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Precise identification of cell states altered in 
disease using healthy single-cell references

Emma Dann    1, Ana-Maria Cujba1, Amanda J. Oliver    1, Kerstin B. Meyer    1, 
Sarah A. Teichmann    1,2   & John C. Marioni    1,3,4 

Joint analysis of single-cell genomics data from diseased tissues and a 
healthy reference can reveal altered cell states. We investigate whether 
integrated collections of data from healthy individuals (cell atlases) are 
suitable references for disease-state identification and whether matched 
control samples are needed to minimize false discoveries. We demonstrate 
that using a reference atlas for latent space learning followed by differential 
analysis against matched controls leads to improved identification 
of disease-associated cells, especially with multiple perturbed cell 
types. Additionally, when an atlas is available, reducing control sample 
numbers does not increase false discovery rates. Jointly analyzing data 
from a COVID-19 cohort and a blood cell atlas, we improve detection of 
infection-related cell states linked to distinct clinical severities. Similarly, 
we studied disease states in pulmonary fibrosis using a healthy lung atlas, 
characterizing two distinct aberrant basal states. Our analysis provides 
guidelines for designing disease cohort studies and optimizing cell atlas use.

Precise identification of cell phenotypes altered in disease with 
single-cell genomics can yield insights into pathogenesis, biomark-
ers and potential drug targets1–8.

The standard approach to identify altered cell states involves joint 
analysis of single-cell RNA sequencing (scRNA-seq) data from diseased 
tissues and a healthy reference. This typically includes integrating 
cellular profiles from different conditions into a common phenotypic 
latent space to match common cell types and minimize technical differ-
ences9,10. Subsequently, differential analysis is performed on matched 
cell states between healthy and diseased cells to identify differences 
in gene expression patterns or cellular composition11–15. Regardless of 
the methods used for these steps, the selection of the healthy reference 
dataset is crucial.

Large-scale profiling of healthy samples by the Human Cell Atlas 
community has yielded large, harmonized collections of data from 
multiple organs, or atlas datasets (http://data.humancellatlas.org/). 
In tissues like lung and blood, millions of cells have been profiled 
from hundreds to thousands of individuals. Computational analyses  
allow for meaningful integration of these datasets, providing a 

comprehensive view of cell phenotypes in a tissue, while minimizing 
technical variation. Nevertheless, the characteristics of the samples 
included in an atlas might differ greatly from those of a disease cohort 
(Fig. 1a). This could introduce false discoveries if confounding factors 
are unknown or not appropriately handled in statistical testing. Despite 
this, several studies use atlas datasets as references for discovering 
disease states1,16–19, especially for tissues where obtaining matched 
healthy controls is challenging, such as the brain20,21.

In contrast, several studies collect matched control samples from 
healthy tissue alongside the disease samples5,22–25, with similar demo-
graphic and experimental protocol characteristics. This minimizes 
the risk of false positives driven by confounders. However, collection 
of a large number of healthy control samples is not always practical 
or possible. Moreover, using a relatively small number of samples for 
the integration step increases the risk of missing rare cell states and 
overinterpreting sample-specific noise. Understanding how features 
of the reference dataset impact identification of disease-associated 
cell states will guide effective data reuse, design of disease studies and 
future cell atlasing efforts.
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while the disease and control datasets are mapped to the same latent 
space; finally, differential analysis is performed contrasting the disease 
dataset to the control dataset only. For the CR design, we compared a 
workflow for latent embedding where the control dataset was used as 
reference for query mapping, and another where the latent embedding 
model was trained on the concatenated control and disease datasets 
(Supplementary Note 2.4).

In the following sections, we quantify the ability of these three 
designs to identify disease-specific cell states in simulations and real data.

Detection of out-of-reference cell states in simulations
To test a scenario with ground truth, we simulated the attributes of 
atlas, control and disease datasets by splitting scRNA-seq data from 
13 studies that profiled healthy peripheral blood mononuclear cells 
(PBMCs) from 1,248 donors (Supplementary Table 1 and Methods). 
We selected one study and randomly split the donors to simulate a 
pseudo-disease and a control dataset (Fig. 2a). This ensured that cohort 
demographics and experimental protocols were matched, preserving 
donor and library effects present in real data. The remaining cells (1,219 
donors) form the atlas dataset. To simulate a cell population specific to 
the pseudo-disease dataset, hereafter an out-of-reference (OOR) state, 
we selected one or more annotated cell types and removed cells with 
those labels from the control and atlas datasets.

To identify the OOR state, we first learned a latent space embed-
ding on the chosen reference (atlas or control) using single-cell vari-
ational inference (scVI)26 (Fig. 2b, left). Then, we used transfer learning 
with scArches9 to map the query dataset(s) to the trained scVI model. 
For the CR design with joint embedding (CR scVI), we trained the scVI 
model on the concatenated pseudo-disease and control datasets  
(Fig. 2b, center). In the ACR design, the atlas dataset was used to train 

In this study, we compare the use of atlas and control datasets as 
references for the identification of disease-associated cell states. We 
demonstrate the benefits of using an atlas dataset as reference for 
latent embedding and of a control dataset as reference for differential 
analysis, with important implications for both experimental design 
and use of single-cell disease cohorts.

Results
Reference design for disease-associated state identification
To optimize the selection of a reference dataset for the identification 
of disease-associated cell states, we considered the following work-
flow (Fig. 1b). First, a dimensionality reduction model is trained on the 
healthy dataset (the embedding reference dataset) to learn a latent 
space representative of cellular phenotypes while minimizing batch 
effects. Next, this model is used for transfer learning to map the query 
dataset, which includes the disease samples, to the same latent space9,10. 
Finally, differential analysis is performed to compare cells between 
disease and healthy samples (differential analysis reference) to identify 
disease-associated states. We defined a healthy reference dataset as a 
control if it matched the disease dataset in terms of cohort character-
istics and experimental protocols. We defined an atlas reference (AR) 
dataset as one that aggregated data from hundreds to thousands of 
individuals from multiple cohorts, collected with several experimental 
protocols. With this workflow, we outlined three alternatives for select-
ing a reference dataset (reference design) (Fig. 1c): (1) the AR design; (2) 
the control reference (CR) design, where either type of healthy dataset 
is used as the embedding reference and as the differential analysis refer-
ence; and (3) an atlas to control reference (ACR) design, where an atlas 
and a control dataset are used in different steps of the workflow. In this 
analytical design, the atlas dataset serves as the embedding reference, 
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Fig. 1 | Using healthy reference datasets to discover disease-associated cell 
states. a, Schematic of attributes of disease, control and atlas datasets, with 
regard to population-level variation, experimental protocols and heterogeneity 
of cell states captured. In a disease dataset, biological samples typically originate 
from tens of individuals from a relatively homogeneous population (for example, 
recruited from the same hospital), and the same experimental protocol is 
used across samples for dissociation, library preparation and sequencing 
(or experiments are designed to minimize confounding with cohort-specific 
variables). We defined a healthy reference dataset as a control if it matched the 
disease dataset in terms of cohort characteristics and experimental protocols. 
We defined a reference dataset as an atlas if it aggregated data from hundreds 
to thousands of individuals from multiple cohorts, profiled with several 
experimental protocols. Typically, such integrated datasets capture a larger 

variety of healthy cell states compared to smaller cohorts. b, Schematic of the 
analysis workflow to detect disease-associated cell states: a dimensionality 
reduction model was trained on a healthy reference dataset (step 1); then, the 
query dataset, including the disease dataset, was mapped to the reference model 
with transfer learning (step 2) and finally differential analysis was performed to 
contrast matched cell states from healthy and disease samples. c, Schematic of 
the reference design options tested in this study, according to the workflow in  
b, using the atlas dataset as reference (light blue), the control dataset as reference 
(dark blue) or both. For the CR design, we compared latent embedding with 
query mapping (as shown in b) with joint embedding training a latent embedding 
model on the concatenated control and disease dataset. Panel a was created with 
BioRender.com.
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the latent embedding model; however, after mapping with scArches, 
only the disease and control datasets are considered. Finally, we used 
neighborhood-level differential abundance (DA) testing with Milo11 
to identify cell states enriched in the disease dataset (Fig. 2b, right).

We first considered a scenario where a single-cell-type cluster is 
selected as the OOR state and removed from the healthy references  
(Fig. 3a). Across simulations with different OOR states, we observed 
that using the combination of the atlas and control datasets (ACR 
design) led to sensitive detection of neighborhoods with a high fraction 

of OOR cells (Figs. 2c and 3b, and Extended Data Fig. 1). Conversely, the 
AR design led to an inflated number of false positives, where significant 
enrichment was also detected when the fraction of unseen cells was 
low or 0. Using only the control dataset, latent embedding with query 
mapping led to more balanced log fold changes, but still a higher false 
discovery rate (FDR) than the ACR design, while performance with a 
joint embedding was comparable to the ACR design. Notably, we found 
minimal difference in the quality of integration with different designs 
(Extended Data Fig. 2). The difference between reference design results 
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Fig. 2 | Benchmarking setup for comparison of reference designs on 
detection of OOR cell states. a, Schematic of the strategy used to simulate 
ground truth OOR cell states in real data from healthy human PBMCs, split 
into atlas (513,565 cells), control (5,671 cells) and pseudo-disease (7,505 cells) 
datasets. We tested simulations alternatively using 15 annotated cell states as 
out-of-reference (OOR) cell states. b, Example outcome of latent embedding 
and differential analysis with different reference designs. Left, uniform manifold 
approximation and projection (UMAP) embedding of scVI latent space learned 
on the embedding reference dataset. Points are colored according to cell type 
clusters (as in a); the icons in the top left corner indicate the type of embedding 
reference dataset used. Center, UMAP embedding of cells from the differential 
analysis reference and disease datasets on scVI latent space learned from 
the embedding reference dataset, colored according to type of dataset and 
to highlight (in pink) the OOR cell state. For the CR design, we differentiated 
between latent embedding with query mapping (CR scArches) and embedding in 

one step, training an scVI model on the concatenated control and disease dataset 
(CR scVI). Right, Milo neighborhood graph visualization of DA testing results: 
each point represents a neighborhood, and points are colored according to the 
log fold change (logFC) in cell abundance between disease and reference cells. 
Only neighborhoods where significant enrichment in disease cells (10% spatial 
FDR and log fold change > 0) was detected are colored. Points are positioned 
based on the coordinates in the UMAP embedding of the neighborhood index 
cell; the size of points is proportional to the number of cells in the neighborhood. 
The horizontal dashed lines are used to separate the phases of the workflow.  
c, Scatterplot of DA log fold change against the fraction of disease-specific 
cells for each neighborhood for the simulation shown in c. Each plot represents 
a different reference design. Colored points indicate neighborhoods where 
significant enrichment in disease cells (10% spatial FDR and log fold change > 0) 
was detected. The vertical line is 0; the horizontal line is the threshold to consider 
the neighbourhood as a true positive.
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was also consistent when applying alternative methods for DA analy-
sis13,15 (Extended Data Fig. 3). Finally, as expected, the power to detect 
OOR cell states depended, for all methods, on the number of cells 
present, with a minimum of 250 cells per cell type needed to identify 
the OOR population (Extended Data Fig. 4).

We hypothesized that the good performance in OOR state detec-
tion with the CR scVI design could be explained by feature selection. 
Latent embedding models are trained on the top 5,000 highly vari-
able genes (HVGs) in the input dataset (Methods). When training on 
concatenated disease and control datasets, marker genes for the 
OOR population are more likely to be among the HVGs. We compared 
the performance of different reference designs trained using HVGs 
from the atlas dataset, from the control dataset or from the concat-
enated control and disease dataset. For all designs, the area under the 
precision-recall curve (AUPRC) for OOR state detection was highest 
when using HVGs selected on the same data used to train the model. 
However, only the CR design with joint embedding showed a substan-
tial decrease in performance when selecting HVGs without using the 
disease dataset (Fig. 3c). On average, 81% of the HVGs selected from 
the control and disease data were shared with the set selected from 
control only and 68% were shared with the set selected from the atlas 
only. These results indicate that the performance of joint embedding 
with CR design is sensitive to the feature selection strategy used to train 
the latent embedding model.

We reasoned that this might impact performance when multiple 
transcriptionally distinct OOR states are present in the disease popula-
tion. To test this, we conducted simulations where we removed a fixed 
cell population (corresponding to classical monocytes) from the refer-
ence datasets and then defined a second variable OOR cell state (shifted 
OOR state) by splitting a cell type population into two distinct groups 
(Methods and Fig. 3d). The ACR design performed best in OOR state 
identification (Fig. 3e). In particular, in all simulations where the CR scVI 
design outperformed the ACR design when the OOR state was removed, 
the ACR design could distinguish better OOR states in the mixed case, 
even when considering only recovery of the shifted OOR state (Fig. 3f).  
In one case (simulation with CD4+ central memory T (TCM) cells as 
shifted OOR state), we observed a significant drop in performance 
with the ACR design if the OOR state was shifted instead of removed.

In summary, differential analysis using control datasets dras-
tically reduced the rate of false discoveries in the detection of 
disease-associated cell states. Of note, studies using atlas datasets 
to identify disease-associated states9,10,16 might use criteria different 
from DA to detect OOR cells, such as distance in the latent space, label 
transfer uncertainty or differential expression analysis. We compared 
these alternatives to our workflow in Supplementary Note 2.1.

Robustness of OOR detection with the ACR design
We next assessed the robustness of different reference designs to het-
erogeneity in the control and atlas datasets. We first tested whether 

using the atlas reduces the number of control donors needed to detect 
disease-specific states by simulating control datasets of increasing 
size (Methods). While sensitivity declined for all designs when using 
a very small control cohort, the ACR design maintained the highest 
performance in OOR state detection compared to the CR design, 
regardless of the latent embedding strategy (t-test P < 0.01 for AUPRC 
distributions across control cohort sizes for both the CR scVI and CR 
scArches designs) (Fig. 4a and Supplementary Fig. 1). The difference in 
performance was especially marked when simulating a smaller disease 
cohort (Supplementary Fig. 1). These results suggest that using the 
ACR design can minimize the number of control samples required. In 
Supplementary Note 2.3, we tested options for cases where collecting 
matched control samples is not feasible.

We also tested how OOR state detection was affected by varia-
tion in the atlas dataset. We first confirmed robustness to removal of 
any given study from the atlas dataset (Supplementary Note 2.2.1). 
Then, we measured performance with the AR and ACR designs when 
including an increasing number of PBMC studies in the atlas dataset 
(Methods). While the results were always significantly affected when 
using just one or two studies as the atlas dataset, sensitivity with the 
ACR design was stable when the atlas included at least 10,000 cells 
(Fig. 4b and Supplementary Fig. 2). Without controls, we observed 
a stronger dependency of performance with atlas size (Pearson cor-
relation of AUPRC and size: R2 = 0.69, P = 7.2 × 10−7 for the AR design; 
R2 = 0.4, P = 0.0017 for the ACR design). Notably, the false positive 
rate (FPR) increased with smaller atlas datasets with an AR design 
(Supplementary Fig. 2). We compared the use of a cross-tissue or 
tissue-specific atlas for the ACR design (Supplementary Note 2.2.2), 
as a practical alternative where the availability of tissue-specific data 
might be scarce.

In summary, combining the use of an atlas and control dataset 
led to robust detection of putative disease states, even with a varying 
quality of the control or atlas dataset.

Detection of interferon-stimulated states in patients with 
coronavirus disease 2019
We next assessed the benefits of using a healthy atlas to identify altered 
states in a real patient cohort. We used a published scRNA-seq dataset of 
PBMCs from 90 patients with varying severities of coronavirus disease  
2019 (COVID-19) and 23 healthy volunteers24. As an atlas dataset, we 
used harmonized scRNA-seq profiles from 12 studies involving 1,219 
healthy individuals (Fig. 5a). We compared the use of the healthy  
PBMC atlas for latent embedding (ACR design) against using only the 
COVID-19 and control datasets with joint embedding (CR design). To 
quantify the ability of different designs to identify disease-associated 
states, we tested whether cells expressing genes involved in interferon 
(IFN) signaling, a key antiviral response pathway and a recognized hall-
mark of COVID-19, could be detected among the COVID-19-enriched 
neighborhoods (Fig. 5b and Methods).

Fig. 3 | Detection of simulated OOR cell states. a, Illustration of removed 
OOR state perturbation. The dashed outlines denote the position of the OOR 
cell state. b, Performance comparison of reference designs in the detection of 
OOR cell states. To compare performance considering the log fold change and 
confidence (10% spatial FDR), we measured the FDR, FPR and true positive rate 
(TPR). To compare performance using the log fold change only as a metric for 
prioritization, we measured the AUPRC. The points represent simulations with 
different OOR states (eight states, excluding simulations where fewer than 250 
OOR cells were present after splitting the pseudo-disease and control dataset). 
Tests on the same simulated data are connected. c, Box plots of AUPRC to detect 
OOR cell states with embedding models trained on different sets of 5,000 HVGs, 
selecting HVGs in the atlas dataset, in the control dataset or in the concatenated 
control and pseudo-disease datasets (control + disease). The color represents 
different reference designs. Tests on the same simulated data are connected. 
The gray box denotes the type of data used to train the model for each design. 

d, Illustration of mixed OOR state perturbation: all simulations have a fixed cell 
state removed from the control and atlas datasets (classical monocytes) and a 
varying shifted OOR cell state, where cells of the OOR cell state are split in two 
groups based on principal component analysis (PCA), and only one group is 
removed from the atlas and control datasets (shifted OOR state). e, As in b, but 
with mixed OOR states. f, Bar plots of the AUPRC for OOR state detection with 
different types of perturbation on the same OOR cell state, colored according 
to reference design. The rightmost plot shows the AUPRC for the detection of 
the shifted OOR cell state, excluding the fixed removed state. The height of the 
bar denotes the AUPRC computed on real data. The error bars indicate the 95% 
confidence interval (CI) calculated from bootstrapping with 1,000 resampling 
iterations. Cases where the CR design outperformed the ACR design when only 
the OOR state is removed are highlighted by the red dashed rectangles. In all box 
plots, the center line denotes the median; the box limits denote the first and third 
quartiles; and the whiskers denote 1.5× the interquartile range (IQR).
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The ACR design showed a stronger correlation between DA log fold 
change and the mean IFN signature (ACR Pearson R = 0.63, CR Pearson 
R = 0.52, Fisher’s z-transformation P < 2.2 × 10−16), indicating better prior-
itization of IFNhi cell states (Fig. 5c), regardless of the latent embedding 
strategy used (Fig. 5d). Stratifying according to cell type, the correla-
tion was especially strong in myeloid cells, where the strongest IFN 
stimulation was observed (Extended Data Fig. 5a). Among the IFNlo states 
prioritized with the ACR design, we found primarily plasmablasts and 
plasma cells (Extended Data Fig. 5b), followed by platelets, all expected 
to expand in COVID-19 (refs. 27,28). For lymphocytes, where the average 

expression of IFN genes was lower than in myeloid cells, the ACR design 
outperformed the CR design in prioritizing the top 10% IFNhi neigh-
borhoods in natural killer (NK) and CD8+ T cells, while neither design 
distinguished IFNhi CD4+ T cells or B cells (Extended Data Fig. 5c). The 
CR design prioritized IFNlo naive B cells over other IFNhi subsets, such as 
CD16hi and proliferating NK cells (Extended Data Fig. 5b–d), contradict-
ing the widely reported lymphopenia in patients with COVID-19 (ref. 29).

Through iterative dataset subsetting, subclustering and differ-
ential analysis, several COVID-19 scRNA-seq studies distinguished 
IFN-stimulated COVID-19-associated subclusters and normal IFNlo 
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subtypes across immune cell types22,30. Yet, IFN activation is not global, 
and transitional or alternative pathological phenotypes might be pre-
sent in COVID-19 PBMCs. In our neighborhood-level analysis with the 
ACR design, we observed neighborhoods with a relatively low IFN signa-
ture that were significantly associated with the disease, notably among 
classical (CD14+) monocytes (Fig. 5e). We categorized CD14+ monocytes 
into three phenotypes: normal classical monocytes; COVID-associated 
IFNlo monocytes; and COVID-associated IFNhi monocytes (Fig. 5f). The 
proportion of CD14+ monocyte phenotypes changed significantly 
with different disease severity: the IFNhi state was most prominent in 
mild and asymptomatic cases compared to healthy cases (Wilcoxon 
test P = 1.19 × 10−7), while the IFNlo state was predominant in patients 
with moderate-to-critical disease (Fig. 5g). This supports the notion 
that IFN stimulation acts as a protective pathway in the acute phase of 
infection31. Conversely, when using the CR design to define IFNhi and 
IFNlo states after differential analysis, we found a high fraction of IFNlo 
COVID-enriched monocytes in healthy and asymptomatic individuals, 
indicating that this design failed to distinguish IFNlo normal mono-
cytes from the IFNlo phenotype in severe COVID-19 (Extended Data 
Fig. 6a–c). Additionally, the fraction of IFNhi cells in mild and moderate 
cases was not significantly higher than in severe cases (Wilcoxon test 
P = 0.325743). Differential expression analysis between IFNhi and IFNlo 
COVID-associated monocytes showed that IFNhi monocytes showed 
higher expression of HLA genes, leukocyte-recruiting chemokines 
(CCL8, CXCL10, CXCL11) and markers of activation (FCGR3A) (Extended 
Data Fig. 6d,e and Supplementary Table 2). Conversely, the IFNlo 
monocytes enriched in severe disease overexpressed S100A genes, 
previously identified as key markers of COVID-19 severity30,32. This 
HLA-DRlo S100Ahi phenotype corresponds to a subset of dysfunctional 
monocytes associated with severe COVID-19, previously described in 
an independent cohort through direct comparison of mild and severe 
cases23 (Extended Data Fig. 6f). These markers were not recovered 
when comparing IFNlo and IFNhi COVID-19 monocytes defined by the 
CR design (Extended Data Fig. 6e and Supplementary Table 3).

Detection of aberrant cell states in pulmonary fibrosis
To assess the benefit of using atlas and control datasets in other 
biological contexts, we analyzed a published scRNA-seq dataset of 

lung parenchyma samples from 32 patients with idiopathic pulmo-
nary fibrosis (IPF), a progressive lung disease with limited treatment 
options, which is characterized by extracellular matrix (ECM) deposi-
tion, inflammation and scarring33,34. This study included data from 28 
control donors and 18 patients with chronic obstructive pulmonary 
disease (COPD)2. As an atlas dataset, we used the core Human Lung 
Cell Atlas (HLCA) dataset16 (Fig. 6a).

Our first aim was to recover the emergence of IPF-specific alveolar 
macrophages overexpressing SPP1 and other ECM-remodeling genes 
contributing to lung fibrosis35. Comparing different designs, the ACR 
design outperformed the AR and CR designs in detecting macrophages 
with the strongest profibrotic signature (Fig. 6b and Extended Data 
Fig. 7a). Interestingly, the CR design incorrectly prioritized neighbor-
hoods with significantly fewer samples compared to true positives 
(Extended Data Fig. 7b,c), suggesting that the difference in ACR and 
CR design performance is due to residual batch effects in the latent 
space (Supplementary Fig. 3).

We next focused on stromal and epithelial cells. We considered 
cell types with high expression of biomarker genes from diagnostic 
models built on IPF lung explant RNA-seq36 (Extended Data Fig. 8a,b 
and Methods). The ACR design consistently led to the most precise 
distinction of cell states expressing the diagnostic signature (Fig. 6c  
and Extended Data Fig. 8c). Differential analysis using control sam-
ples led to the precise identification of rare aberrant cell states 
emerging in IPF, such as the KRT5–KRT17+ basaloid cells2,37 thought 
to originate from the alveolar epithelium in response to fibrosis38,39 
(Extended Data Fig. 8c,d). Furthermore, the difference in perfor-
mance between reference designs was especially notable for basal 
cells (Fig. 6c and Extended Data Fig. 8c). These were on average sig-
nificantly enriched in the IPF samples, in agreement with previous 
reports2,37. However, by using the ACR design, we distinguished the 
neighborhoods of normal basal cells (with a mix of cells from patients 
with IPF and controls) and IPF-enriched neighborhoods with high 
biomarker expression (Extended Data Fig. 8c). We found that basal 
cells in the ACR design IPF-enriched neighborhoods overexpressed 
marker genes for KRT5+KRT17hi aberrant basal cells identified in bron-
chial brushings of patients with IPF40 (Fig. 6d). Marker gene expres-
sion was especially high in the neighborhood showing the strongest 
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control dataset (x axis), using the ACR (green) or CR design with query mapping 
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simulations with five different OOR cell states, selected according to top mean 
TPR across designs in Fig. 3b and using five different samples of donors for  
each number of control donors and OOR state, are shown. In these simulations, 

five, seven or nine donors were used in the disease dataset (see Supplementary 
Fig. 1 for the full breakdown). b, Robustness to the size of the atlas dataset 
with the ACR and AR designs. Box plots of the AUPRC for simulations with an 
increasing number of studies in the atlas dataset, using the ACR (green) or  
AR (purple) design. The results from simulations with five different OOR cell 
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(see Supplementary Fig. 2 for a full breakdown).
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enrichment in IPF cells. DA analysis with the CR or AR design did not 
distinguish this aberrant phenotype (Fig. 6d).

While the study describing KRT5+KRT17hi basal cells highlighted their 
transcriptional similarity to basaloid cells40, we identified both aberrant 

phenotypes as distinct states (Fig. 6e and Extended Data Fig. 8d). There-
fore, we further characterized their specific markers and functional 
differences. Specifically, we identified genes differentially expressed 
between aberrant basal-like states and overexpressed compared to 
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normal basal cells (Methods). We identified 981 significantly differen-
tially expressed genes (DEGs) (FDR = 5%) (Fig. 6f and Supplementary 
Table 4), including six previously described markers for KRT17hi aber-
rant basal cells and 35 previously described markers for basaloid cells. 
Several other previously described markers were only overexpressed 
compared to normal basal cells (Supplementary Fig. 4). KRT17hi basal cells 
overexpressed genes associated with Myc signaling, in agreement with 
Jaeger et al.40, and genes involved in keratinization, including keratins 
and desmoplakin genes (Extended Data Fig. 9a). Similar processes have 
been identified in lung carcinoma41 and in the lung epithelium of smok-
ers42, indicating that this might be a widespread response to epithelial 
injury. Basaloid-specific markers showed significant enrichment in 
the genes involved in ECM organization and epithelial–mesenchymal 
transition (EMT), including collagens and metalloproteases, as well as 
morphogenesis factors, including SOX11, SOX4 and TGF-beta signal-
ing genes (Extended Data Fig. 9b). These markers also include genes 
linked to genomic variants associated with lung function, including 
the EMT-inducer IL32 (ref. 43), neurotrimin (NTM), GPC5 and DCBLD2 
(refs. 44–46). Some of the newly identified markers encode targets 
of drugs approved or in trial for other lung pathologies. For example, 
CSF2, strongly overexpressed in basaloid cells, has been implicated 
in the pathogenesis for asthma and COPD, and is being investigated 
in phase 3 trials for pneumonia treatment (ClinicalTrials.gov registra-
tion: NCT04351152)47; the CCL2-inhibitor carlumab has completed a 
phase 2 trial for pulmonary fibrosis (ClinicalTrials.gov registration: 
NCT00786201); while U.S. Food and Drug Administration-approved 
drugs inhibiting ROS1 are used for non-small cell lung carcinoma48.

Discussion
In this study, we assessed how the choice of reference dataset affects 
the identification of altered cell states from scRNA-seq data of diseased 

tissues. Using simulations and real-life applications, we showed that 
atlas datasets are not a substitute for control samples, but that they 
enhance disease-state discovery in complex scenarios. Contrasting cell 
profiles from disease samples against a restricted set of control samples 
is necessary to minimize false positives in disease-state identification. 
However, when an atlas dataset is available, it is possible to reduce the 
number of control samples without introducing false discoveries and 
with minimal impact on sensitivity (Fig. 4a).

Multiple factors could explain the improved performance of 
ACR compared to CR design in complex scenarios. First, feature 
selection in joint embedding with a CR design is less likely to include 
disease-relevant genes necessary to distinguish rare populations  
(Fig. 3c). Additionally, residual batch effects in the latent space can 
lead to false positives (Extended Data Fig. 7b,c). Interestingly, while 
a comprehensive representation of cell states in atlas datasets might 
have a role, our leave-one-out analysis indicates that the size and com-
position of the atlas dataset do not significantly impact disease-state 
detection performance (Supplementary Note 2.2.1). Moreover, as in the 
comparison between tissue-specific or cross-tissue atlas datasets (Sup-
plementary Note 2.2.2), sensitive detection of disease-specific states 
is possible when the cell type composition of atlas and case-control 
datasets differ substantially.

Despite its advantages, researchers may face challenges when 
applying an ACR design. First, data integration and harmonization 
efforts are ongoing, and integrated datasets are frequently updated 
with more individuals, even for well-sampled tissues, such as blood, 
lung16, heart49–51 or gastrointestinal tract52,53. Reassuringly, we showed 
that the ACR design is robust to the set of harmonized datasets (Sup-
plementary Note 2.2.1) and maintains high sensitivity with smaller 
atlas datasets (Fig. 4b and Supplementary Fig. 2), making disease 
analysis more robust to atlas updates. Second, downloading and 

Fig. 6 | Detection of cell states associated with IPF. a, Overview of the 
composition of IPF (144,404 cells), control (95,303 cells) and atlas dataset 
(584,844 cells) (top) and UMAP embedding of cells from the IPF and control 
datasets integrated with an ACR design (bottom). Cells are colored by broad  
cell type annotation (left) and disease condition (IPF and COPD) (right).  
b, Detection of profibrotic macrophages with alternative reference designs.  
Top, UMAP embedding colored according to the scaled expression of profibrotic 
macrophage signature in macrophage cell compartment. Bottom, bar plot of 
the AUPRC for the detection of macrophage neighborhoods with high mean 
profibrotic signature, colored according to reference design. Bar height 
indicates the AUPRC computed on real data; the error bars indicate the 95% CI 
from bootstrapping with 1,000 resamplings. c, As in b, but for the detection of 
the IPF diagnostic gene signature in stromal and epithelial cells. The red dashed 
rectangle highlights basal cells used for follow-up analysis in d. d, Min–max 
scaled mean expression of marker genes for KRT17hi aberrant basal cells (defined 
by Jaeger et al.40) in basal neighborhoods identified with the ACR design (left) 

and the CR design (right). Neighborhoods are ordered by increasing DA log 
fold change between IPF and control cells. The dots at the top indicate the log 
fold change (color) and spatial FDR (size) for the DA test. The boxes denote 
neighborhoods where the enrichment in IPF cells was significant (spatial FDR 1%). 
e, Fraction of basal-like cells of different phenotypes in samples from patients 
with IPF and controls (control: n = 28 patients; IPF: n = 32 patients). Each point 
represents a patient. Point size is proportional to the number of cells of a given 
phenotype. In the box plots, the center line denotes the median; the box limits 
denote the first and third quartiles; and the whiskers denote 1.5× the IQR. f, Mean 
expression of newly identified marker genes for aberrant basal-like phenotypes, 
identified by differential expression analysis between basaloid cells and KRT17hi 
aberrant basal cells (Methods; see Supplementary Fig. 4 for a heatmap, including 
known marker genes). Genes are ordered by log fold change. The blue boxes 
mark genes significantly associated with genome-wide association study (GWAS) 
variants for lung function. The red boxes mark validated target genes of drugs in 
trials for lung disease.

Fig. 5 | Detection of cell states associated with COVID-19 in a case-control 
cohort with a healthy atlas. a, Overview of composition of disease (48,083 cells), 
control (14,426 cells) and atlas dataset (513,565 cells). b, UMAP embedding of cells 
from the COVID-19 and healthy datasets integrated with a CR ( joint embedding, 
top) or ACR (bottom) design. Cells are colored according to disease condition 
(left), broad annotated cell type (middle) and expression of IFN signature (right). 
Mono, monocyte; prolif., proliferative; RBC, red blood cell; Treg, regulatory T.  
c, Scatterplot of neighborhood DA log fold change against the mean expression 
of IFN signature with the ACR (left) and CR (right) designs. Neighborhoods where 
enrichment in COVID-19 cells was significant (log fold change > 0 and 10% spatial 
FDR) are colored. Pearson correlation coefficients and P values for the significance 
of the correlation are reported (two-sided test). d, Precision–recall curves for the 
detection of IFN-activated neighborhoods with DA log fold change for alternative 
designs (ACR or CR) and using joint embedding of reference and disease datasets 
(scVI) or transfer learning (scArches scVI). The AUPRC is reported in the legend, 
with the 95% CI calculated from bootstrapping with 1,000 resamplings shown in 

brackets. The dashed lines denote the baseline value for the AUPRC, indicating 
the case of a random classifier. e, Scatterplot of neighborhood DA log fold 
change against the mean expression of IFN signature with the ACR design for 
neighborhoods of CD14+ monocytes. The colored points indicate neighborhoods 
where the enrichment in COVID-19 cells was significant (10% spatial FDR). 
Neighborhoods are colored according to IFN phenotype. f, Distribution of IFN 
signature score for cells belonging to neighborhoods assigned to three alternative 
CD14+ phenotypes. g, Distribution of COVID-19-enriched CD14+ phenotypes across 
patients with varying disease severity (healthy: n = 23 patients; asymptomatic: n = 9 
patients; mild: n = 23 patients; moderate: n = 30 patients; critical: n = 15 patients; 
severe: n = 13 patients). Each point represents a donor; the y axis shows the 
fraction of all CD14+ monocytes in that donor showing an IFNhi COVID-19-enriched 
phenotype (orange) and an IFNlo COVID-19-enriched phenotype (yellow). The 
remaining fraction represents monocytes with a healthy phenotype (not shown). 
In the box plots, the center line denotes the median; the box limits denote the first 
and third quartiles; and the whiskers denote 1.5× the IQR.
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processing atlas data can be computationally expensive. By bench-
marking disease-state detection using latent embedding with transfer 
learning9, we advocate for atlas builders to share trained models for 

embedding along with datasets (for example, refs. 54–56). Lastly, when 
the use of an atlas is not feasible, we found that in several benchmark-
ing scenarios, a CR design with joint embedding provided satisfactory 
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performance, serving as an alternative design in this scenario. In this 
case, we recommend validating predicted disease-associated states by 
checking for residual batch effects between samples (Extended Data 
Fig. 7b,c), and evaluating the robustness of results to factors such as the 
inclusion or exclusion of specific control samples (Fig. 4a) or feature 
selection (Fig. 3c).

Our disease cohort analyses revealed that an ACR design ena-
bles more sensitive identification of transitional and heterogene-
ous pathological cell states. In the COVID-19 dataset11, we captured 
IFNhi states across immune cell types, and fine subsets of dysfunc-
tional CD14+ monocytes associated with disease severity (Fig. 5e–g)23. 
Analyzing lung data from patients with IPF using an ACR design, we 
distinguished and characterized rare basal-like aberrant cell states  
(Fig. 6d–f). Previous studies linked IPF severity with basal marker gene 
expression2,57–59 and basal cell accumulation in distal airways60. Our 
analysis adds insights on basal-like cellular phenotypes in IPF. First, 
while KRT17hi aberrant basal cells were first described in bronchial 
epithelium40, we found them in lung parenchyma, supporting their 
role in bronchiolization61. Second, we showed that only a subset of 
basal cells in the IPF samples were KRT17hi, suggesting that normal 
basal cells might undergo reprogramming in the parenchyma. Third, 
we established that KRT17hi aberrant basal cells are distinct from the 
recently described IPF-associated KRT5–KRT17+ basaloid cells2,37,62,63, 
highlighting their distinguishing features and marker genes.

In conclusion, we demonstrated that the combined use of a cell 
atlas and matched controls as references enables the most precise 
identification of affected cell states in disease scRNA-seq datasets. We 
envision that our analysis will instruct the design of new cohort studies, 
guide efficient data reuse and provide operating principles for analysis 
of disease datasets and construction of cell atlases.
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Methods
Ethics statement
This study relies on the analysis of previously published data, which 
were collected with written informed consent obtained from all par-
ticipants and comply with the ethical guidelines for human samples.

PBMC data preprocessing
We collected raw gene expression counts and cell type annota-
tions from healthy PBMC 10X Genomics scRNA-seq data from 13  
studies5,18,22–24,30,54,64–69, available via the CELLxGENE portal (https:// 
cellxgene.cziscience.com/collections) (Supplementary Table 1). During  
harmonization, we sampled 500 cells for each sample to reduce the 
computational burden of this analysis, while maintaining sample-level 
diversity; we excluded samples for which fewer than 500 cells were 
detected, retaining in total 1,268 samples from 1,248 individuals. We 
subsequently filtered cells where at least 1,000 mRNA molecules were 
detected and genes that were expressed in at least one cell. This resulted 
in a dataset of 599,379 high-quality cells.

To generate a unified cell type annotation, we integrated all nor-
mal cells from different studies in a common latent space using the 
scVI model, as implemented in the Python package scvi-tools26,70. 
Briefly, we selected the 5,000 most HVGs based on the dispersion of 
log-normalized counts, as implemented in SCANPY71. We trained the 
scVI model on raw counts, subsetting to HVGs, considering the library 
ID as batch (model parameters: n_latent = 30, gene_likelihood = ‘nb’, 
use_layer_norm = ‘both’, use_batch_norm = ‘none’, encode_covari-
ates = True, dropout_rate = 0.2, n_layers = 2; training parameters: 
early_stopping = True,train_size = 0.9, early_stopping_patience = 45, 
max_epochs = 200, batch_size = 1,024,limit_train_batches = 20). We 
constructed a k-nearest neighbor graph based on similarity in the scVI 
latent dimensions, using k = 50. Cells were clustered using the Leiden 
algorithm with resolution = 1.5. Subsequently, clusters were annotated 
by majority voting using the harmonized cell type labels available via 
CELLxGENE. During this process, one cluster of cells was excluded as 
potentially containing doublets. After this final filtering, the dataset 
included 597,321 cells annotated into 16 cell types.

Simulation experiments
In this section we describe the simulation strategy (Fig. 2a) and work-
flow to identify OOR cells (Fig. 2b). We designed evaluation experi-
ments and chose methods for the integration and differential analysis 
with the specific use-case of disease datasets in mind. We believe our 
results will extrapolate to other types of case-control studies, as long as 
the main assumptions apply, that is, (1) that all the cell states observed 
in the control dataset are also found in the atlas dataset and (2) that 
only a fraction of cell types are altered in the disease datasets. Note 
that throughout this study the term ‘cell state’ defines a group of cells 
that are more transcriptionally similar to each other than to other cells 
in the same tissue.

Data splitting into atlas, control and pseudo-disease
To simulate the attributes of the disease, atlas and control datasets, 
we selected donors from one study (query study, 29 healthy donors,  
Stephenson et al.24) and we split these at random with equal probabilities 
into a disease subset (16 donors) and a control subset (13 donors). The 
data from the remaining 12 studies comprises the atlas dataset (1,219 
donors). To simulate the presence of an OOR cell state, we selected one 
cell type label and removed all cells with that label from the control and 
atlas dataset. We repeated this simulation with 15 annotated cell types 
in the PBMC dataset. Neutrophils were excluded because they were 
underrepresented in the Stephenson et al.24 study. For seven cell types 
where the number of cells in the OOR cell state was fewer than 250 cells, 
we found that our workflow was unable to detect OOR states across 
designs (Extended Data Fig. 4); therefore, most downstream analysis was 
restricted to simulations where at least 250 OOR cells were simulated.

To simulate a scenario with multiple cell states altered in disease 
with different effect sizes (Fig. 3d–f), we selected a fixed cell type label 
to be removed from the atlas and control as described above (classical 
monocytes). We then selected a variable cell type label (shifted OOR 
cell state) that we split between an OOR and an in-reference group 
with the following procedure: we selected the cells of the shifted OOR 
cell state in the disease and control datasets; we log-normalized their 
gene expression profiles and ran a PCA to split the cells into OOR and 
in-reference groups based on their weights on the first principal com-
ponent. We then used a k-nearest neighbor classifier (using the imple-
mentation in scikit-learn, with k = 10) to assign atlas cells to one of the 
two groups. We used this procedure instead of running the PCA on atlas, 
control and disease cells to avoid having a first principal component 
that captures only batch effects between the query and atlas datasets.

Latent space embedding
For each simulated atlas, control and disease dataset assignment, we 
embedded the reference and query datasets into a common latent 
space using transfer learning with scArches9 on scVI models9,26, using 
the implementation in the Python package scvi-tools v.0.17.4 (ref. 70).  
Briefly, we selected the 5,000 most HVGs in the reference dataset 
based on the dispersion of log-normalized counts, as implemented in 
SCANPY. We trained the scVI model on the raw counts of the reference 
dataset, subsetting to HVGs, considering the sample ID as batch and 
specifying the recommended parameters to enable scArches mapping 
(use_layer_norm = ‘both’, use_batch_norm = ‘none’, encode_covari-
ates = True, dropout_rate = 0.2, n_layers = 2). Models were trained for 
400 epochs or until convergence. For the CR design with joint embed-
ding (CR scVI), the scVI model was trained on the concatenated disease 
and control datasets. Next, we performed transfer learning on the query 
dataset(s) from the model trained on the reference, running the model 
for 200 epochs and setting the weight_decay parameter to 0. The refer-
ence (for scVI training) and query (for scArches mapping) datasets for 
latent space embedding were defined as follows for the three reference 
designs: AR design: the atlas dataset was used as the reference dataset, 
the disease dataset was used as the query dataset; control reference 
with query mapping (CR design, scArches): the control dataset was 
used as the reference dataset, the disease dataset was used as the query 
dataset; control reference with joint embedding (CR design, scVI): 
the control and disease datasets were used as the reference dataset, 
no query mapping was performed; ACR design: the atlas dataset was 
used as the reference dataset, the disease and control datasets were 
used as the query dataset.

DA analysis
To find cell states enriched in the disease dataset, we used the Milo 
framework for DA on cell neighborhoods11 using the implementation 
in the package milopy v.0.1.0 (https://github.com/emdann/milopy). 
Briefly, we computed the k-nearest neighbor graph of cells in the refer-
ence and disease datasets based on latent embedding. The reference 
datasets for differential analysis were defined as follows for the three 
reference designs: (1) AR design: atlas dataset; (2) CR design: control 
dataset; (3) ACR design: control dataset.

Of note, for the ACR design, the atlas dataset was not considered 
when constructing the k-nearest neighbor graph. This reduces the 
computational burden of handling a dataset of hundreds of thou-
sands of cells. We set the value of k to be equal to the total number of 
samples times five, up to a maximum of k = 200 (this upper limit was 
set for memory efficiency reasons), as suggested by Dann et al.11. We 
assigned cells to neighborhoods (milopy.core.make_nhoods, param-
eters: prop = 0.1) and counted the number of cells belonging to each 
sample in each neighborhood (milopy.core.count_cells). We assigned 
to each neighborhood a cell type label based on majority voting of the 
cells belonging to that neighborhood. To test for enrichment of cells 
from the disease dataset, we modeled the cell count in neighborhoods 
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as a negative binomial generalized linear model, using a log-linear 
model to model the effects of disease status on cell counts (log fold 
change). Although the split between control and disease samples was 
balanced in terms of the available metadata, in the query study there 
was a known batch effect between the three sites from which samples 
were collected24. Therefore, we included site identity as a confounding 
covariate in the DA model when using the ACR and CR designs, although 
we found that the results presented in this report were robust even 
without modeling this confounder. We controlled for multiple test-
ing using the weighted Benjamini–Hochberg correction as described 
in Dann et al.11 (spatial FDR correction). Unless otherwise specified, 
neighborhoods were considered enriched in disease cells if the spatial 
FDR < 0.1 and log fold change > 0.

For the comparison across DA methods (Extended Data Fig. 3), we 
constructed the k-nearest neighbor graph using the same parameters 
as described above for the Milo analysis. We used the MELD13 implemen-
tation available via PypI (v.1.0.0) and tested for significant differences 
in density between pseudo-disease and control samples as described 
by Petukhov et al.72. Specifically, we computed sample-specific den-
sities over the k-nearest neighbor graph (running meld.MELD().fit_
transform()) and tested for significant differences in sample densities 
between conditions using a Wilcoxon rank-sum test, as implemented 
in SciPy73. While in the original MELD analysis the authors took the 
normalized mean density across samples of the same condition as a 
metric for the effect size of DA, we opted to use the Wilcoxon rank-sum 
test after observing significant variance in sample densities across 
donors of the same condition. We ran covarying neighborhood analysis 
(CNA)15 using the implementation available via PypI (v.0.1.4). We used 
the CNA correlation as a metric for the effect size of DA (running cna.
tl.association, with ks = [20]).

We tested additional alternatives to DA to identify OOR cell states, 
as shown in Supplementary Note 2.1.

Sensitivity analysis
For each simulation (that is, with different OOR cell state and reference 
design), we defined a neighborhood as an OOR state (true positive) 
if the percentage of OOR cells in the neighborhood was more than 
20% of the maximum percentage observed in that simulation. This 
threshold selection aimed to quantify the ability to detect the neigh-
borhoods where the largest number of OOR cells was found, even 
when the atlas dataset was included in the k-nearest neighbor graph 
(AR design); most cells in the neighborhoods always belong to the atlas 
dataset. The selected thresholds for each experiment are shown in 
Extended Data Fig. 1. We calculated TPRs, FPRs and FDRs considering 
neighborhoods where the spatial FDR < 0.1 and log fold change > 0 as 
predicted positives.

With precision-recall curve analysis, we quantified the ability 
to detect true positive OOR states with different thresholds of log 
fold change, without considering the significance estimated with 
spatial FDR, using the implementation in scikit-learn74. As a measure 
of uncertainty around the estimated AUPRC, we performed bootstrap 
resampling on the neighborhood log fold change values, maintaining 
the original ratio of positive and negative points, and computed the 
95% CI on the distribution of AUPRC values for 1,000 resamplings.

Control and atlas size analysis
For the analysis with varying number of control donors (Fig. 4a and 
Supplementary Fig. 1), we selected the simulations with the five OOR 
cell populations with the highest average TPR with CR and ACR 
designs in the previous analysis (Fig. 3b). For each simulation, we 
selected the five, seven or nine donors from the disease dataset who 
had the highest fraction of cells in the OOR cell population. Subse-
quently, we selected a random subset of n donors (with 3 < n < 12) 
from the control dataset and performed disease-state identification 
with the CR or ACR design, as described above. For each disease 

dataset size and n we repeated the simulation with five different ini-
tializations of the control donor selection.

To assess whether a shallow atlas dataset would introduce false 
discoveries in disease-state identification (Supplementary Fig. 2), we 
used all 29 donors from the query dataset in the disease and control 
datasets, and subsampled the atlas dataset removing data from one to 
11 studies (ordering studies according to the total number of cells), and 
performed disease-state identification with the AR and ACR designs.

More cases of robustness to perturbation of the atlas and control 
datasets of the reference designs are described in Supplementary 
Notes 2.1 and 2.2.

Design comparison on the COVID dataset
Data preprocessing and model training. We downloaded data for 
COVID-19 and healthy PBMCs from Stephenson et al.24, via the CELLx-
GENE portal (collection ID: ddfad306-714d-4cc0-9985-d9072820c530). 
We sampled 500 cells for each sample to reduce the computational 
burden of this analysis, while maintaining sample-level diversity, and 
we excluded samples for which fewer than 500 cells were detected. We 
excluded cells where fewer than 1,000 mRNA molecules were detected 
and we excluded data from three samples that were profiled with the 
Smart-seq2 protocol. As cell type annotation, we used the high-level 
annotation from the original authors.

As the atlas dataset, we used the healthy PBMC data described 
above, excluding the healthy PBMC profiles from Stephenson et al.24. 
Reference model training and query mapping was performed as 
described above. After query mapping, control and COVID-19 cells 
were embedded in a k-nearest neighbor graph (k = 100), which was used 
to build neighborhoods and perform DA with Milo as described above. 
For the comparison of de novo integration and query mapping (Fig. 5d),  
scVI training was performed on the concatenated atlas, control and 
COVID-19 datasets (ACR design) or control and COVID-19 datasets (CR 
design), as described above. Also in this case, the atlas dataset was used 
for scVI model training, but only model weights were used for mapping 
with scArches; all downstream analysis was performed solely on the 
COVID-19 and control datasets.

IFN signature calculation. To define IFN-stimulated cells, we aggre-
gated the expression of a set of IFN-associated genes defined by Yoshida 
et al.22. (BST2, CMPK2, EIF2AK2, EPSTI1, HERC5, IFI35, IFI44L, IFI6, IFIT3, 
ISG15, LY6E, MX1, MX2, OAS1, OAS2, PARP9, PLSCR1, SAMD9, SAMD9L, 
SP110, STAT1, TRIM22, UBE2L6, XAF1 and IRF7), using the SCANPY func-
tion scanpy.tl.score_genes() to quantify signature expression for each 
cell. The signature was calculated as the average scaled expression 
of the IFN-associated genes, which was subtracted from the average 
expression of a reference set of genes sampled for each binned expres-
sion value75. A threshold of IFN signature greater than 0.05 was used 
for the precision-recall analysis.

CD14+ monocyte disease-state analysis. For the analysis of the 
COVID-19-associated monocyte subsets, we focused on the neigh-
borhoods annotated as CD14+ monocytes based on majority voting, as 
described above. We split CD14+ monocyte neighborhoods into IFNhi 
COVID-19 neighborhoods (spatial FDR < 0.1, log fold change > 0 and IFN 
signature > 0.2), IFNlo COVID-19 neighborhoods (spatial FDR < 0.1, log 
fold change > 0 and IFN signature < 0.2) and healthy neighborhoods 
(the remaining neighborhoods). To assign cells to one of these three 
phenotypes, we computed, for each cell, the number of neighborhoods 
of each phenotype to which that cell belonged (as Milo neighbor-
hoods can be partially overlapping) and we labeled cells based on the 
most representative phenotype (if the cell was found in at least three 
neighborhoods of that phenotype; otherwise the cell was annotated 
as mixed CD14+ monocyte phenotype).

For differential expression analysis, we aggregated gene expres-
sion profiles by summing counts according to sample and CD14+ 
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monocyte phenotype and performed differential expression testing 
with the edgeR quasi-likelihood test76 using the implementation in the 
R package glmGamPoi76 and 1% FDR (Supplementary Tables 2 and 3).

Design comparison on the IPF dataset
Data preprocessing and model training. Gene expression count 
matrixes for human lung IPF, control and COPD scRNA-seq data from 
Adams et al.2 were downloaded from the Gene Expression Omnibus 
(accession no. GSE136831). As cell type annotations, we used uniform 
labels generated from the integration of this dataset with the HLCA 
by Sikkema et al.16, downloaded from Zenodo (https://zenodo.org/
record/6337966). For latent embedding with the AR and ACR designs, 
we used the embeddings from scArches mapping on the core HLCA 
model provided by Sikkema et al. via Zenodo. For latent embedding 
with the CR design, we trained a scANVI model77 on the concatenated 
control and disease replicating the parameters used to train the  
HLCA model (according to the notebooks in https://github.com/ 
LungCellAtlas/HLCA_reproducibility), using dataset ID as the batch 
covariate and training on the same set of 2,000 HVGs used for HLCA 
training. We opted to keep the HLCA HVG set for the CR design 
instead of recomputing HVGs because it was selected using a custom 
batch-aware strategy and compared (in the original study) to alterna-
tive selections with a benchmarking pipeline16. Therefore, we reasoned 
that recomputing HVGs on the CR design would not represent a fair 
comparison. DA with Milo was performed as described above (changing 
only milopy.core.make_nhoods, parameters: prop = 0.01), comparing 
the abundance of cells from IPF samples to the abundance of cells from 
the control samples. Neighborhood-level annotations were performed 
using majority voting as described previously.

SPP1hi macrophage analysis. To define SPP1hi profibrotic macrophages, 
we aggregated the expression of a set of marker genes defined by 
Adams et al.2 (SPP1, LIPA, LPL, FDX1, SPARC, MATK, GPC4, PALLD, MMP7, 
MMP9, CHIT1, CSTK, CHI3L1, CSF1, FCMR, TIMP3, COL22A1, SIGLEC15, 
CCL2), using the SCANPY function scanpy.tl.score_genes() to quantify 
the signature expression of each cell. A threshold of signature greater 
than 0.32 was used for the precision-recall analysis (corresponding to 
the 90% quantile of the signature expression in all cells). For compari-
son to the label transfer uncertainty metrics, we used the values for 
uncertainty provided by Sikkema et al.

IPF signature analysis. To define profibrotic signatures in stromal 
cells, we used a gene expression signature developed on bulk RNA-seq 
data to diagnose IPF from lung explants36. We downloaded DEGs from 
the original paper, selected upregulated genes and normalized the 
differential expression test effect sizes to weights ∈ [0, 1] with L2 nor-
malization (Extended Data Fig. 8a). We then used a modified version 
of the SCANPY function scanpy.tl.score_genes() (using weighted means 
based on gene weights) to quantify the diagnostic signature expression 
for each cell. We then selected relevant cell types where the difference 
in mean signature expression between cells from IPF samples and cells 
from COPD samples was the highest, to control for the effect of 
end-stage lung disease (Extended Data Fig. 8b). For the precision-recall 
analysis, we computed the mean profibrotic signature expression 
across IPF cells in the neighborhoods and used the top 50% quantile 
for each cell type group (alveolar type (AT), fibroblasts, club cells, basal 
cells) as the threshold for calling true positives.

Analysis of aberrant basal-like cells. We annotated the neighbor-
hoods of basaloid cells and KRT17hi aberrant basal cells based on profi-
brotic signature expression and expression of marker genes reported 
by refs. 2,37,38,40 (Extended Data Fig. 8a,c,d). We defined normal basal 
cells as cells annotated as basal and not belonging to the basaloid neigh-
borhood or the KRT17hi basal neighborhood. In total we annotated 1,562 
normal basal cells, 377 basaloid cells and 350 KRT17hi aberrant basal 

cells, distributed across individuals (Fig. 6e). For differential expres-
sion analysis, we aggregated gene expression profiles by summing 
counts according to sample and basal-like phenotype, and performed 
differential expression testing with the edgeR quasi-likelihood test 
(Robinson and Oshlack78) using the implementation in the R package 
glmGamPoi (Ahlmann-Eltze and Huber76), using 1% FDR (Supplemen-
tary Table 4). We compared KRT17hi aberrant basal cells against basaloid 
cells, and each aberrant state against normal basal cells. Differential 
expression analysis was run on the top 7,500 most HVGs for each com-
parison, using the modelGeneVar function from the scran package79. 
We considered genes to be aberrant state markers (shown in Fig. 6f and 
Supplementary Fig. 4) only if significant in the comparison between 
aberrant states and significantly overexpressed against the normal 
state (reported in Supplementary Table 4). We performed gene set 
enrichment analysis using the enrichr method80 with implementation 
carried out using the Python package GSEApy81. To annotate genes 
targeted by drugs in trials or approved for lung disease, we downloaded 
the targets of drugs approved or being trialed for lung disease (trait 
ID: EFO_0003818) in the Open Targets platform82. To annotate genes 
associated with GWAS variants for lung function (forced expiratory 
volume, trait ID EFO_0004314), we downloaded a list of significant 
GWAS loci and predicted causal genes based on the locus2gene model 
available via the Open Targets Genetics database83. The full tables for 
drug targets, the lung function GWAS studies used for the genetic 
evidence analysis and GWAS-associated genes are shared as metadata 
in our reproducibility repository (https://github.com/MarioniLab/
oor_design_reproducibility).

Statistics and reproducibility
No statistical method was used to predetermine sample size. No 
data were excluded from the analyses, unless otherwise stated in the 
relevant section of the Methods where the rationale for exclusion is 
described. Statistical tests were chosen to model the underlying data 
distributions (negative binomial likelihood generalized linear models 
for cell counts11 and mRNA counts78, Wilcoxon signed-rank tests for 
nonparametric comparisons between metrics). The experiments were 
not randomized. The investigators were not blinded to allocation dur-
ing the experiments and outcome assessments. All code to replicate 
the analysis is available as part of code availability.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All the data used for analysis are publicly available. The blood datasets 
used for the simulation studies and COVID-19 analysis were down-
loaded from the CELLxGENE database (Supplementary Table 1). Lung 
data from the IPF cohort are available via the Gene Expression Omni-
bus (accession no. GSE136831). The core Human Lung Cell Atlas gene 
expression data were downloaded from CELLxGENE database (ID 
6f6d381a-7701-4781-935c-db10d30de293). Unified cell type annota-
tions for healthy and IPF data were downloaded from Zenodo (https://
zenodo.org/record/6337966). The Tabula Sapiens data used in Supple-
mentary Note 2.2.2 were downloaded from figshare (https://figshare.
com/articles/dataset/Tabula_Sapiens_release_1_0/14267219). All pro-
cessed data objects in AnnData format84 and trained scVI models are 
available via figshare (https://doi.org/10.6084/m9.figshare.21456645).

Code availability
The functions for benchmarking out-of-reference state detection, 
including the code for preprocessing, data splitting, latent embedding, 
differential analysis and evaluation metrics, have been made available 
as a Python package at https://github.com/MarioniLab/oor_bench-
mark (deposited at Zenodo85). Notebooks and scripts to reproduce all 
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analyses presented in the manuscript are available at https://github.
com/MarioniLab/oor_design_reproducibility (deposited at Zenodo86).
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Extended Data Fig. 1 | Out-of-reference recovery across simulations. 
Scatterplot of differential abundance log-Fold Change (DA logFC) against fraction 
of out-of-reference (OOR) cells for each neighbourhood, in simulations with 
different removed OOR cell populations (indicated in y-axis). Colored points 

indicate neighbourhoods where the enrichment was significant (10% SpatialFDR, 
logFC > 0). The dotted red line indicates the threshold used to define true positives 
for precision-recall analysis (20% of the higher fraction in the simulation).

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | Batch correction and biological conservation with 
latent dimensions learnt with different reference design. Quantification of 
overlap between cell type labels (as a measure of biological conservation, left) 
and sample IDs (as a measure of batch effect, right) and clusters of disease cells 
on latent dimensions after scArches mapping with different designs (color). The 
overlap between clusters and covariates is measured by the Normalised Mutual 

Information (NMI), using the implementation in scikit-learn v1.1.2 (ref. 74). Each 
box plot shows the median and interquartile range for simulations with different 
OOR cell populations (n = 15 simulations). NMI values for leiden clustering with 
increasing resolution (x-axis) are shown. In boxplots the center line denotes the 
median; box limits, first and third quartiles; whiskers, 1.5X interquartile range.

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Reference design comparison with alternative 
differential analysis methods for OOR detection. Boxplots of false discovery 
rate (FDR), false positive rate (FPR), true positive rate (TPR) and Area Under the 
Precision-Recall Curve (AUPRC) for detection of OOR cell states with different 
reference designs (boxplot colour) using 3 different methods for differential 

cell abundance analysis: co-varying neighbourhood analysis (CNA), MELD 
and Milo. Points represent simulations with different OOR populations (n = 8, 
selecting OOR states with at least 250 cells). Tests on the same simulated data are 
connected. In boxplots the center line denotes the median; box limits, first and 
third quartiles; whiskers, 1.5X interquartile range.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | Statistical power is dependent on the size of the OOR cell state across reference designs. Scatterplot of number of cells in the simulated 
OOR state (x-axis) against the true positive rate (TPR, y-axis) of OOR state detection with alternative reference designs.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Reference design comparison on COVID-19 cohort. 
(a) Scatterplot of neighbourhood differential abundance log-Fold Change (DA 
logFC) against the mean expression of IFN signature with ACR design (left) 
and CR design with joint embedding (right), stratified by cell type annotation. 
Colored points indicate neighbourhoods where the enrichment was significant 
(10% SpatialFDR and logFC > 0). The dotted line denotes the threshold for high-
IFN used for precision-recall analysis. (b) Beeswarm plot of DA logFC annotating 
neighbourhoods by fine annotation by Stephenson et al. Neighbourhoods 
where the differential abundance was significant (10% SpatialFDR) are colored. 
Annotations are ordered by the value of the maximum logFC for the annotation, 
to visualize which cell types are prioritized for each design. (c) (left) As in (A) but 

close-up on lymphoid cell types. The red dotted line denotes the 90% quantile 
of mean IFN signature, used to identify the top 10% IFN-high states for each 
lymphoid cell type for precision-recall analysis. (right) Area under the precision-
recall curve for identification of top 10% IFN-high neighbourhoods in lymphoid 
cell types. The dotted line denotes the baseline value for the AUPRC, indicating 
the case of a random classifier. Error bars denote the 95% confidence interval 
of AUPRC calculated from bootstrapping with 1000 resamplings. The height 
of the bar denotes the AUPRC computed on the real data. (d) Volcano plot for 
differential abundance analysis on neighbourhoods of NK cell neighbourhoods 
(CD16hi NK cells and proliferating NK cells) and naive B cell neighbourhoods.  
The dotted line denotes the significance threshold of 10% SpatialFDR.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Heterogeneity in COVID-19 associated CD14+ monocyte 
states. (a) Scatterplot of neighbourhood differential abundance log-Fold Change 
(DA logFC) against the mean expression of IFN signature with CR design for 
neighbourhoods of CD14+ monocyte cells (as in Fig. 5e). (b) Distribution of IFN 
signature score for cells belonging to neighbourhoods in CR design assigned 
to 3 alternative CD14+ phenotypes. (c) COVID-19 enriched CD14+ phenotypes 
(from CR design) across patients with varying disease severity (Healthy: n = 23 
patients, Asymptomatic: n = 9 patients, Mild: n = 23 patients, Moderate: n = 30 
patients, Critical: n = 15 patients, Severe: n = 13 patients): each point represents 
a donor, the y-axis shows the fraction of all CD14+ monocytes in that donor 
showing IFN-high COVID-19 enriched phenotype (orange), and IFN-low COVID-19 
enriched phenotype (yellow). The remaining fraction are monocytes with healthy 
phenotype (not shown). In boxplots the center line denotes the median; box 
limits, first and third quartiles; whiskers, 1.5X interquartile range. (d) Volcano plot 
of differential expression analysis results from comparison between IFN-high and 

IFN-low COVID-19 specific CD14+ phenotypes identified with ACR design. For each 
tested gene, the x-axis shows the logFC of the edgeR quasi-likelihood differential 
expression test64 and the y-axis shows the Benjamini-Hochberg adjusted p-value. 
Genes with significant DE at FDR < 1% are colored in red. A subset of significant 
genes with absolute logFC > 0.75 are labelled. (e) Dotplot of mean expression of 
IFN signature genes, HLA-DR genes and S100 genes for different CD14+ monocyte 
states identified with ACR design. Dot size is proportional to the fraction of cells 
expressing the gene in a group. (f) Predicted CD14+ monocyte phenotype for 
monocytes of COVID-19 patients from the Schulte-Schrepping23 dataset. A logistic 
regression model was trained on the monocytes from the Stephenson dataset24, 
and predicted phenotypes for all CD14+ monocytes in the Schulte-Schrepping23 
dataset. The barplot shows the proportion of cells with a predicted phenotype 
for HLA-DRlo S100hi monocytes and for all other monocytes. (g) Volcano plot of 
differential expression analysis results from comparison between IFN-high and 
IFN-low COVID-19 specific CD14+ phenotypes identified with CR design (as in (D)).
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Extended Data Fig. 7 | Detection of profibrotic (SPP1hi) macrophages with 
alternative reference designs. (a) Scatterplots of differential abundance log-
Fold Change (DA logFC) against the mean expression of profibrotic macrophage 
signature in macrophage cell neighbourhoods with ACR design (left), AR design 
(middle) and CR design (right). Coloured points indicate neighbourhoods 
where the enrichment was significant (1% SpatialFDR and logFC > 0). Pearson’s 
correlation coefficients and p-values for significance of the correlation are 
reported (two-sided test). (b) Analysis of top 10% macrophage neighbourhoods 
prioritized by DA logFC using ACR and CR designs. When examining prioritized 
neighbourhoods with low expression of profibrotic signature (top 10% false 
positives), we found that with the CR design these neighbourhoods include cells 
from significantly less samples compared to the true positives. On the left, we 
mark neighbourhoods that are considered top 10% (colored), separating out 
False Positive (FP) neighbourhoods, where the mean profibrotic macrophage 
signature was below the threshold of the 90% quantile used for precision-recall 

analysis. The boxplots on the right show the number of samples represented 
in each top 10% neighbourhood (ACR other: n = 10 neighbourhoods; ACR 
FP: n = 65 neighbourhoods; CR other: n = 66 neighbourhoods; CR FP: n = 18 
neighbourhoods). In boxplots the center line denotes the median; box limits, 
first and third quartiles; whiskers, 1.5X interquartile range. (c) Barplots of 
fraction of cells from each donor in top 10% false positive neighbourhoods with 
ACR (left) and CR design (right). (d) Detection of profibrotic macrophages with 
label transfer uncertainty score from Sikkema et al. 2022. Violin plots show 
the distribution of label uncertainty on cells (left), mean label uncertainty 
on neighbourhoods (centre) and DA logFC with ACR design for profibrotic 
macrophages (profibrotic macrophage signature > 90% quantile, in pink) and 
other macrophages (in grey). The dotted lines denote the median value and 
inter-quartile range. (e) Precision-recall curve for detection of profibrotic 
macrophages with metrics shown in D. The dotted lines denote the baseline value 
for the AUPRC, indicating the case of a random classifier.

http://www.nature.com/naturegenetics
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Detection of IPF diagnostic gene signature in stromal 
and epithelial lung cells. (a) Scatterplot of weights assigned to genes used for 
IPF signature calculation (from ref. 36). (b) Boxplots of IPF diagnostic signature 
values for cells of different cell type groups. Cells are grouped by disease status 
(Control: n = 28 patients; IPF: n = 32 patients). The number of cells for each cell 
type group and disease group is shown on the right. Cell type groups are ordered 
by the difference in mean signature between cells from IPF patients and COPD 
patients (COPD: chronic obstructive pulmonary disease), with cell type groups 
where the IPF diagnostic signature was highest in IPF patients shown on top. EC: 
endothelial cells; Club: club cells; SMG: submucosal gland cells. In boxplots the 
center line denotes the median; box limits, first and third quartiles; whiskers, 
1.5X interquartile range. (c) Scatterplots of differential abundance log-Fold 

Change (DA logFC) against the mean expression of IPF diagnostic signature in 
cell neighbourhoods of affected cell type groups (AT: alveolar cells, basal cells, 
club cells, fibroblasts) with ACR design (left), AR design (middle) and CR design 
(right). Coloured points indicate neighbourhoods where the enrichment was 
significant (1% SpatialFDR and logFC > 0). Pearson’s correlation coefficients 
and p-values for significance of the correlation are reported (two-sided test). 
Neighbourhoods corresponding to aberrant basal-like phenotypes examined in 
downstream analysis are highlighted. (d) Dotplot of expression of marker genes 
for different aberrant basal-like cell states (KRT17hi aberrant basal markers from 
Jaeger et al.40, basaloid markers from Adams et al.2). Dot size is proportional to 
the fraction of cells expressing the gene in a group.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Differential expression analysis to identify markers for 
aberrant basal-like cells detected with ACR design. (a) Gene set enrichment 
analysis (Enrichr80 hypergeometric test) results for markers of KRT17hi aberrant 
basal cells: adjusted p-value (BH correction for multiple testing, transformed to - 
log10(p-val)) for significant gene sets (10% FDR threshold, marked by dotted line) 
from GO biological process terms and MSigDB Hallmark pathway terms. Example 

marker genes associated with each term are shown. (b) Gene set enrichment 
analysis (Enrichr80 hypergeometric test) results for markers of basaloid cells: 
adjusted p-value (BH correction for multiple testing, transformed to - log10(p-val)) 
for significant gene sets (5% FDR threshold, marked by dotted line) from GO 
biological process terms and MSigDB Hallmark pathway terms. Example marker 
genes associated with each term are shown.

http://www.nature.com/naturegenetics
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