786201); while U.S. Food and Drug Administration-approved
drugs inhibiting ROSI are used for non-small cell lung carcinoma*,

Discussion
In this study, we assessed how the choice of reference dataset affects
theidentification of altered cell states from scRNA-seq data of diseased

tissues. Using simulations and real-life applications, we showed that
atlas datasets are not a substitute for control samples, but that they
enhance disease-state discovery in complex scenarios. Contrasting cell
profiles from disease samples against arestricted set of control samples
isnecessary to minimize false positives in disease-state identification.
However, whenan atlas datasetis available, it is possible to reduce the
number of control samples without introducing false discoveries and
with minimalimpact on sensitivity (Fig. 4a).

Multiple factors could explain the improved performance of
ACR compared to CR design in complex scenarios. First, feature
selection in joint embedding with a CR design is less likely to include
disease-relevant genes necessary to distinguish rare populations
(Fig. 3c). Additionally, residual batch effects in the latent space can
lead to false positives (Extended Data Fig. 7b,c). Interestingly, while
acomprehensive representation of cell states in atlas datasets might
havearole, our leave-one-out analysis indicates that the size and com-
position of the atlas dataset do not significantly impact disease-state
detection performance (Supplementary Note 2.2.1). Moreover, asinthe
comparison between tissue-specific or cross-tissue atlas datasets (Sup-
plementary Note 2.2.2), sensitive detection of disease-specific states
is possible when the cell type composition of atlas and case-control
datasets differ substantially.

Despite its advantages, researchers may face challenges when
applying an ACR design. First, data integration and harmonization
efforts are ongoing, and integrated datasets are frequently updated
with more individuals, even for well-sampled tissues, such as blood,
lung'®, heart*~' or gastrointestinal tract®**, Reassuringly, we showed
that the ACR design is robust to the set of harmonized datasets (Sup-
plementary Note 2.2.1) and maintains high sensitivity with smaller
atlas datasets (Fig. 4b and Supplementary Fig. 2), making disease
analysis more robust to atlas updates. Second, downloading and

Fig. 6 | Detection of cell states associated with IPF. a, Overview of the
composition of IPF (144,404 cells), control (95,303 cells) and atlas dataset
(584,844 cells) (top) and UMAP embedding of cells from the IPF and control
datasets integrated with an ACR design (bottom). Cells are colored by broad
celltype annotation (left) and disease condition (IPF and COPD) (right).

b, Detection of profibrotic macrophages with alternative reference designs.
Top, UMAP embedding colored according to the scaled expression of profibrotic
macrophage signature in macrophage cell compartment. Bottom, bar plot of
the AUPRC for the detection of macrophage neighborhoods with high mean
profibrotic signature, colored according to reference design. Bar height
indicates the AUPRC computed on real data; the error bars indicate the 95% CI
from bootstrapping with 1,000 resamplings. ¢, Asinb, but for the detection of
the IPF diagnostic gene signature in stromal and epithelial cells. The red dashed
rectangle highlights basal cells used for follow-up analysis ind. d, Min-max
scaled mean expression of marker genes for KRT17" aberrant basal cells (defined
byJaeger et al.*’) in basal neighborhoods identified with the ACR design (left)

and the CR design (right). Neighborhoods are ordered by increasing DA log

fold change between IPF and control cells. The dots at the top indicate the log
fold change (color) and spatial FDR (size) for the DA test. The boxes denote
neighborhoods where the enrichment in IPF cells was significant (spatial FDR 1%).
e, Fraction of basal-like cells of different phenotypes in samples from patients
with IPF and controls (control: n = 28 patients; IPF: n = 32 patients). Each point
represents a patient. Point size is proportional to the number of cells of agiven
phenotype. Inthe box plots, the center line denotes the median; the box limits
denote the first and third quartiles; and the whiskers denote 1.5 the IQR. f, Mean
expression of newly identified marker genes for aberrant basal-like phenotypes,
identified by differential expression analysis between basaloid cells and KRT17"
aberrant basal cells (Methods; see Supplementary Fig. 4 for aheatmap, including
known marker genes). Genes are ordered by log fold change. The blue boxes
mark genes significantly associated with genome-wide association study (GWAS)
variants for lung function. The red boxes mark validated target genes of drugs in
trials for lung disease.
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processing atlas data can be computationally expensive. By bench-
marking disease-state detection using latent embedding with transfer
learning’, we advocate for atlas builders to share trained models for
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performance, serving as an alternative design in this scenario. In this
case, werecommend validating predicted disease-associated states by
checking for residual batch effects between samples (Extended Data
Fig.7b,c), and evaluating the robustness of results to factors such as the
inclusion or exclusion of specific control samples (Fig. 4a) or feature
selection (Fig.3c).

Our disease cohort analyses revealed that an ACR design ena-
bles more sensitive identification of transitional and heterogene-
ous pathological cell states. In the COVID-19 dataset", we captured
IFN" states across immune cell types, and fine subsets of dysfunc-
tional CD14* monocytes associated with disease severity (Fig. 5e-g)*.
Analyzing lung data from patients with IPF using an ACR design, we
distinguished and characterized rare basal-like aberrant cell states
(Fig. 6d-f). Previous studies linked IPF severity with basal marker gene
expression”’* and basal cell accumulation in distal airways®. Our
analysis adds insights on basal-like cellular phenotypes in IPF. First,
while KRT17" aberrant basal cells were first described in bronchial
epithelium*, we found them in lung parenchyma, supporting their
role in bronchiolization®. Second, we showed that only a subset of
basal cells in the IPF samples were KRT17", suggesting that normal
basal cells might undergo reprogramming in the parenchyma. Third,
we established that KRT17" aberrant basal cells are distinct from the
recently described IPF-associated KRTS-KRT17" basaloid cells>*"%*%3,
highlighting their distinguishing features and marker genes.

In conclusion, we demonstrated that the combined use of a cell
atlas and matched controls as references enables the most precise
identification of affected cell states in disease sScRNA-seq datasets. We
envision that our analysis willinstruct the design of new cohort studies,
guideefficient datareuse and provide operating principles for analysis
of disease datasets and construction of cell atlases.
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Methods

Ethics statement

This study relies on the analysis of previously published data, which
were collected with written informed consent obtained from all par-
ticipants and comply with the ethical guidelines for human samples.

PBMC data preprocessing

We collected raw gene expression counts and cell type annota-
tions from healthy PBMC 10X Genomics scRNA-seq data from 13
studies™'822724305464-69 ayailable via the CELLXGENE portal (https://
cellxgene.cziscience.com/collections) (Supplementary Table1). During
harmonization, we sampled 500 cells for each sample to reduce the
computational burden of this analysis, while maintaining sample-level
diversity; we excluded samples for which fewer than 500 cells were
detected, retaining in total 1,268 samples from 1,248 individuals. We
subsequently filtered cells where at least 1,000 mRNA molecules were
detected and genesthat were expressedin at least one cell. This resulted
inadataset of 599,379 high-quality cells.

To generate a unified cell type annotation, we integrated all nor-
mal cells from different studies in a common latent space using the
scVI model, as implemented in the Python package scvi-tools**”.
Briefly, we selected the 5,000 most HVGs based on the dispersion of
log-normalized counts, as implemented in SCANPY”. We trained the
scVImodel onraw counts, subsetting to HVGs, considering the library
ID as batch (model parameters: n_latent = 30, gene_likelihood = ‘nb’,
use_layer_norm = ‘both’, use_batch_norm =‘none’, encode_covari-
ates = True, dropout_rate = 0.2, n_layers = 2; training parameters:
early_stopping = True,train_size = 0.9, early_stopping_patience =45,
max_epochs =200, batch_size =1,024,limit_train_batches = 20). We
constructed a k-nearest neighbor graph based on similarity in the scVI
latent dimensions, using k = 50. Cells were clustered using the Leiden
algorithmwith resolution = 1.5. Subsequently, clusters were annotated
by majority voting using the harmonized cell type labels available via
CELLXGENE. During this process, one cluster of cells was excluded as
potentially containing doublets. After this final filtering, the dataset
included 597,321 cells annotated into 16 cell types.

Simulation experiments

In this section we describe the simulation strategy (Fig. 2a) and work-
flow to identify OOR cells (Fig. 2b). We designed evaluation experi-
ments and chose methods for the integration and differential analysis
with the specific use-case of disease datasets in mind. We believe our
results will extrapolate to other types of case-control studies, aslong as
the main assumptions apply, thatis, (1) thatall the cell states observed
in the control dataset are also found in the atlas dataset and (2) that
only a fraction of cell types are altered in the disease datasets. Note
that throughout this study the term ‘cell state’ defines a group of cells
thatare more transcriptionally similar to each other thanto other cells
inthe same tissue.

Data splitting into atlas, control and pseudo-disease

To simulate the attributes of the disease, atlas and control datasets,
we selected donors from one study (query study, 29 healthy donors,
Stephenson etal.?*) and we split these at random with equal probabilities
into a disease subset (16 donors) and a control subset (13 donors). The
data from the remaining 12 studies comprises the atlas dataset (1,219
donors). Tosimulate the presence of an OOR cell state, we selected one
celltype label and removed all cells with that label from the control and
atlas dataset. We repeated this simulation with 15 annotated cell types
in the PBMC dataset. Neutrophils were excluded because they were
underrepresented in the Stephenson et al.>* study. For seven cell types
where the number of cellsin the OOR cell state was fewer than 250 cells,
we found that our workflow was unable to detect OOR states across
designs (Extended DataFig. 4); therefore, most downstream analysis was
restricted to simulations where at least 250 OOR cells were simulated.

To simulate a scenario with multiple cell states altered in disease
with different effect sizes (Fig. 3d-f), we selected a fixed cell type label
toberemoved fromthe atlas and control as described above (classical
monocytes). We then selected a variable cell type label (shifted OOR
cell state) that we split between an OOR and an in-reference group
with the following procedure: we selected the cells of the shifted OOR
cell state in the disease and control datasets; we log-normalized their
gene expression profiles and ran a PCA to split the cellsinto OOR and
in-reference groups based on their weights on the first principal com-
ponent. We thenused a k-nearest neighbor classifier (using the imple-
mentationinscikit-learn, with k=10) to assign atlas cells to one of the
two groups. We used this procedure instead of running the PCA on atlas,
control and disease cells to avoid having a first principal component
that captures only batch effects between the query and atlas datasets.

Latent space embedding

For each simulated atlas, control and disease dataset assignment, we
embedded the reference and query datasets into a common latent
space using transfer learning with scArches’ on scVl models®*, using
theimplementationin the Python package scvi-tools v.0.17.4 (ref. 70).
Briefly, we selected the 5,000 most HVGs in the reference dataset
based on the dispersion of log-normalized counts, asimplemented in
SCANPY. We trained the scVImodel on the raw counts of the reference
dataset, subsetting to HVGs, considering the sample ID as batch and
specifying the recommended parameters to enable scArches mapping
(use_layer_norm = ‘both’, use_batch_norm = ‘none’, encode_covari-
ates =True, dropout_rate = 0.2, n_layers = 2). Models were trained for
400 epochs or until convergence. For the CR design with jointembed-
ding (CRscVI), thescVImodel was trained on the concatenated disease
and control datasets. Next, we performed transfer learning on the query
dataset(s) from the model trained on the reference, running the model
for200 epochs and setting the weight_decay parameterto O. The refer-
ence (forscVItraining) and query (for scArches mapping) datasets for
latent space embedding were defined as follows for the three reference
designs: AR design: the atlas dataset was used as the reference dataset,
the disease dataset was used as the query dataset; control reference
with query mapping (CR design, scArches): the control dataset was
used as thereference dataset, the disease dataset was used as the query
dataset; control reference with joint embedding (CR design, scVI):
the control and disease datasets were used as the reference dataset,
no query mapping was performed; ACR design: the atlas dataset was
used as the reference dataset, the disease and control datasets were
used as the query dataset.

DA analysis

To find cell states enriched in the disease dataset, we used the Milo
framework for DA on cell neighborhoods" using the implementation
in the package milopy v.0.1.0 (https://github.com/emdann/milopy).
Briefly, we computed the k-nearest neighbor graph of cellsin the refer-
ence and disease datasets based on latent embedding. The reference
datasets for differential analysis were defined as follows for the three
reference designs: (1) AR design: atlas dataset; (2) CR design: control
dataset; (3) ACR design: control dataset.

Of note, for the ACR design, the atlas dataset was not considered
when constructing the k-nearest neighbor graph. This reduces the
computational burden of handling a dataset of hundreds of thou-
sands of cells. We set the value of k to be equal to the total number of
samples times five, up to a maximum of k=200 (this upper limit was
set for memory efficiency reasons), as suggested by Dann et al.". We
assigned cells to neighborhoods (milopy.core.make_nhoods, param-
eters: prop = 0.1) and counted the number of cells belonging to each
sampleineach neighborhood (milopy.core.count_cells). We assigned
toeachneighborhood a cell type label based on majority voting of the
cells belonging to that neighborhood. To test for enrichment of cells
fromthe disease dataset, we modeled the cell count in neighborhoods
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as a negative binomial generalized linear model, using a log-linear
model to model the effects of disease status on cell counts (log fold
change). Although the split between control and disease samples was
balanced in terms of the available metadata, in the query study there
was aknown batch effect between the three sites from which samples
were collected™. Therefore, we included site identity as a confounding
covariateinthe DA model when using the ACRand CR designs, although
we found that the results presented in this report were robust even
without modeling this confounder. We controlled for multiple test-
ing using the weighted Benjamini-Hochberg correction as described
in Dann et al." (spatial FDR correction). Unless otherwise specified,
neighborhoods were considered enriched in disease cellsif the spatial
FDR < 0.1and log fold change > 0.

For the comparison across DA methods (Extended DataFig. 3), we
constructed the k-nearest neighbor graph using the same parameters
asdescribed above for the Milo analysis. We used the MELD" implemen-
tationavailable via Pypl (v.1.0.0) and tested for significant differences
in density between pseudo-disease and control samples as described
by Petukhov et al.”>. Specifically, we computed sample-specific den-
sities over the k-nearest neighbor graph (running meld.MELD().fit_
transform()) and tested for significant differencesin sample densities
between conditions using a Wilcoxon rank-sum test, asimplemented
in SciPy”®. While in the original MELD analysis the authors took the
normalized mean density across samples of the same condition as a
metric for the effect size of DA, we opted to use the Wilcoxon rank-sum
test after observing significant variance in sample densities across
donorsof the same condition. We ran covarying neighborhood analysis
(CNA)" using theimplementation available via Pypl (v.0.1.4). We used
the CNA correlation as a metric for the effect size of DA (running cna.
tl.association, with ks =[20]).

Wetested additional alternatives to DA to identify OOR cell states,
asshowninSupplementary Note 2.1.

Sensitivity analysis

For each simulation (thatis, with different OOR cell state and reference
design), we defined a neighborhood as an OOR state (true positive)
if the percentage of OOR cells in the neighborhood was more than
20% of the maximum percentage observed in that simulation. This
threshold selection aimed to quantify the ability to detect the neigh-
borhoods where the largest number of OOR cells was found, even
when the atlas dataset was included in the k-nearest neighbor graph
(AR design); most cellsinthe neighborhoods always belong to the atlas
dataset. The selected thresholds for each experiment are shown in
Extended DataFig.1. We calculated TPRs, FPRs and FDRs considering
neighborhoods where the spatial FDR < 0.1and log fold change > 0 as
predicted positives.

With precision-recall curve analysis, we quantified the ability
to detect true positive OOR states with different thresholds of log
fold change, without considering the significance estimated with
spatial FDR, using the implementation in scikit-learn’. As a measure
of uncertainty around the estimated AUPRC, we performed bootstrap
resampling onthe neighborhood logfold change values, maintaining
the original ratio of positive and negative points, and computed the
95% Cl on the distribution of AUPRC values for 1,000 resamplings.

Control and atlas size analysis

For the analysis with varying number of control donors (Fig. 4a and
Supplementary Fig.1), we selected the simulations with the five OOR
cell populations with the highest average TPR with CR and ACR
designs in the previous analysis (Fig. 3b). For each simulation, we
selected the five, seven or nine donors from the disease dataset who
had the highest fraction of cells in the OOR cell population. Subse-
quently, we selected a random subset of n donors (with 3 <n <12)
fromthe control dataset and performed disease-state identification
with the CR or ACR design, as described above. For each disease

dataset size and n we repeated the simulation with five different ini-
tializations of the control donor selection.

To assess whether a shallow atlas dataset would introduce false
discoveries in disease-state identification (Supplementary Fig. 2), we
used all 29 donors from the query dataset in the disease and control
datasets, and subsampled the atlas dataset removing datafromone to
11studies (ordering studies according to the total number of cells), and
performed disease-state identification with the AR and ACR designs.

More cases of robustness to perturbation of the atlas and control
datasets of the reference designs are described in Supplementary
Notes2.1and 2.2.

Design comparison on the COVID dataset

Data preprocessing and model training. We downloaded data for
COVID-19 and healthy PBMCs from Stephenson et al.*, via the CELLx-
GENE portal (collection ID: ddfad306-714d-4cc0-9985-d9072820¢530).
We sampled 500 cells for each sample to reduce the computational
burden of this analysis, while maintaining sample-level diversity, and
we excluded samples for which fewer than 500 cells were detected. We
excluded cells where fewer than1,000 mRNA molecules were detected
and we excluded data from three samples that were profiled with the
Smart-seq2 protocol. As cell type annotation, we used the high-level
annotation from the original authors.

As the atlas dataset, we used the healthy PBMC data described
above, excluding the healthy PBMC profiles from Stephenson et al.*.
Reference model training and query mapping was performed as
described above. After query mapping, control and COVID-19 cells
wereembeddedinak-nearest neighbor graph (k=100), whichwas used
tobuild neighborhoods and perform DA with Milo as described above.
For the comparison of de novo integration and query mapping (Fig. 5d),
scVI training was performed on the concatenated atlas, control and
COVID-19 datasets (ACR design) or controland COVID-19 datasets (CR
design), asdescribed above. Alsoin this case, the atlas dataset was used
forscVImodel training, but only model weights were used for mapping
with scArches; all downstream analysis was performed solely on the
COVID-19 and control datasets.

IFN signature calculation. To define IFN-stimulated cells, we aggre-
gated the expression of aset of IFN-associated genes defined by Yoshida
etal.”. (BST2, CMPK2, EIF2AK2, EPSTI1, HERCS, IFI35, IFI44L, IFI6, IFIT3,
ISG1S, LY6E, MX1, MX2, OAS1, OAS2, PARP9, PLSCR1, SAMD9, SAMD9YL,
SP110,STATI, TRIM22, UBE2L 6, XAFI and IRF7), using the SCANPY func-
tionscanpy.tl.score_genes() to quantify signature expression for each
cell. The signature was calculated as the average scaled expression
of the IFN-associated genes, which was subtracted from the average
expression of areference set of genes sampled for each binned expres-
sion value™. A threshold of IFN signature greater than 0.05 was used
for the precision-recall analysis.

CD14" monocyte disease-state analysis. For the analysis of the
COVID-19-associated monocyte subsets, we focused on the neigh-
borhoods annotated as CD14" monocytes based on majority voting, as
described above. We split CD14* monocyte neighborhoods into IFN
COVID-19 neighborhoods (spatial FDR < 0.1, log fold change > 0 and IFN
signature > 0.2), IFN'° COVID-19 neighborhoods (spatial FDR < 0.1, log
fold change > 0 and IFN signature < 0.2) and healthy neighborhoods
(the remaining neighborhoods). To assign cells to one of these three
phenotypes, we computed, for each cell, the number of neighborhoods
of each phenotype to which that cell belonged (as Milo neighbor-
hoods can be partially overlapping) and we labeled cells based on the
most representative phenotype (if the cell was found in at least three
neighborhoods of that phenotype; otherwise the cell was annotated
as mixed CD14" monocyte phenotype).

For differential expression analysis, we aggregated gene expres-
sion profiles by summing counts according to sample and CD14"
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monocyte phenotype and performed differential expression testing
with the edgeR quasi-likelihood test’ using the implementationin the
R package glmGamPoi’® and 1% FDR (Supplementary Tables 2 and 3).

Design comparison on the IPF dataset

Data preprocessing and model training. Gene expression count
matrixes for human lung IPF, control and COPD scRNA-seq data from
Adams et al.”> were downloaded from the Gene Expression Omnibus
(accessionno. GSE136831). As cell type annotations, we used uniform
labels generated from the integration of this dataset with the HLCA
by Sikkema et al.’®, downloaded from Zenodo (https://zenodo.org/
record/6337966). For latent embedding with the AR and ACR designs,
we used the embeddings from scArches mapping on the core HLCA
model provided by Sikkema et al. via Zenodo. For latent embedding
with the CR design, we trained a scANVImodel” on the concatenated
control and disease replicating the parameters used to train the
HLCA model (according to the notebooks in https://github.com/
LungCellAtlas/HLCA reproducibility), using dataset ID as the batch
covariate and training on the same set of 2,000 HVGs used for HLCA
training. We opted to keep the HLCA HVG set for the CR design
instead of recomputing HVGs because it was selected using a custom
batch-aware strategy and compared (in the original study) to alterna-
tive selections withabenchmarking pipeline’®. Therefore, we reasoned
that recomputing HVGs on the CR design would not represent a fair
comparison. DA with Milo was performed as described above (changing
only milopy.core.make_nhoods, parameters: prop = 0.01), comparing
the abundance of cells from IPF samples to the abundance of cells from
the controlsamples. Neighborhood-level annotations were performed
using majority voting as described previously.

SPPI" macrophage analysis. To define SPPI" profibrotic macrophages,
we aggregated the expression of a set of marker genes defined by
Adamsetal.? (SPP1,LIPA, LPL, FDX1,SPARC, MATK, GPC4, PALLD, MMP7,
MMP9, CHIT1, CSTK, CHI3L1, CSF1, FCMR, TIMP3, COL22A1, SIGLECIS,
CCL2),using the SCANPY function scanpy.tl.score_genes() to quantify
the signature expression of each cell. Athreshold of signature greater
than 0.32 was used for the precision-recall analysis (corresponding to
the 90% quantile of the signature expressionin all cells). For compari-
son to the label transfer uncertainty metrics, we used the values for
uncertainty provided by Sikkema et al.

IPF signature analysis. To define profibrotic signatures in stromal
cells, we used agene expression signature developed onbulk RNA-seq
data to diagnose IPF from lung explants®. We downloaded DEGs from
the original paper, selected upregulated genes and normalized the
differential expression test effect sizes to weights e [0, 1] with L2 nor-
malization (Extended Data Fig. 8a). We then used a modified version
ofthe SCANPY function scanpy.tl.score_genes() (using weighted means
based on gene weights) to quantify the diagnostic signature expression
for each cell. We thenselected relevant cell types where the difference
inmeansignature expression between cells from IPF samples and cells
from COPD samples was the highest, to control for the effect of
end-stage lung disease (Extended Data Fig. 8b). For the precision-recall
analysis, we computed the mean profibrotic signature expression
across IPF cells in the neighborhoods and used the top 50% quantile
foreachcelltype group (alveolar type (AT), fibroblasts, club cells, basal
cells) as the threshold for calling true positives.

Analysis of aberrant basal-like cells. We annotated the neighbor-
hoods of basaloid cells and KRT17" aberrant basal cells based on profi-
brotic signature expression and expression of marker genes reported
byrefs.2,37,38,40 (Extended DataFig. 8a,c,d). We defined normal basal
cellsas cells annotated as basal and not belonging to the basaloid neigh-
borhood or the KRT17" basal neighborhood. In total we annotated 1,562
normal basal cells, 377 basaloid cells and 350 KRT17" aberrant basal

cells, distributed across individuals (Fig. 6e). For differential expres-
sion analysis, we aggregated gene expression profiles by summing
counts according to sample and basal-like phenotype, and performed
differential expression testing with the edgeR quasi-likelihood test
(Robinson and Oshlack’®) using the implementation in the R package
glmGamPoi (Ahlmann-Eltze and Huber’®), using 1% FDR (Supplemen-
tary Table 4). We compared KRT17" aberrant basal cells against basaloid
cells, and each aberrant state against normal basal cells. Differential
expression analysis was runonthe top 7,500 most HVGs for each com-
parison, using the modelGeneVar function from the scran package”.
We considered genes to be aberrant state markers (showninFig. 6fand
Supplementary Fig. 4) only if significant in the comparison between
aberrant states and significantly overexpressed against the normal
state (reported in Supplementary Table 4). We performed gene set
enrichment analysis using the enrichr method® withimplementation
carried out using the Python package GSEApy®.. To annotate genes
targeted by drugsintrials or approved for lung disease, we downloaded
the targets of drugs approved or being trialed for lung disease (trait
ID: EFO_0003818) in the Open Targets platform®2. To annotate genes
associated with GWAS variants for lung function (forced expiratory
volume, trait ID EFO_0004314), we downloaded a list of significant
GWAS lociand predicted causal genes based on the locus2gene model
available via the Open Targets Genetics database®. The full tables for
drug targets, the lung function GWAS studies used for the genetic
evidence analysis and GWAS-associated genes are shared as metadata
in our reproducibility repository (https://github.com/MarionilLab/
oor_design_reproducibility).

Statistics and reproducibility

No statistical method was used to predetermine sample size. No
data were excluded from the analyses, unless otherwise stated in the
relevant section of the Methods where the rationale for exclusion is
described. Statistical tests were chosen to model the underlying data
distributions (negative binomial likelihood generalized linear models
for cell counts" and mRNA counts’®, Wilcoxon signed-rank tests for
nonparametric comparisons between metrics). The experiments were
notrandomized. The investigators were not blinded to allocation dur-
ing the experiments and outcome assessments. All code to replicate
the analysisis available as part of code availability.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Allthe dataused for analysis are publicly available. The blood datasets
used for the simulation studies and COVID-19 analysis were down-
loaded from the CELLXGENE database (Supplementary Table1). Lung
data from the IPF cohort are available via the Gene Expression Omni-
bus (accession no. GSE136831). The core Human Lung Cell Atlas gene
expression data were downloaded from CELLXGENE database (ID
6f6d381a-7701-4781-935¢c-db10d30de293). Unified cell type annota-
tions for healthy and IPF data were downloaded from Zenodo (https://
zenodo.org/record/6337966). The TabulaSapiens data used in Supple-
mentary Note 2.2.2 were downloaded from figshare (https://figshare.
com/articles/dataset/Tabula_Sapiens_release_1_0/14267219). All pro-
cessed data objects in AnnData format®* and trained scVI models are
available viafigshare (https://doi.org/10.6084/m9.figshare.21456645).

Code availability

The functions for benchmarking out-of-reference state detection,
including the code for preprocessing, datasplitting, latentembedding,
differential analysis and evaluation metrics, have been made available
as a Python package at https://github.com/MarioniLab/oor_bench-
mark (deposited at Zenodo®). Notebooks and scripts toreproduce all
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analyses presented in the manuscript are available at https://github.
com/MarioniLab/oor_design_reproducibility (deposited at Zenodo®).
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Extended DataFig.1| Out-of-reference recovery across simulations. indicate neighbourhoods where the enrichment was significant (10% SpatialFDR,
Scatterplot of differential abundance log-Fold Change (DA logFC) against fraction logFC > 0). The dotted red line indicates the threshold used to define true positives
of out-of-reference (OOR) cells for each neighbourhood, in simulations with for precision-recall analysis (20% of the higher fraction in the simulation).

different removed OOR cell populations (indicated in y-axis). Colored points
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Extended Data Fig. 3| Reference design comparison with alternative
differential analysis methods for OOR detection. Boxplots of false discovery
rate (FDR), false positive rate (FPR), true positive rate (TPR) and Area Under the
Precision-Recall Curve (AUPRC) for detection of OOR cell states with different
reference designs (boxplot colour) using 3 different methods for differential

cellabundance analysis: co-varying neighbourhood analysis (CNA), MELD

and Milo. Points represent simulations with different OOR populations (n=8,
selecting OOR states with at least 250 cells). Tests on the same simulated data are
connected. In boxplots the center line denotes the median; box limits, first and
third quartiles; whiskers, 1.5X interquartile range.
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Extended DataFig. 5| Reference design comparison on COVID-19 cohort.

(a) Scatterplot of neighbourhood differential abundance log-Fold Change (DA
logFC) against the mean expression of IFN signature with ACR design (left)

and CR design with joint embedding (right), stratified by cell type annotation.
Colored points indicate neighbourhoods where the enrichment was significant
(10% SpatialFDR and logFC > 0). The dotted line denotes the threshold for high-
IFN used for precision-recall analysis. (b) Beeswarm plot of DA logFC annotating
neighbourhoods by fine annotation by Stephenson et al. Neighbourhoods
where the differential abundance was significant (10% SpatialFDR) are colored.
Annotations are ordered by the value of the maximum logFC for the annotation,
to visualize which cell types are prioritized for each design. (c) (left) Asin (A) but

close-up onlymphoid cell types. The red dotted line denotes the 90% quantile
of mean IFN signature, used to identify the top 10% IFN-high states for each
lymphoid cell type for precision-recall analysis. (right) Area under the precision-
recall curve for identification of top 10% IFN-high neighbourhoods in lymphoid
cell types. The dotted line denotes the baseline value for the AUPRC, indicating
the case of arandom classifier. Error bars denote the 95% confidence interval

of AUPRC calculated from bootstrapping with 1000 resamplings. The height

of the bar denotes the AUPRC computed on the real data. (d) Volcano plot for
differential abundance analysis on neighbourhoods of NK cell neighbourhoods
(CD16hi NK cells and proliferating NK cells) and naive B cell neighbourhoods.
The dotted line denotes the significance threshold of 10% SpatialFDR.
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Extended Data Fig. 6 | See next page for caption.
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Extended DataFig. 6 | Heterogeneity in COVID-19 associated CD14+ monocyte
states. (a) Scatterplot of neighbourhood differential abundance log-Fold Change
(DA logFC) against the mean expression of IFN signature with CR design for
neighbourhoods of CD14+monocyte cells (as in Fig. 5e). (b) Distribution of IFN
signature score for cells belonging to neighbourhoods in CR design assigned

to 3 alternative CD14+ phenotypes. (c) COVID-19 enriched CD14+ phenotypes
(from CR design) across patients with varying disease severity (Healthy:n=23
patients, Asymptomatic: n = 9 patients, Mild: n =23 patients, Moderate: n =30
patients, Critical: n =15 patients, Severe: n = 13 patients): each point represents
adonor, the y-axis shows the fraction of all CD14+ monocytes in that donor
showing IFN-high COVID-19 enriched phenotype (orange), and IFN-low COVID-19
enriched phenotype (yellow). The remaining fraction are monocytes with healthy
phenotype (not shown). Inboxplots the center line denotes the median; box
limits, first and third quartiles; whiskers, 1.5X interquartile range. (d) Volcano plot
of differential expression analysis results from comparison between IFN-high and

IFN-low COVID-19 specific CD14+ phenotypes identified with ACR design. For each
tested gene, the x-axis shows the logFC of the edgeR quasi-likelihood differential
expression test®* and the y-axis shows the Benjamini-Hochberg adjusted p-value.
Genes with significant DE at FDR <1% are colored in red. A subset of significant
genes with absolute logFC > 0.75 are labelled. (e) Dotplot of mean expression of
IFN signature genes, HLA-DR genes and S100 genes for different CD14+ monocyte
states identified with ACR design. Dot size is proportional to the fraction of cells
expressing the genein agroup. (f) Predicted CD14+ monocyte phenotype for
monocytes of COVID-19 patients from the Schulte-Schrepping® dataset. A logistic
regression model was trained on the monocytes from the Stephenson dataset*,
and predicted phenotypes for all CD14+ monocytes in the Schulte-Schrepping?
dataset. The barplot shows the proportion of cells with a predicted phenotype

for HLA-DRIo S100hi monocytes and for all other monocytes. (g) Volcano plot of
differential expression analysis results from comparison between IFN-high and
IFN-low COVID-19 specific CD14+ phenotypes identified with CR design (asin (D)).
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Extended Data Fig. 7 | Detection of profibrotic (SPP1hi) macrophages W|th
alternative reference designs. (a) Scatterplots of differential abundance log-
Fold Change (DA logFC) against the mean expression of profibrotic macrophage
signature in macrophage cell neighbourhoods with ACR design (left), AR design
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neighbourhoods with low expression of profibrotic signature (top 10% false
positives), we found that with the CR design these neighbourhoods include cells
from significantly less samples compared to the true positives. On the left, we
mark neighbourhoods that are considered top 10% (colored), separating out
False Positive (FP) neighbourhoods, where the mean profibrotic macrophage
signature was below the threshold of the 90% quantile used for precision-recall

analysis. Theboxplots on the right show the number of samples represented
ineach top 10% neighbourhood (ACR other: n =10 neighbourhoods; ACR

FP:n =65 neighbourhoods; CR other: n = 66 neighbourhoods; CRFP:n=18
neighbourhoods). In boxplots the center line denotes the median; box limits,
firstand third quartiles; whiskers, 1.5X interquartile range. (c) Barplots of
fraction of cells from each donor in top 10% false positive neighbourhoods with
ACR (left) and CR design (right). (d) Detection of profibrotic macrophages with
label transfer uncertainty score from Sikkema et al. 2022. Violin plots show

the distribution of label uncertainty on cells (left), mean label uncertainty

on neighbourhoods (centre) and DA logFC with ACR design for profibrotic
macrophages (profibrotic macrophage signature > 90% quantile, in pink) and
other macrophages (in grey). The dotted lines denote the median value and
inter-quartile range. (e) Precision-recall curve for detection of profibrotic
macrophages with metrics shownin D. The dotted lines denote the baseline value
for the AUPRC, indicating the case of arandom classifier.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Detection of IPF diagnostic gene signature in stromal
and epithelial lung cells. (a) Scatterplot of weights assigned to genes used for
IPF signature calculation (from ref. 36). (b) Boxplots of IPF diagnostic signature
values for cells of different cell type groups. Cells are grouped by disease status
(Control: n =28 patients; IPF: n = 32 patients). The number of cells for each cell
type group and disease group is shown on the right. Cell type groups are ordered
by the difference in mean signature between cells from IPF patients and COPD
patients (COPD: chronic obstructive pulmonary disease), with cell type groups
where the IPF diagnostic signature was highest in IPF patients shown on top. EC:
endothelial cells; Club: club cells; SMG: submucosal gland cells. In boxplots the
center line denotes the median; box limits, first and third quartiles; whiskers,
1.5Xinterquartile range. (c) Scatterplots of differential abundance log-Fold

Change (DA logFC) against the mean expression of IPF diagnostic signature in
cellneighbourhoods of affected cell type groups (AT: alveolar cells, basal cells,
clubcells, fibroblasts) with ACR design (left), AR design (middle) and CR design
(right). Coloured pointsindicate neighbourhoods where the enrichment was
significant (1% SpatialFDR and logFC > 0). Pearson’s correlation coefficients
and p-values for significance of the correlation are reported (two-sided test).
Neighbourhoods corresponding to aberrant basal-like phenotypes examined in
downstream analysis are highlighted. (d) Dotplot of expression of marker genes
for different aberrant basal-like cell states (KRT17hi aberrant basal markers from
Jaeger etal.*’, basaloid markers from Adams et al.?). Dot size is proportional to
the fraction of cells expressing the genein agroup.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Differential expression analysis to identify markers for
aberrant basal-like cells detected with ACR design. (a) Gene set enrichment
analysis (Enrichr®® hypergeometric test) results for markers of KRT17hi aberrant
basal cells: adjusted p-value (BH correction for multiple testing, transformed to -
log10(p-val)) for significant gene sets (10% FDR threshold, marked by dotted line)
from GO biological process terms and MSigDB Hallmark pathway terms. Example

marker genes associated with each term are shown. (b) Gene set enrichment
analysis (Enrichr®® hypergeometric test) results for markers of basaloid cells:
adjusted p-value (BH correction for multiple testing, transformed to - log10(p-val))
for significant gene sets (5% FDR threshold, marked by dotted line) from GO
biological process terms and MSigDB Hallmark pathway terms. Example marker
genes associated with each term are shown.
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Simulation study and COVID-19 analysis: Data used in the simulation study was downloaded from the cellxgene portal (https://cellxgene.cziscience.com/collections)
(see Suppl Table 1 for dataset IDs for all studies)

IPF analysis:

- IPF and control data was downloaded from the Gene Expression Omnibus (GSE136831)

- Human Lung Cell Atlas model and data was downloaded from Zenodo (https://zenodo.org/record/6337966)

- Information about drug targets for lung disease was downloaded from OpenTargets Platform (https://platform.opentargets.org/) (trait ID: EFO_0003818). The
downloaded table is available at https://github.com/MarioniLab/oor_design_reproducibility/blob/master/metadata/opentargets_drugs.EFO_0003818.tsv

- Information about genes with genetic association to lung function was downloaded from OpenTargets Genetics Platform (https://genetics.opentargets.org/) (trait
ID: EFO_0004314). The downloaded table is available at http://github.com/MarioniLab/oor_design_reproducibility/blob/master/metadata/
opentargets_genetics.EFO_0004314.csv

Processed data objects and trained scVI models are available via figshare (https://doi.org/10.6084/m?9.figshare.21456645). Additional metadata is shared in the
reproducibility repository (https://github.com/MarioniLab/oor_design_reproducibility).
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providing a robust sample size, in line with similar scRNA-seq comparisons.

Data exclusions  Samples profiled with Smart-seg-2 protocol in the Stephenson et al. dataset were excluded (3 samples) to avoid batch effects with 10X
genomics data.

Replication Findings from simulation experiments were replicated changing several parameters (including size of atlas/control/disease dataset, type of
out-of-reference cell state, number of out-of-reference cell states), as detailed in the "Robustness of OOR detection with ACR design" section
of results. Findings on disease-specific cell types were not replicated in independent datasets due to limited availability of atlas and disease
scRNA-seq datasets.

Randomization  Insimulation studies, studies and donors were split into atlas, disease and control datasets at random.

>
Q
—
(e
(D
1®)
(@)
=
S
c
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<




Blinding Our analysis consisted on computational method benchmarking and exploratory data analysis where blinding is not possible and quantitative
outcomes are not dependent on blinding.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

>
Q
]
(e
D
1®)
O
=
o
c
-
(D
1®)
O
=
5
(@]
wn
(e
3
=
Q
A

Animals and other organisms
Clinical data

Dual use research of concern

XX XNXNXXX s
OOoOoooog

Plants




	Precise identification of cell states altered in disease using healthy single-cell references

	Results

	Reference design for disease-associated state identification

	Detection of out-of-reference cell states in simulations

	Robustness of OOR detection with the ACR design

	Detection of interferon-stimulated states in patients with coronavirus disease 2019

	Detection of aberrant cell states in pulmonary fibrosis


	Discussion

	Online content

	Fig. 1 Using healthy reference datasets to discover disease-associated cell states.
	Fig. 2 Benchmarking setup for comparison of reference designs on detection of OOR cell states.
	Fig. 3 Detection of simulated OOR cell states.
	Fig. 4 Robustness of detection of OOR state with the ACR design.
	Fig. 5 Detection of cell states associated with COVID-19 in a case-control cohort with a healthy atlas.
	Fig. 6 Detection of cell states associated with IPF.
	Extended Data Fig. 1 Out-of-reference recovery across simulations.
	Extended Data Fig. 2 Batch correction and biological conservation with latent dimensions learnt with different reference design.
	Extended Data Fig. 3 Reference design comparison with alternative differential analysis methods for OOR detection.
	Extended Data Fig. 4 Statistical power is dependent on the size of the OOR cell state across reference designs.
	Extended Data Fig. 5 Reference design comparison on COVID-19 cohort.
	Extended Data Fig. 6 Heterogeneity in COVID-19 associated CD14+ monocyte states.
	Extended Data Fig. 7 Detection of profibrotic (SPP1hi) macrophages with alternative reference designs.
	Extended Data Fig. 8 Detection of IPF diagnostic gene signature in stromal and epithelial lung cells.
	Extended Data Fig. 9 Differential expression analysis to identify markers for aberrant basal-like cells detected with ACR design.




