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Genome-wide association study of  
placental weight identifies distinct and 
shared genetic influences between placental 
and fetal growth

A well-functioning placenta is essential for fetal and maternal health throughout 
pregnancy. Using placental weight as a proxy for placental growth, we report 
genome-wide association analyses in the fetal (n = 65,405), maternal (n = 61,228) 
and paternal (n = 52,392) genomes, yielding 40 independent association 
signals. Twenty-six signals are classified as fetal, four maternal and three fetal 
and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic 
correlation and colocalization analyses reveal overlap with birth weight 
genetics, but 12 loci are classified as predominantly or only affecting placental 
weight, with connections to placental development and morphology, and 
transport of antibodies and amino acids. Mendelian randomization analyses 
indicate that fetal genetically mediated higher placental weight is causally 
associated with preeclampsia risk and shorter gestational duration. Moreover, 
these analyses support the role of fetal insulin in regulating placental weight, 
providing a key link between fetal and placental growth.

The placental connection between fetus and mother provides nutri-
ents and oxygen to the fetus while removing waste products from fetal 
blood. The placenta produces hormones, growth factors and cytokines, 
allowing maternal immunoglobulin G (IgG) antibodies to pass to the 
fetus, giving newborns innate immunity. Suboptimal placentation can 
lead to intrauterine growth restriction1, miscarriage, preterm birth2 
and preeclampsia3,4 A poorly functioning placenta is associated with 
risk of growth restriction5, adverse neurodevelopment6 and cardio-
metabolic diseases7–11.

Placental weight (PW) is easily measured and is often used in 
epidemiological studies12,13 to proxy placental growth and function. 
The placental-fetal growth nexus is reflected by a positive correlation 
(r = 0.6) between placental and birth weight (BW)12,14. Genome-wide 
association studies (GWAS) have identified genetic loci in the maternal 
and fetal genomes associated with BW15,16 being enriched for placental 
expression quantitative trait loci (eQTLs)17. However, no GWAS of PW 
is yet available, and the relationship between genetics of placental 

growth, fetal growth and adverse pregnancy outcomes (for exam-
ple, preeclampsia) remains unclear. Although placenta is primar-
ily composed of cells with fetal origin, it is intricately connected to 
maternal physiology18–20. Genetic analyses offer the opportunity for 
insight into the complex interplay of direct fetal, indirect maternal 
and parent-of-origin effects (POEs), which we hypothesize underlie 
placental growth and function.

We conducted GWAS of PW in term, singleton pregnancies, 
meta-analyzing fetal, maternal or paternal genotype data from 21, 
16 and six European studies, respectively (Fig. 1). Analyses of 19,861 
child–mother–father trios with PW measurements enabled a better 
understanding of the relationship between fetal and maternal effects, 
including POE. We categorized loci according to their association with 
BW, examined genetic links between PW and pregnancy, perinatal and 
later-life outcomes and used Mendelian randomization (MR) to assess 
causal relationships between maternal and offspring characteristics 
and PW.
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high correlations with our main results (all r_g ≥ 0.99). Four addi-
tional loci reached genome-wide significance in the fetal sex-adjusted  
analyses, all of which were close to genome-wide significance in our 
main fetal analysis (Supplementary Table 8).

Fetal and parental contributions to association signals
While the fetal genotype may influence PW directly, the maternal geno-
type may have an effect via the intrauterine environment. To calculate 
the SNP heritability of the fetal, maternal and paternal contributions, 
we used a framework within genomic structural equation modeling 
(gSEM)21,22. We found substantial contributions from the fetal (h2 = 0.22 
(s.e. = 0.03)) and maternal (h2 = 0.12 (s.e. = 0.02)) genomes to variation 
in PW, and a small component from the paternal genome (h2 = 0.06 
(s.e. = 0.02); Supplementary Table 9 and Extended Data Fig. 2), which 
may be due to nonadditive effects such as POE not accounted for in the 
model. We also found a genetic correlation between the three latent 
variables suggesting that the fetal effect on PW was negatively corre-
lated with both maternal and paternal effects, conversely maternal and 
paternal effects were positively correlated (Supplementary Table 9).

Results
Meta-analyses of fetal, maternal and paternal GWAS
We performed GWAS meta-analyses of PW adjusted for fetal sex and 
gestational duration against fetal (n = 65,405), maternal (n = 61,228) 
and paternal genomes (n = 52,392; Fig. 1). Cohorts consisted of off-
spring, parents or both (Methods and Supplementary Tables 1–6  
provide cohort information, data collection and genotyping). After data 
cleaning and imputation, 11 million SNPs were analyzed. The fetal GWA 
meta-analysis identified 32 independent loci at P < 5 × 10−8, the mater-
nal analysis identified four and the paternal identified two loci (Fig. 2, 
Table 1, Supplementary Table 7 and Supplementary Fig. 1a–e (regional 
association plots by locus)). We found little evidence of heterogeneity 
among cohorts at any locus (Supplementary Table 7). Approximate 
conditional and joint analysis (COJO) further identified secondary 
association signals at three fetal loci (Methods; Table 1 and Supplemen-
tary Table 7). A comparison of effect sizes against minor allele frequen-
cies for those 41 association signals was in line with expectations from 
statistical power (Extended Data Fig. 1). We also conducted analyses 
adjusted only for fetal sex (that is, not gestational age), which showed 
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Fig. 1 | Flow chart of the study design. HRC, Haplotype Reference Consortium; MAC, minor allele count; PC, principal component.
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To estimate fetal-specific, maternal-specific or paternal-specific 
effects on PW at all 41 identified loci, we applied a weighted linear 
model (WLM)15 to the GWA meta-analysis summary statistics. The 
WLM can accurately approximate conditional effects in the absence 
of genotyped child–mother pairs (Supplementary Table 10). A total 
of 26 SNPs were classified as fetal-only, four maternal only, two fetal 
and maternal with effects in opposite directions and one fetal and 
maternal with effects in the same direction. We could not resolve the 
classification for the remaining eight loci (Supplementary Table 10 and 
Extended Data Figs. 3 and 4).

We next performed within-family analyses in the child–mother–
father trio subset from the Norwegian Mother, Father and Child Cohort 
(MoBa)23–25 (Supplementary Table 10). Conditional analyses showed 
good agreement with the mode-of-association categories based on 
WLM results. Using phased genotypes in MoBa children, we further 
decomposed the association signals into their mode of transmission 

(that is, maternal transmitted, maternal nontransmitted, paternal 
transmitted and paternal nontransmitted alleles) and compared our 
results with a recent, similar analysis of BW16 (Supplementary Table 
11). For loci associated with both traits, effect size estimates and mode 
of transmission were consistent between BW and PW analyses (Fig. 3a 
and Supplementary Fig. 2). Among the eight unclassified loci after 
WLM analysis of PW, five were identified previously in BW GWAS and 
classified as fetal16 and one was classified as fetal and maternal with the 
same direction of effect (Supplementary Table 11).

For the signal identified in the paternal GWAS near EBF1 
(rs75512885), we could not resolve the mode of association using WLM 
or offspring–parent trio analyses, but this variant is in moderate linkage 
disequilibrium (LD) with rs72813918 (r2 = 0.57), classified previously 
as fetal for BW16 (Supplementary Table 11). The lead SNP of the other 
paternal GWAS locus (rs2207099, near LOC339593) colocalized with 
the nearby fetal lead SNP (rs6040436; posterior probability for shared 
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Fig. 2 | Genome-wide association results for PW. Manhattan plots of −log10(P values) across the chromosomes and corresponding quantile–quantile plot of  
observed versus expected −log10(P values) for meta-analyses of SNP associations with PW in the fetal GWAS (top, n = 65,405 children), the maternal GWAS (middle, 
n = 61,228 mothers) and the paternal GWAS (bottom, n = 52,392 fathers).
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Table 1 | Variants associated with PW (adjusted for sex and gestational duration) in the fetal, maternal and paternal GWAS 
meta-analyses

Locus name Chr Position 
(b37)

rsID EA OA Effect 
allele 
frequency

β s.e. P n Maternal–fetal 
classification

PW/BW 
classification

Fetal

DCST2 1 155001281 rs150138294 A G 0.053 0.080 0.013 1.07 × 10−9 65,405 Unclassified PW and BW same 
direction

RPL31P11 1 161651064 rs723177 T C 0.296 0.039 0.006 1.02 × 10−10 65,405 Fetal Predominantly or 
only PW

TSNAX-DISC1, 
LINC00582

1 231733795 rs1655296 G T 0.393 0.042 0.006 4.86 × 10−14 65,405 Fetal Predominantly or 
only PW

TSNAX-DISC1, 
LINC00582*

1 231794081 rs140691414 T C 0.007 0.261 0.039 2.54 × 10−11 57,158 Fetal PW and BW same 
direction

CHRM3 1 239822859 rs10925945 T C 0.936 0.067 0.011 1.69 × 10−9 65,405 Unclassified Predominantly or 
only PW

EPAS1 2 46567276 rs4953353 G T 0.622 0.042 0.007 1.38 × 10−10 48,809 Unclassified PW and BW same 
direction

ADCY5 3 123065778 rs11708067 G A 0.233 0.053 0.007 1.83 × 10−16 65,405 Fetal and 
maternal

PW and BW same 
direction

LOC339894/
CCNL1

3 156795414 rs9817452 G T 0.614 0.040 0.006 1.72 × 10−12 65,405 Fetal PW and BW same 
direction

PDLIM5 4 95531563 rs74457440 A G 0.233 0.036 0.007 3.37 × 10−8 65,405 Unclassified PW and BW same 
direction

ACTBL2 5 57073666 rs7722058 T C 0.845 0.047 0.008 6.06 × 10−10 65,405 Fetal PW and BW same 
direction

HSPA4 5 132444128 rs72801474 A G 0.105 0.055 0.009 7.34 × 10−9 65,405 Fetal Predominantly or 
only PW

ARHGAP26 5 142429811 rs3822394 C A 0.263 0.036 0.006 5.80 × 10−9 65,405 Fetal Predominantly or 
only PW

EBF1 5 158433339 rs67265526 T C 0.628 0.032 0.006 1.12 × 10−8 65,405 Fetal Predominantly or 
only PW

NUDT3 6 34237188 rs541641049 A G 0.018 0.193 0.035 4.52 × 10−8 55,263 Fetal PW and BW same 
direction

FKBP5/
MAPK13/TEAD3

6 35517390 rs9800506 T G 0.410 0.033 0.006 2.58 × 10−9 65,405 Unclassified PW and BW same 
direction

HACE1 6 105130521 rs12529634 C T 0.872 0.056 0.008 2.85 × 10−11 65,405 Fetal PW and BW same 
direction

ESR1 6 152042413 rs11756568 A T 0.703 0.052 0.006 1.95 × 10−18 65,405 Fetal PW and BW same 
direction

PDE10A 6 166182483 rs1021508 C T 0.633 0.034 0.006 2.09 × 10−9 65,405 Fetal PW and BW same 
direction

PDE10A* 6 166199513 rs6456014 C A 0.582 0.030 0.006 4.42 × 10−8 65,405 Fetal Predominantly or 
only PW

ISPD 7 16193877 rs7783810 C T 0.422 0.039 0.006 1.85 × 10−12 65,405 Fetal PW and BW same 
direction

TBX20 7 35282931 rs10486660 A C 0.608 0.040 0.006 9.49 × 10−13 65,405 Fetal PW and BW same 
direction

YKT6 7 44246271 rs138715366 C T 0.991 0.202 0.035 7.91 × 10−9 63,786 Fetal and 
maternal

PW and BW same 
direction

ENTPD4 8 23342043 rs6557677 T A 0.166 0.044 0.007 2.66 × 10−9 65,405 Fetal Predominantly or 
only PW

SLC45A4 8 142247979 rs12543725 G A 0.585 0.032 0.006 9.20 × 10−9 65,405 Unclassified PW and BW same 
direction

KLF4 9 110822658 rs1434836 A G 0.575 0.035 0.006 2.87 × 10−10 65,405 Fetal PW and BW same 
direction

ADRB1 10 115805056 rs1801253 C G 0.743 0.052 0.006 8.06 × 10−17 65,405 Fetal PW and BW same 
direction

KCNQ1 11 2839751 rs2237892 T C 0.056 0.077 0.014 1.03 × 10−8 48,809 Fetal and 
maternal

Predominantly or 
only PW

SERPINA1 14 94838142 rs112635299 T G 0.024 0.149 0.019 1.42 × 10−15 64,541 Fetal Predominantly or 
only PW
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association = 0.97; Supplementary Table 7), hence was excluded from 
subsequent analyses, leaving 40 independent association signals.

Only one of the 40 lead SNPs was located near imprinted genes 
(Supplementary Table 11). The association with PW at rs2237892, 
in intron 10 of KCNQ1, was conferred by the maternally transmitted 
allele (Fig. 3b and Supplementary Fig. 2), consistent with the known 
maternal-only expression of KCNQ1 and nearby CDKN1C genes. This 
variant shows POE on type 2 diabetes risk26, where the maternally 
inherited risk allele (C) corresponds to the maternally inherited 
PW-decreasing allele identified here. Another independent nearby 
variant, rs234864, has been reported16 as a maternally transmitted 
effect only for BW (Fig. 3c). The PW variant rs2237892 showed direc-
tionally consistent, but weaker evidence of association with BW in 
MoBa (Fig. 3d). This is consistent with the lower fetal effect size of 
rs2237892 on BW in previous BW GWAS15 compared with the effect on 
PW (Supplementary Table 11).

Correlations between PW and BW
We confirmed the strong phenotypic correlation reported between 
PW and BW12,14 in MoBa (Spearman’s r = 0.59, adjusted for sex and ges-
tational duration). We applied LD score regression27 to estimate genetic 
correlations with published BW-association summary statistics15, 
analyzing both main GWAS summary statistics, and WLM-adjusted 

estimates of the conditional fetal, maternal and paternal effects (Fig. 4). 
Using WLM-adjusted effects for both PW and BW, the fetal and maternal 
genetic correlations between PW and BW remained strong. Interest-
ingly, WLM-adjusted fetal effects on BW were negatively correlated with 
WLM-adjusted maternal effects on PW (Fig. 4c), suggesting that fetal 
genetic influences that raise BW correlate with opposing effects of the 
maternal genome that reduce PW. However, this observation could also 
be the result of collider bias, or the known negative correlation between 
maternal and fetal effect sizes induced by conditional analysis15.

Of 40, 28 independent PW signals were also reported for BW or had 
a BW-lead SNP nearby (Supplementary Table 7). Colocalization analysis 
suggested that 19 of these represent a shared underlying association 
(posterior probability for shared signal >0.8), five signals were distinct 
(posterior probability for separate signals >0.8) and the final four loci 
were uncertain (both posterior probabilities <0.8).

Given the large proportion of signals colocalizing with BW loci, 
we aimed to distinguish loci showing associations with both PW and 
BW from those showing only (or predominantly) association with PW, 
by comparing PW and BW effect estimates (Supplementary Table 7; 
Methods). Twelve signals were classified as only or predominantly 
PW and 28 as both PW and BW signals, with one (near SLC7A5) showing 
opposite directions of effect, both with P < 0.05. The results obtained 
from WLM-adjusted analysis were consistent (Fig. 5, Extended Data 

Locus name Chr Position 
(b37)

rsID EA OA Effect 
allele 
frequency

β s.e. P n Maternal–fetal 
classification

PW/BW 
classification

FES/FURIN 15 91428636 rs7177338 A G 0.536 0.035 0.006 3.28 × 10−10 65,405 Unclassified PW and BW same 
direction

NR2F2 15 96852638 rs55958435 A G 0.713 0.042 0.006 6.82 × 10−12 65,405 Fetal PW and BW same 
direction

GPR139/
GPRC5B

16 20006986 rs57790054 G A 0.302 0.035 0.006 5.54 × 10−9 65,405 Fetal PW and BW same 
direction

SLC6A2 16 55717569 rs11866404 C G 0.533 0.042 0.006 8.55 × 10−14 65,405 Fetal Predominantly or 
only PW

SLC7A5 16 87882209 rs876987 G A 0.306 0.038 0.007 1.24 × 10−8 48,809 Fetal PW and BW 
opposite directions

LOC339593 20 11200008 rs6040436 T C 0.444 0.054 0.006 1.55 × 10−22 65,405 Fetal PW and BW same 
direction

LOC339593* 20 11428113 rs6078190 C A 0.319 0.040 0.006 1.36 × 10−11 65,405 Fetal Predominantly or 
only PW

Maternal

EBF1 5 157808173 rs72804545 A T 0.888 0.064 0.011 2.23 × 10−8 41,211 Maternal PW and BW same 
direction

LMO1 11 8255408 rs2168101 C A 0.696 0.047 0.008 2.13 × 10−9 41,356 Maternal PW and BW same 
direction

SLC38A4 12 47180370 rs180435 C G 0.190 0.051 0.007 1.68 × 10−12 61,153 Maternal PW and BW same 
direction

NLRP13 19 56423893 rs303998 G A 0.404 0.039 0.006 2.12 × 10−11 61,063 Maternal PW and BW same 
direction

Paternal

EBF1 5 158317602 rs75512885 T A 0.925 0.080 0.015 4.96 × 10−8 31,714 Unclassified PW and BW same 
direction

LOC339593 20 11207949 rs2207099 A G 0.448 0.038 0.006 8.77 × 10−10 52,271 Fetal PW and BW same 
direction

The lead SNP is given in the rsID column. Where PW loci fell within 500 kb of BW loci, locus names were given the name of the BW locus in ref. 15; otherwise, the locus was named by the nearest 
gene. Secondary signals at a locus are marked with an asterisk. Effect alleles are coded to correspond to increasing PW. β and s.e. are given in s.d. units of PW. The subheadings under locus 
name indicate the GWAS analysis that the signal was identified in, and the two last columns classify signals into fetal and/or maternal mode of association (using a weighted linear model15) 
and into whether effects were only/predominantly on PW, or also on BW. Statistical tests are from linear regression, association results are two-sided and SNPs with P < 5 × 10−8 were considered 
associated. Chr, chromosome; EA, effect allele; OA, other allele; rsID, reference SNP cluster ID.

Table 1 (continued) | Variants associated with PW (adjusted for sex and gestational duration) in the fetal, maternal and 
paternal GWAS meta-analyses
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Fig. 5 and Supplementary Table 7). Thus, 12 of the 40 independent 
signals only influence PW or have effects on PW that are larger than 
any estimated effect on BW (Table 1).

Connections to placental development and function
We selected the 31 protein-coding genes closest to the index SNP of 
the 32 loci identified in the fetal GWAS (that is, excluding LOC339593; 
Table 1) and examined their expression using tissue-specific mRNA 
abundance data from the Human Protein Atlas and a scRNA-seq dataset 
of over 70,000 single cells at the decidual–placental interface in early 
pregnancy (Methods). Among 61 tissues, the 31 genes ranked higher in 
terms of mRNA abundance than other genes in placenta (P = 1.8 × 10−4; 
Extended Data Fig. 6 and Supplementary Table 12). In the single-cell 
analysis among the 32 different cell types at the early maternal–fetal 
interface, expression of the 31 genes ranked higher than other genes in 
cell types of fetal origin, including fetal endothelial cells (P = 6.2 × 10−5) 
and syncytiotrophoblasts (P = 1.9 × 10−4), and also ranked higher in 

maternal innate lymphocyte cells (P = 1.2 × 10−3; Extended Data Fig. 7 
and Supplementary Table 12).

We then queried lead PW SNPs (and their proxies r2 ≥ 0.8) against 
eQTL data from placenta in the RICHS dataset28. Lead PW SNPs tagged 
placental eQTLs at four loci (HSPA4, TBX20, SLC7A5 and JAG1; Sup-
plementary Table 7 and Extended Data Fig. 7). We additionally inves-
tigated whether any of the 40 independent lead SNPs were associated 
with placental DNA methylation at CpG sites within 0.5 Mb. Using 
Gen3G data29,30, we identified placental methylation quantitative trait 
loci (meQTL) at 21 of the 40 independent signals (false discovery rate 
(FDR) ≤ 0.05). Among the 21 lead SNPs with identified meQTLs, indi-
vidual SNPs were associated with placental DNA methylation at up 
to 15 CpG sites (Supplementary Fig. 3). Supplementary Table 7 shows 
meQTLs with the lowest P value for each lead SNP.

We performed further lookups of lead PW SNPs in available GWAS 
of gene expression, plasma protein levels, diseases and traits (Sup-
plementary Tables 7, 13–15). These implicated several candidate genes 
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and potential biological insights. For example, the PW-raising allele of 
rs723177 at fetal RPL31P11 (Supplementary Fig. 1a) is an eQTL and pQTL 
for FCGR2A and FCGR2B (receptors for the Fc region of IgG complexes) 
and associates with higher plasma protein levels (Supplementary 
Tables 14 and 15), suggesting a role in maternal antibody transfer across 
placenta31. The lead variant rs723177 is also the strongest placental 
meQTL in the region at the CpG site cg27514565 (overlapping DNase I 
hypersensitive sites (DHS) for primitive/embryonic and myeloid/eryth-
roid tissues) located between FCGR2C and FCGR3B, and two meQTL (at 
cg14354529 and cg15531363) overlapping with trophoblast-specific 
DHS located downstream of FCRLA and FCRLB (Supplementary Fig. 3a). 
Associations at lead SNP rs10486660, at another fetal locus, suggest a 
role for this in placental morphology—the SNP is intragenic in the T-box 
transcription factor gene, TBX20 (Supplementary Fig. 1b), and marks an 
eQTL for TBX20 in placenta (Supplementary Table 7). Approximately 
50% of TBX20 placental expression is found in trophoblast cells32, and 
TBX20-null mice show abnormal placental morphology compared 
to wild-type mice33. The lead SNP rs112635299 is in LD (r2 = 1.0) with 
rs28929474, a missense variant in the serpin peptidase inhibitor gene 
SERPINA1 (Supplementary Fig. 1c). The SNP associates with several 
traits, including levels of >20 circulating plasma proteins34 (Supple-
mentary Table 15) and causes autosomal recessive α-1 antitrypsin 
deficiency35. Within placenta, SERPINA1 expression regulates expres-
sion of inflammatory cytokines and serine protease HTRA1-induced 
trophoblast invasion through induction of endoplasmic reticulum 
stress34. Finally, lead fetal SNP rs876987, the only variant showing an 
inverse effect on PW relative to BW, is in an intron of SLC7A5, which 
encodes a sodium-independent, high-affinity amino acid exchanger 
over membranes of several organs, responsible for uptake of essential 
amino acids in placenta36. This variant is an eQTL for SLC7A5 in placenta 
and also a meQTL (Supplementary Table 7 and Supplementary Fig. 3d).

PW and pregnancy complications
We tested whether the 40 independent lead SNPs were associated with 
pregnancy and perinatal traits, using GWAS summary statistics for 
nausea and vomiting of pregnancy or hyperemesis gravidarum37, preec-
lampsia38, gestational duration39, miscarriage (recurrent and sponta-
neous)40 and ten cytokines assayed from neonatal blood spots41. The 
SNPs showed more associations with nausea and vomiting of pregnancy 
(maternal genotype effects), and with gestational duration, preeclamp-
sia and neonatal immunoglobulin A (IgA) levels (fetal genotype effects) 
than expected under the null distribution (Supplementary Fig. 4 and 
Supplementary Table 16)39,40. Scatter plots of effect sizes (Supplemen-
tary Fig. 5) suggested that fetal alleles predisposing to higher PW tended 
to associate with higher odds of preeclampsia and a shorter gestational 
duration. To test the effect of fetal PW-raising alleles on preeclampsia 
and gestational duration, we performed MR analyses. These showed 
that fetal genetic predisposition to a higher PW raises the risk of preec-
lampsia (odds ratio (OR) = 1.72 (95% confidence interval (CI): 1.19–2.47) 
per 1 s.d. higher fetal genetically predicted PW, P = 6 × 10−3) and shortens 
gestational duration (1.9 d (95% CI: 0.74–3.12) shorter per 1 s.d. higher 
fetal genetically predicted PW, P = 3 × 10−3; Supplementary Table 17 
and Extended Data Fig. 8). We were unable to test causality between 
fetal genetically predicted PW and nausea and vomiting of pregnancy 
or IgA because only maternal effect estimates were available for the 
nausea and vomiting of pregnancy outcome37 and only unadjusted fetal 
effect estimates for IgA41. The gestational duration results were similar 
to those seen for BW42, where fetal genetic predisposition to higher 
BW is associated with shorter gestation, implying a general effect of 
fetoplacental growth43. However, known BW-associated SNPs15 with 
fetal-only effects showed little evidence of association in the fetal GWAS 
of preeclampsia (Supplementary Fig. 4t), contrary to PW-associated 
SNPs with fetal-only effects (Supplementary Fig. 4u). MR analysis did 
not support a causal relationship between fetal genetic predisposition 
to higher BW and odds of preeclampsia (P = 0.6; Supplementary Table 

17 and Extended Data Fig. 8), suggesting that increase in preeclampsia 
risk is more specific to placental growth.

Maternal and fetal traits and effects on PW
We selected the following key maternal and fetal traits that influence 
BW15,16 and used genetic instruments to assess whether there were simi-
lar causal relationships with PW: (1) maternal glucose and fetal insulin, 
(2) genetic predisposition to adult height and (3) blood pressure.

Fetal insulin is a major determinant of fetal growth. Lower fetal 
insulin secretion due to rare fetal GCK mutations leads to reduced 
BW and PW compared with siblings without mutations44,45. To investi-
gate the role of fetal insulin on PW in the general population, we used 
the following three SNP sets in MR analyses: (1) 33 fasting glucose 
SNPs (maternal glucose crosses the placenta stimulating fetal insulin 
secretion); (2) 18 insulin disposition index SNPs (estimated by insulin 
secretion multiplied by insulin sensitivity, a β-cell function proxy) and 
(3) 53 BMI-adjusted fasting insulin SNPs (insulin resistance proxy in 
adults; Supplementary Table 18)15. We used WLM estimates to ensure 
maternal effects were adjusted for fetal effects, and vice versa. A genetic 
instrument representing 1 s.d. (0.4 mmol l−1) higher maternal fasting 
glucose level was associated with a 47.4 g (95% CI: 23.7–71.2 g) higher 
PW (P = 4.46 × 10−4; Fig. 6 and Supplementary Table 18). In addition, a 
1-s.d. genetically higher fetal disposition index was associated with 
a 13.9-g (1.2–26.6) higher PW. Alleles that raise insulin secretion tend 
to lower glucose levels, and this was reflected in the opposite direc-
tion of the effect estimates for maternal disposition index (Fig. 6 and 
Supplementary Table 18). The causal effect estimate for fetal insulin 
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resistance was directionally consistent with causing lower PW, but 
the 95% CI crossed the null. These analyses support a role for insulin 
produced by the fetus, either directly or indirectly, in regulating the 
growth of the placenta, providing a key link between fetal insulin and 
placental growth.

Our analyses showed that fetal and maternal genetic predisposi-
tion to a greater adult height was associated with greater PW, consist-
ent with previous associations with higher BW and length15,16 (Fig. 6 
and Supplementary Table 18). These findings further emphasize the 
contributions of common fetal genetic factors to the close relationship 
between fetal and placental growth.

Higher maternal blood pressure in pregnancy is associated with 
reduced fetal growth46. Using two-sample MR analyses, we found no 
evidence of a causal effect of either maternal systolic blood pressure 
(SBP; P = 0.23) or maternal diastolic blood pressure (DBP; P = 0.91;  
Fig. 6 and Supplementary Table 18). However, analyses using direct fetal 
genotype effects (adjusted for maternal genotype effects) suggested 
that a 10-mmHg genetically higher DBP in the fetus caused a 19.0-g (95% 
CI: 3.8–34.3 g) lower PW, with a weaker effect of SBP in the same direc-
tion (Fig. 6 and Supplementary Table 18). Previous MR analyses of fetal 
blood pressure effects on BW have been inconsistent—those that used 
similar methods15,47 to the current analyses found no fetal effects, while 
others using transmitted and nontransmitted alleles16,42 supported fetal 
genetic predisposition to higher SBP being causally related to lower 
BW. Our findings for PW are similar to the latter.

PW and later neuropsychiatric traits
The role of placenta in neurodevelopment and later psychiatric dis-
ease in the offspring is a growing research field6,48. Using data from 
the Initiative for Integrative Psychiatric Research (iPSYCH) cohort 

(n = 100,094), we did not, however, find fetal polygenic scores for PW 
to be associated with risk of four neuropsychiatric diseases (Supple-
mentary Note and Extended Data Figs. 9 and 10). Also, no significant 
genetic correlations were found between PW and neuropsychiatric 
diseases (Supplementary Table 19).

Discussion
In this GWAS of PW (Fig. 7), we identify 40 independent association 
signals. These partially overlap with known BW loci, but 12 are related 
predominantly or only to PW, with connections to placental develop-
ment and function. We observe a maternal POE near KCNQ1. Moreover, 
we find that fetal genetically mediated higher PW raises preeclampsia 
risk and shortens gestational duration, as well as demonstrates a role 
for fetal insulin in regulating placental growth.

There was a clear predominance of fetal effect signals among the 
genome-wide significant loci, and fetal SNP heritability was almost 
double that of maternal SNP heritability (Extended Data Fig. 2). A total 
of 26 signals were classified as fetal-only, and a further three as fetal 
and maternal. Four loci showed no fetal effect and represent indirect 
maternal genetic effects acting on PW via the intrauterine environment. 
For loci also known to be associated with BW, our mode of association 
results were in good agreement with a previous classification16.

MoBa trio data revealed a pronounced POE signal near KCNQ1  
carried by the maternally transmitted allele, in agreement with previ-
ously observed silencing of the paternal alleles of KCNQ1 and nearby 
CDKN1C. The association signal was classified as predominantly PW and 
showed weaker evidence of association with BW. A nearby SNP in low LD 
was strongly associated with BW in the most recent GWAS16 and showed 
a similar association with PW in the MoBa data. These results suggest 
that there may be multiple imprinted underlying causal variants in the 
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region, perhaps with different modes of action during pregnancy. The 
KCNQ1 finding implies effects on fetal and placental growth through 
at least two pathways49. Placenta cells have a unique epigenetic profile 
that regulates their transcription patterns, which may be associated 
with adverse pregnancy outcomes if disturbed. Beckwith–Wiedemann 
syndrome is an overgrowth syndrome with elevated PW and BW49 where 
approximately 50% have lost maternal-specific methylation at the puta-
tive imprinting control region 2 (ICR2) within intron 10 of KCNQ1 that 
is also the transcriptional start site of the regulatory long noncoding 
RNA KCNQ1OT1 (ref. 50) controlling expression of CDKN1C and KCNQ1. 
The location of the lead signal, rs2237892, to this region suggests that it 
influences PW through an effect on methylation at ICR2 in the placenta. 
Known associations between SNP rs2237892 and altered insulin secre-
tion51,52 support a role for fetal insulin in mediating the association 
with PW. Additionally, placental DNA methylation at KCNQ1 has been 
associated with maternal insulin sensitivity53, influencing maternal 
glucose availability across the placenta, and stimulating fetal insulin 
thus leading to fetal and placental growth.

Our results support a role for fetal genetic factors that predispose 
to a higher PW in raising preeclampsia risk. For every 1-s.d. higher 
genetically mediated PW, there were more than 1.5-fold higher odds of 
preeclampsia, a poorly understood complication occurring in 3–5% of 
pregnancies4,54. The causal relationship we observed appears specific 
to placental growth, with no similar effect of fetal genetic predisposi-
tion to higher BW. This finding may seem initially counter-intuitive, 
considering preeclampsia is often linked with fetal growth restric-
tion. However, the relationship between preeclampsia and PW is not 
consistent—early onset preeclampsia (<34 weeks of gestation), which 
is likely caused by defective placentation, is frequently associated 
with fetal growth restriction and low PW55,56, but the more common, 
‘late-onset’ or ‘term’ preeclampsia (delivery in or after gestational 
week 37) is associated with normal placentation and has been asso-
ciated observationally with both lower and higher PW56. Late-onset 
preeclampsia is thought to result largely from interactions between 
a maternal genetic susceptibility to cardiometabolic diseases and 
aging of the placenta55. Increased fetoplacental demands may result 
in uteroplacental mismatch and preeclampsia4. Our findings that fetal 
genetic factors predisposing to a larger placenta at term are associated 
with higher odds of preeclampsia are consistent with this model of 
late-onset preeclampsia. The available GWAS data on preeclampsia38 
used in our analysis was not stratified by gestational age at onset, so 
we recommend follow-up in stratified analyses to confirm that the 
association pertains to late-onset preeclampsia. However, the findings 
may open new opportunities for understanding the development of 
preeclampsia, its potential prevention and treatment.

Using PW to proxy placental growth enabled the large sample size 
of this study, leveraging routine records in birth registers, thereby 
yielding sufficient statistical power for discovery. One limitation, 
however, is that PW measured after delivery only crudely proxies pla-
cental growth and does not directly capture placental insults or other 
indications of placental dysfunction. Our study would therefore be 
complemented well by other approaches, for example, single-cell 
transcriptomics of placental cells early in pregnancy19, characteriza-
tion of placental mosaicism57, sequencing of cell-free RNA transcripts 
of placental origin in maternal circulation during pregnancy58 and 
RNA sequencing of placental samples without and with pregnancy 
complications28,59. Furthermore, while our results point to plausible 
candidate genes (for example, FCGR2A, FCGR2B, TBX20, SERPINA1 and 
SLC7A5) and potential effects on placental development and morphol-
ogy, and transport of antibodies and amino acids, follow-up studies 
are required to establish causal links and to characterize mechanisms 
related to placental growth.

Phenotype measurement and study heterogeneity are key consid-
erations in the design of GWA meta-analyses60. Within a given cohort, 
phenotyping heterogeneity is likely to be low, as demonstrated in MoBa61. 

Across studies, however, variation in phenotyping procedures can occur, 
for example, regarding the trimming of membranes and clamping times. 
Within our study, we have addressed concerns regarding whether the pla-
centas are trimmed or untrimmed and interstudy variability in placenta 
collection and measure by having the individual cohorts using z scores 
to standardize their PW. By using z scores, the measure of PW is in consid-
eration to the mean and s.d. of each cohort, resulting in between-cohort 
equivalence of measure. The vast majority of our cohorts (85%) had 
gestational age measured through ultrasound. Considering that there is 
concordance between the gestational age and sex-adjusted and sex-only 
adjusted results, any heterogeneity of the gestational age assessment is 
estimated to have negligible influence. Finally, the effects of the above-
mentioned heterogeneity would mainly be study-specific as births and 
associated measures are subject to the obstetric policy. Within our 
meta-analyses, there was little evidence of between-study heterogene-
ity for lead variants (Supplementary Table 7 and Supplementary Fig. 6).

Our study complements large-scale GWA studies of BW. While 
genetic correlation and colocalization analyses revealed an overlap 
between signals associated with PW and BW, there were also notable dif-
ferences emphasizing the complexity of common and distinct genetic 
regulation and physiological processes affecting placental and fetal 
growth62. Overall, our findings provide an improved understanding 
of the role of placenta in fetal growth and biological processes and 
complications such as gestational duration and preeclampsia. Future 
research may focus on additional proxies for placental function and 
environmental influences, as well as the role of placenta for later-life 
health outcomes.
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Methods
Study cohorts, phenotype handling and ethical approval
Studies of individuals from European populations conducted GWA 
studies of PW as part of the Early Growth Genetics (EGG) Consortium. 
Where data were available, multiple births, congenital anomalies and 
babies born before 37 completed weeks of gestation or after 42 weeks 
and 6 d of gestation were excluded. Additionally, PW values <200 g 
or >1,500 g, or greater than 5 s.d. from the mean were excluded. The 
PW data were transformed into z scores for analysis—each individual 
z score was calculated using the within-cohort, unadjusted mean and 
s.d. of PW. Details for phenotype exclusions, data collection, sample 
size, mean PW and gestational age for each cohort can be found in 
Supplementary Tables 1, 3 and 5. Details of ethical approvals for the 
contributing studies are found in the Supplementary Information.

Fetal, maternal and paternal meta-analyses
We performed separate GWA studies within each cohort to test asso-
ciations between PW and fetal, maternal and paternal genotypes, as 
detailed in Eqs. (1)–(3).

pw ∼ child + sex (+gestational age) + study specific covariates (1)

pw ∼ mother + sex(+gestational age) + study specific covariates (2)

pw ∼ father + sex (+gestational age) + study specific covariates (3)

where ‘pw’ refers to the standardized PW, and ‘child’, ‘mother’ and 
‘father’ refer to the number of tested alleles (as genotype probabili-
ties) for a given variant in the child, mother and father genomes, 
respectively.

Analyses were conducted twice, once adjusting for sex and gesta-
tional age and once adjusting for sex-only. Adjustment was also made for 
ancestry principal components, and the number of principal components 
included was determined on a per-cohort basis. Genotypes were imputed 
to the Haplotype Reference Consortium reference panel in most stud-
ies, with exceptions noted in Supplementary Tables 2, 4 and 6. Details of 
imputation and analysis for individual studies are shown in Supplementary 
Tables 2, 4 and 6. Association results from fetal, maternal and paternal 
GWA studies using both adjustment strategies were combined separately 
in fixed-effects meta-analyses implemented in METAL63, resulting in six 
meta-analyses. Meta-analyses were performed independently by two 
analysts. SNPs were excluded if they were present in fewer than two studies 
or the number of individuals for the SNP was <5,000. Genome-wide sig-
nificant loci were defined as regions with one or more SNP with P < 5 × 10−8, 
and these SNPs were defined as belonging to different loci if the distance 
between them was >500 kb. The lead SNP at each locus was the one with 
the smallest P value. Secondary signals within each locus were identified 
using approximate conditional and joint multiple-SNP (COJO) analysis per-
formed using GCTA–COJO64. Independent SNPs were defined as those with 
conditional P < 5 × 10−8. The LD reference panel was made up of 344,241 
individuals from the UK Biobank defined as having British ancestry65.

gSEM
To calculate the SNP heritability of the fetal, maternal and paternal 
contributions, we used a framework within gSEM21 developed by Moen 
et al.22. In short, the gSEM method21 involves two stages. In the first 
stage, LD score regression methods using precomputed LD scores 
from a European population provided by the original developers of 
LD score regression27,66 are applied to GWAS summary results statistics 
to estimate the genetic variance of each trait, and the genetic covari-
ance between traits. In the second stage of gSEM, a user-defined SEM 
is fit to the genetic covariance matrix and parameters and their s.e. 
are estimated. The method is not restricted to trios and uses the full 
meta-analysis summary statistics.

The gSEM we used to partition genetic covariances into maternal 
and offspring components is displayed in Supplementary Fig. 7. Results 
from the three PW GWA studies (squares) were modeled in terms of 
latent maternal, paternal and offspring genetic variables (circles). The 
lower part of this model reflects simple biometrical genetics principles 
(that is, the fact that offspring and maternal genomes are correlated by 
0.5) and consists of path coefficients fixed to the value one or one-half. 
The top half of the model consists of free parameters requiring estima-
tion—three SNP heritabilities (one for each trait) and three genetic 
covariances between the variables, representing commonalities in 
genetic action across the fetal, maternal and paternal genomes22.

It is important to realize that fitting a complicated SEM like the one 
in Supplementary Fig. 7 is necessary to obtain asymptotically unbiased 
estimates of SNP heritabilities and genetic correlations. The reason is 
that GWA studies of perinatal traits represent a complicated mixture of 
fetal, maternal and paternal genetic effects. Our SEM disentangles these 
effects from each contributing GWAS. In contrast, the model underly-
ing LD score regression makes no allowance for this complication, and 
hence naïve use will lead to biased estimates of SNP heritability and 
genetic correlations containing an unknown mixture of fetal, maternal 
and paternal effects22. Summary results in statistics files from the GWA 
studies described above were combined using gSEM21. The software 
was set to not exclude insertions and deletions.

Partitioning effects and allele transmission analysis
Partitioning fetal, maternal and paternal effects was performed 
from the summary statistics obtained from the GWAS (Eqs. (1)–(3)) 
using a WLM similar to that applied in ref. 15, extended to include 
paternal data and overlap in individuals between GWA studies. The 
estimates of partitioned fetal, maternal and paternal effects (ηc, ηm 
and ηf, respectively) estimated from the GWAS estimates (βc, βm and 
βf, respectively) are

ηc = 2βc − βm − βf (4)

ηm = −βc +
3
2βm + 1

2βf (5)

ηf = −βc +
1
2βm + 3

2βf. (6)

To account for sample overlap between GWA studies, the covari-
ance in estimates of the regression coefficients has the form

σij =
nsij

√
(7)

where nsij is the number of individuals contributing to both analyses, 
ni is the number of individuals contributing to analysis i, ρij is the cor-
relation between the estimates βi and βj in the overlapping samples and 

σi is the s.e. of βi. The term ns

√
 can be estimated as the intercept of a 

bivariate LD score regression27. The s.e. for partitioned effects are then 
estimated as

σηc = 4σc + σm + σf + 2
nsmf

√
(8)

σηm = 9
4σm + σc +

1
4σf −

nscf

√
(9)

σηf =
9
4σf + σc +

1
4σm − nscm

√
. (10)

P values are calculated from WLM estimates using a z test, with 
test statistic

Z = ηi
σi
. (11)
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To complement this analysis, we used the independent child–
mother–father trios available in MoBa to perform conditional analyses 
where the association of fetal and parental genotypes with PW is con-
ditioned against each other, as detailed in Eq. (12).

Phenotype ∼ child +mother + father+

sex + gestational age + study specific covariates
(12)

In this set of independent trios, using the phasing of the children’s 
genotypes, we inferred the parent-of-origin of the genotyped alleles 
as done by Chen et al. 42. We then studied the association of the PW 
with maternal and paternal transmitted and nontransmitted alleles, 
as detailed in Eq. (13).

Phenotype ∼ mnt +mt + pt + pnt + sex

+gestational age + study specific covariates
(13)

where ‘mnt’ and ‘mt’ refer to the maternal nontransmitted and transmit-
ted alleles, respectively, and similarly, ‘pt’ and ‘pnt’ refer to the paternal 
transmitted and nontransmitted alleles, respectively.

To estimate the significance of effects mediated by the maternal 
transmitted only, and hence test for POEs, we conditioned it on the 
genotypes of the child, mother and father for the same variant, as 
detailed in Eq. (14).

Phenotype ∼ mt + child +mother + father + sex

+gestational age + study specific covariates
(14)

where variables are coded as in Eqs. (12) and (13). These analyses were 
conducted using z-scored PW and BW as phenotypes and hard-called 
genotypes. Each individual PW or BW z score was calculated using the 
within-study mean and s.d. Sex, gestational age and intercept were 
included in the model as well as study-specific covariates, that is, ten 
principal components and genotyping batches. The share of Mendelian 
errors was estimated using trios presenting at least a homozygous par-
ent. If a variant presented more than 50% Mendelian errors, child alleles 
were swapped. All estimates are provided in Supplementary Table 11.

To classify SNPs as either fetal, maternal or paternal, we used 
similar criteria to those used previously for BW SNPs15. We classified 
SNPs into the following three categories: (1) fetal-only: the P value 
for the fetal estimate is lower than a Bonferroni corrected threshold 
(0.05/37 = 0.00132), and the 95% CI surrounding the estimate does not 
overlap the 95% CI for the maternal estimate; (2) maternal only: the P 
value for the maternal estimate is lower than a Bonferroni corrected 
threshold (0.00132), and the 95% CI surrounding the estimate does not 
overlap the 95% CI for the fetal estimate and (3) maternal and fetal: the 
P value for both the maternal and fetal association estimates were less 
than the Bonferroni corrected threshold (0.00132). If a SNP did not fit 
any of these criteria, it was marked as ‘unclassified’.

Assessing colocalization of association signals
To further supplement the aforementioned classifications, we per-
formed colocalization analysis to determine overlap between GWAS 
signals from fetal, maternal and paternal meta-analyses using the R 
library ‘coloc’ version 5.1.0 (ref. 67) with the default prior probability 
for colocalization. Signals were defined as colocalising if the posterior 
probability of shared association signals (P4) was >0.8, distinct if the 
posterior probability of independent signals (P3) was >0.8 and unde-
termined if neither P3 or P4 was >0.8.

LD score regression
To estimate the genetic correlation between PW and BW, LD score 
regression27,66 was performed using summary statistics from gesta-
tional age and fetal sex-adjusted analyses and BW summary statistics 
taken from ref. 15. Estimates for the results from the meta-analyses and 

WLM for both PW and BW were calculated for each of the fetal, maternal 
and paternal genomes.

Testing association with BW
Colocalization analysis was again used to determine whether PW loci 
close to those previously identified in GWAS of BW represent the same 
association signal, using the same colocalization methods as above.

To classify SNPs as PW or BW, we calculated the 95% CI in s.d. units 
for the PW-lead SNP for both PW and BW. We then compared the 95% 
CIs; if these 95% CIs did not overlap, the SNP was classified as ‘predomi-
nantly or only PW’ unless either BW association (fetal or maternal) was 
in the opposite direction to the PW association and its associated P 
value was <0.05, in which case it was classified as PW and BW in oppo-
site directions. SNPs whose 95% CIs for PW and BW overlapped were 
classified as ‘PW and BW same direction’.

Tissue-specific mRNA expression and scRNA data
We tested enrichment of expression of the PW-associated genes in 
specific tissues or cell types by comparing the ranks of gene expression 
across different tissue or cell types (Supplementary Fig. 8). This method 
involved the following two steps: first, the tissue or cell-type-specific 
expression levels from a reference expression dataset were rank  
normalized across all tissues or cell types for each gene; second, for a 
particular tissue or cell type, expression enrichment of the test genes 
were compared against all other genes by the Wilcoxon rank-sum test. 
We used 31 protein-coding genes close to the index SNPs of the 32 
PW-associated loci identified in the fetal GWAS (first section of Table 
1; the LOC339593 locus was excluded due to the absence of nearby 
protein-coding genes). For the enrichment analysis in specific tissues, 
we used tissue-specific mRNA expression data from the Human Protein 
Atlas (RNA consensus tissue gene data)32. For the enrichment analysis 
in different cell types, we used the scRNA-seq data of about 70,000 
single cells at the decidual–placental interface in early pregnancy19. 
Cell type-specific gene expression of each gene was evaluated by the 
percentage of cells with detectable scRNA reads. Significance levels 
for this enrichment analysis were Bonferroni corrected by number 
of tissues (n = 61; P < 8.20 × 10−4) or cell types (n = 32; P < 1.56 × 10−3).

Identification of placental meQTL
Using the 41 SNPs identified in the discovery meta-analyses GWAS of 
PW, we conducted placental meQTL analysis in 395 participants with 
European ancestry from the Canadian cohort of the study Genetics of 
Glucose Regulation in Gestation and Growth (Gen3G)29,30. We measured  
DNA methylation using Illumina EPIC arrays v1.0 from samples  
collected on the fetal-facing side of the placenta. Methylation data 
were imported into R 4.1.0, and we performed quality control using the 
R package PACEanalysis v0.1.7 (refs. 68,69). Based on the results of the 
functions ExploratoryDataAnalysis and preprocessingofData, samples 
that failed as well as those with a sex or genetic mismatch, potential 
maternal contamination or low synciotrophoblast fraction (planet 
method) were removed, along with probes with nonsignificant detec-
tion (P > 0.05) for 5% or more of the samples69–72. Using the function 
preprocessingofData from the PACEanalysis package, we used minfi 
v1.38.0 (ref. 73) to correct for dye-bias and Noob74 (from the package 
minfi) for background correction, followed by functional normaliza-
tion75. We adjusted for probe-type bias using β-mixture quantile nor-
malization76, and we used the ComBat function from the package sva 
v3.40.0 to adjust for batch effect77. With the function detectionMask 
from PACEanalysis, we set the values as missing for probes with detec-
tion P value larger than 0.05, and with the function outlierprocess we 
windsorized outliers (1% extreme values). Finally, we removed probes 
annotated to sex-chromosomes, non-CpG probes, SNP-associated 
probes at the single base extension with a minor allele frequency larger 
than 5%, probes with an SNP at the target CpG with a minor allele fre-
quency larger than 5%, cross-reactive probes previously identified72 
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and CpGs with low variance (variance <1 × 10−5, approximately 5% of 
the data). Whole-genome sequencing data were processed with the 
DNA-Seq v3.1.4 pipeline from GenPipes78 based on BWA_mem and 
GATK best practices to identify high-quality SNPs on GRCh37 through 
joint genotyping over all samples. SNPs with a call rate above 20%, 
Hardy–Weinberg equilibrium P value above 1 × 10−6 and minor allele 
counts above ten were included.

meQTL were identified using β values of 681,795 CpGs with Ten-
sorQTL v1.0.6 (ref. 79) in a cis-window of 0.5 Mb and the following 
covariates: four genotype principal components, fetal sex and cell 
type composition (estimates based on DNA methylation). To correct 
for the multiple CpGs tested genome-wide, an FDR threshold of ≤0.05 
was applied to the q values measured from the P values extrapolated 
from the β distribution by TensorQTL.

Mapping to pathways and traits
Variants classified as PW through the SNP classification of PW or BW 
were investigated further to identify relevant pathways and related biol-
ogy. Systematic lookups using the OpenTargets Platform, The Human 
Protein Atlas and the International Mouse Phenotyping Consortium. 
Each variant was assessed for which gene it is functionally implicated 
in through information gained regarding the variant’s involvement 
in molecular phenotype experiments, chromatin interaction experi-
ments, in silico function predictions and distance between the variant 
and the gene’s canonical transcription start site. The most likely can-
didate gene was then used to investigate the placenta-relevant cells 
that the gene is expressed in using information on the Open Targets 
Platform and The Human Protein Atlas websites. The International 
Mouse Phenotyping Consortium website was used to identify mouse 
models that found associations with placental pathology after the 
removal of the gene in single-gene knockout mice. Finally, further 
information was garnered through searching publications for which 
the candidate gene was specifically implicated in placental biology.

Lookups of SNPs in GWAS of other phenotypes
We looked at associations between our independent PW-associated 
SNPs and other phenotypes within the phenoscanner80. We looked 
for associations with the SNP itself, SNPs in LD (r2 = 1 and r2 ≥ 0.8). 
We additionally looked at associations between the independent PW 
SNPs in GWA studies for nausea and vomiting of pregnancy, hyperem-
esis gravidarum37, preeclampsia38, gestational duration39, miscar-
riage (recurrent and spontaneous)40 and ten cytokines assayed from  
neonatal blood spots41 (Supplementary Table 17).

MR analysis
We then performed two-sample MR analyses with own and offspring 
PW as outcomes. The exposures used included height, fasting glucose, 
disposition index of insulin secretion, insulin sensitivity, SBP and DBP 
using the same genetic instruments as the previous GWA studies of 
BW (Supplementary Table 18)15. We estimated both the effect of each 
maternal exposure on PW and the effect of the fetal genetic predisposi-
tion to each exposure on PW. For the latter, we made the assumption 
that SNP-exposure effects in the fetus would be the same as in the adult 
samples in which they were identified. Effect sizes were converted 
to grams using the value of 1 s.d. of PW of 132.5 g. We additionally 
used two-sample MR with own PW as the exposure, and gestational 
age, and preeclampsia as outcomes. The SNP-PW associations were 
taken from our GWAS of PW and the WLM-adjusted PW analysis. The 
SNP associations for all other traits were taken from external sources 
(Supplementary Table 17). To estimate the independent fetal associa-
tions for gestational age and preeclampsia, we first transformed the 
preeclampsia log ORs to the liability scale81, then applied the WLM in the 
same way as for PW. The preeclampsia-independent fetal effects were 
then transformed to log ORs for analysis. A population prevalence for 
preeclampsia of 4.6% was used for the transformations82. We applied 

the inverse-variance weighted MR method, with MR-Egger83, weighted 
median and penalized weighted median84 acting as sensitivity analysis 
to test for robustness to MR assumptions.

Polygenic scores
To investigate a possible association between PW and future risk 
of neuropsychiatric disease, we conducted analyses in the iPSYCH 
cohort. The iPSYCH cohort is a Danish population-based case–cohort 
sample including 141,215 individuals, of which 50,615 constitute a 
population-representative sample and the remainder are individuals 
with one or more neuropsychiatric disease diagnoses85. After restric-
tion to individuals of European ancestries born at gestational ages 
between 37 and 42 weeks, 100,094 individuals remained for analysis, 
including 20,328 cases of attention-deficit/hyperactivity disorder 
(ADHD), 28,672 cases of affective disorder, 17,362 cases of autism 
spectrum disorder, 4,052 cases of schizophrenia and population-based 
sample of 32,995 individuals without any one of the four disorders. 
PW data from the Danish Medical Birth Register were available for 
33,035 of these individuals (9,200 cases of ADHD, 2,946 cases of affec-
tive disorder, 9,678 cases of autism spectrum disorder, 239 cases of  
schizophrenia and 13,113 controls).

We redid the fetal meta-analysis for PW excluding the iPSYCH data, 
and based on the resulting summary statistics and a genetic correlation 
matrix created from the iPSYCH genotypes, we used LD-pred2-auto 
(ref. 86) to generate PGS for PW. Next, we regressed observed PW 
on ten fetal PW PGS quantiles, including sex, gestational age and ten 
principal components as covariates in the model. The linear regres-
sions were done separately for the population controls and the four 
neuropsychiatric diseases. We also used logistic regression to assess 
the association between either (1) observed PW, or (2) fetal PGS of PW, 
and future risk of neuropsychiatric disease, including sex, gestational 
age and ten principal components as covariates in the model. In these 
analyses, the observed PW and the fetal PGS were first standardized to 
have mean 0 and variance 1.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. No 
data were excluded from the analyses. The experiments were not  
randomized. The investigators were not blinded to allocation during 
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Individual cohorts contributing to the meta-analysis should be con-
tacted directly as each cohort has different data access policies. GWAS 
summary statistics from this study are available via the EGG website 
(https://egg-consortium.org/placental-weight-2023.html, https://
www.ebi.ac.uk/gwas/), as well as the GWAS catalog (https://www.ebi.
ac.uk/gwas/, accession numbers GCST90275189, GCST90275190, 
GCST90275191, GCST90275192, GCST90275193, GCST90275194, 
GCST90275195, GCST90275196, GCST90275197, GCST90275198, 
GCST90275199). Access to personal-level information from Gen3G 
(including methylation array data) is subject to controlled access 
according to participants’ consent concerning sharing of personal 
data. Request for conditions of access and for data access should be 
addressed to Center Hospitalier Universitaire de Sherbrooke insti-
tutional ethics committee: ethique.recherche.ciussse-chus@ssss.
gouv.qc.ca.

Code availability
Analysis code is available from https://github.com/EarlyGrowthGenetics/ 
placental_weight_code (ref. 87).
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Extended Data Fig. 1 | Effect sizes and minor allele frequencies for placental 
weight-associated lead SNPs. Variants identified in the fetal, maternal and 
paternal analyses are shown in black, red, and blue, respectively. The lines 
indicate effect sizes needed to have 80% power to detect variants at genome-wide 

significance with the sample sizes of the fetal, maternal, and paternal analyses. 
Circles indicate main signals and triangles indicate secondary signals (fetal 
n = 65,405; maternal n = 61,228; paternal n = 52,392). Error bars represent 95% 
confidence intervals.
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Extended Data Fig. 2 | Heritability estimates for placental weight from genomic SEM analysis. Scatter plot showing SNP heritability estimates (h2) for fetal, 
maternal and paternal genomes estimated using genomic SEM (fetal n = 65,405; maternal n = 61,228; paternal n = 52,392). Error bars represent 95% confidence 
intervals.
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Extended Data Fig. 3 | Fetal classified loci: effects from meta-analysis and 
weighted linear model for each genome. Shown are the variants which were 
classified as having a fetal effect. Estimates are provided for fetal, maternal, and 
paternal effects for the meta-analysis results and after weighted linear model 

adjustment (fetal n = 65,405; maternal n = 61,228; paternal n = 52,392). Circles 
and triangles are association estimates, and error bars represent 95% confidence 
intervals. Abbreviation: WLM, weighted linear model. *Note different scale on 
x-axis for rs140691414 - TSNAX-DISC1 & rs541541049 NUDT3.
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Extended Data Fig. 4 | Classifications of remaining loci and effects from 
meta analysis and weighted linear model for each genome. Shown are the 
remaining variants. Estimates are provided for fetal, maternal, and paternal 
effects for the meta-analysis results and after weighted linear model adjustment 

(fetal n = 65,405; maternal n = 61,228; paternal n = 52,392). Circles and triangles 
are association estimates, and error bars represent 95% confidence intervals. 
Abbreviation: WLM, weighted linear model.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Scatter plots comparing effect sizes from placental 
weight and birth weight GWAS for placental weight SNPs. a–e, Scatter plots 
comparing effect size estimates and 95% confidence intervals from the placental 
weight GWAS (n = 65,405) with those from the birth weight GWAS (n = 321,223)2. 
Panels a and b show only SNPs classified as having fetal only effects, panels c and 
d show SNPs with maternal only or maternal and fetal effect, and panels e and f 
show unclassified SNPs. Panels a, c and e show fetal PW and BW betas, and panels 

b, d and f show maternal PW and BW betas. The left column shows fetal genome 
associations, and the right shows maternal. The top row shows SNPs classified 
as fetal only effects on PW (Supplementary Table 7). The middle row shows 
SNPs classified as maternal, or maternal and fetal, and the bottom row shows 
unclassified SNPs. Colors indicate classifications, which are given in a key below 
the figure. Abbreviations: BW, birth weight; GWAS, genome-wide association 
study; PW, placental weight. Error bars represent 95% confidence intervals.
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Extended Data Fig. 6 | Tissue enrichment by mRNA data. Plot illustrating the 
enrichment or depletion of RNA expression of the 31 placental weight-associated 
protein-coding genes identified in the fetal GWAS, in 61 different tissues. Each dot 
represents a specific tissue and plots the difference in average rank of expression 
levels between the 31 placental weight-associated genes and all the other genes 
(x-axis) with associated -log(P value) based on the Wilcoxon rank-sum test 

(y-axis). The size of the points is inversely proportional to the log P value. The 
two dashed horizontal lines represent significance levels with (red) or without 
(orange) Bonferroni correction (n = 61). Tissues with nominally significant  
(P value < 0.05) higher or lower expression of the test genes are plotted and 
labeled as red or blue dots, respectively. Tissues with Bonferroni corrected 
significance are highlighted by labels with yellow background.
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Extended Data Fig. 7 | Cell-type enrichment by scRNA-seq data. Plot 
illustrating the enrichment or depletion of RNA expression of the 31 nearest 
protein-coding genes at placental weight loci identified in the fetal GWAS in 32 
different cell types at the early maternal-fetal interface. Each dot represents a 
specific cell-type and plots the difference in average rank of expression between 
the 31 placental genes and all the other genes (x-axis) with associated -log(P 
value) based on the Wilcoxon rank-sum test (y-axis). The size of the points 
is inversely proportional to the log P value. The two dashed horizontal lines 
represent significance levels with (red) or without (orange) after Bonferroni 
correction (n = 32). Cell types with nominally significant (P value < 0.05) 

higher or lower expression of the test genes are plotted and labeled as red or 
blue dots, respectively. Cell types with Bonferroni corrected significance are 
highlighted by labels with yellow background. Abbreviations of cell types with 
nominally significant difference in expression: Endo (f), endothelial cells (fetal); 
SCT, syncytiotrophoblast (fetal); ILC, innate lymphocyte cells (maternal); HB, 
Hofbauer cells (fetal); fFB1 and fFB2, fibroblasts (fetal); Epi1 and Epi2, epithelial 
glandular cells (unassigned or maternal); dM3, Maternal macrophages (maternal 
cell in placenta); EVT, extravillous trophoblast; DC1, dendritic cells; T cells, T cells 
(maternal or fetal).
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Extended Data Fig. 8 | Mendelian randomization analyses. a, Diagram 
illustrating the Mendelian randomization analyses used to test for a causal 
relationship (*) between higher placental weight (exposure; a proxy for faster 
placental growth) and either preeclampsia, or gestational duration (outcomes). 
Key assumptions:(i) fetal genotype (genetic instrumental variable) is robustly 
related to placental weight, (ii) potential confounders of the causal relationship 
of interest are not associated with the genetic instrumental variable, and (iii) the 
genetic instrumental variable is only related to the outcome via its effect on the 
exposure (placental weight), not through any other pathway. Since maternal 
genotype is correlated with fetal genotype and may additionally influence 
placental weight and the outcome variables, it is a potential confounder and 
should be adjusted for in the analyses (indicated by the box around it).  

We were able to adjust for maternal genotype using weighted linear model (WLM) 
estimates of fetal genetic effects on placental weight and on preeclampsia and 
gestational duration, since both maternal and fetal GWAS summary statistics are 
available for those outcomes. To check for deviation from assumption  
(iii) above, we used the MR Egger, weighted median and penalized weighted 
median sensitivity analyses. b–d, Results of two-sample Mendelian 
randomization analyses testing the effect of (b) higher placental weight 
(n = 65,405) using fetal genetic instruments on preeclampsia (n = 167,234), (c) 
higher placental weight using fetal genetic instruments on gestational duration 
(n = 43,568), and (d) higher birth weight (n = 321,223) using fetal genetic 
instruments on preeclampsia. Points represent SNP effect estimates and error 
bars show 95% confidence intervals.
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Extended Data Fig. 9 | Polygenic score analyses. The panels show associations 
between quantiles of fetal polygenic scores for placental weight and 
standardized observed placental weight in the iPSYCH cohort (n = 33,035). Points 
represent association effect estimates and error bars show 95% confidence 
intervals. Black dots show associations for the population representative sample 

used as controls in iPSYCH, and blue dots show associations for cases of four 
different neuropsychiatric diseases. Abbreviations: CI, confidence interval; 
ADHD, attention deficit/hyperactivity disorder; ASD, autism spectrum disorder; 
PGS, polygenic score.
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Extended Data Fig. 10 | Analyses in the iPSYCH cohort of placental weight 
and risk of neuropsychiatric diseases. The figure shows odds ratios (ORs) 
from logistic regressions of four neuropsychiatric diseases on standardized 
observed placental weight (upper panel) and fetal polygenic score of placental 

weight (lower panel). The ORs correspond to a change of one standard deviation 
in standardized observed placental weight or PGS for placental weight. 
Abbreviations: CI, confidence interval; ADHD, attention deficit/hyperactivity 
disorder; ASD, autism spectrum disorder; OR, odds ratio; PGS, polygenic score.
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