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Genome-wide association meta-analysis 
identifies risk loci for abdominal aortic 
aneurysm and highlights PCSK9 as a 
therapeutic target

Abdominal aortic aneurysm (AAA) is a common disease with substantial 
heritability. In this study, we performed a genome-wide association 
meta-analysis from 14 discovery cohorts and uncovered 141 independent 
associations, including 97 previously unreported loci. A polygenic risk 
score derived from meta-analysis explained AAA risk beyond clinical risk 
factors. Genes at AAA risk loci indicate involvement of lipid metabolism, 
vascular development and remodeling, extracellular matrix dysregulation 
and inflammation as key mechanisms in AAA pathogenesis. These 
genes also indicate overlap between the development of AAA and other 
monogenic aortopathies, particularly via transforming growth factor β 
signaling. Motivated by the strong evidence for the role of lipid metabolism 
in AAA, we used Mendelian randomization to establish the central role 
of nonhigh-density lipoprotein cholesterol in AAA and identified the 
opportunity for repurposing of proprotein convertase, subtilisin/kexin-type 
9 (PCSK9) inhibitors. This was supported by a study demonstrating that 
PCSK9 loss of function prevented the development of AAA in a preclinical 
mouse model.

Abdominal aortic aneurysm (AAA) is a life-threatening condition in 
which progressive expansion of the infrarenal aorta may lead to rup-
ture, which is associated with high mortality. Approximately 4% of 
the US population over 65 years of age is affected by AAA, resulting in 
~41,000 deaths annually1,2.

AAA is often discovered incidentally or as a result of screening pro-
grams in certain demographic groups. Current US Preventive Services 
Task Force guidelines recommend screening via duplex ultrasonog-
raphy in men aged 65–75 years who have ever smoked3, because men 
develop AAA at three to four times the rate of women4 and smoking is 
a key risk factor5. The mainstay of management is longitudinal surveil-
lance until the aneurysm size reaches the point at which the risk of rup-
ture exceeds the risk of repair6. This disease surveillance period, which 
may last several years, represents an ideal opportunity to intervene 
and prevent disease progression. Unfortunately, there are currently no 
approved pharmacological therapies for the prevention and treatment 

of AAA. Although multiple pharmacological therapies have been previ-
ously proposed, based on compelling biology and promising evidence 
from preclinical model systems, including angiotensin-converting 
enzyme inhibitors, angiotensin receptor blockers, matrix metallopro-
teinase inhibitors and statins, to date, none have been shown to affect 
aneurysm growth or rupture in human trials6.

Over the last two decades, large-scale genetic analyses have been 
instrumental in revealing new targets and promising therapies for 
atherosclerotic conditions7,8. Previous genome-wide association stud-
ies (GWAS) of AAA have revealed 24 genomic risk loci for AAA9–13, but a 
substantial portion of AAA heritability remains unexplained. Here we 
leveraged genetic data across 17 studies to (1) perform a genetic discov-
ery analysis for AAA with substantially higher numbers of participants 
with AAA than previous studies (fivefold increase); (2) create and test 
the predictive power of polygenic risk score (PRS) derived from this 
analysis; (3) prioritize causal genes and pathways leading to disease; 

Received: 5 July 2022

Accepted: 22 August 2023

Published online: 16 October 2023

 Check for updates

A list of authors and their affiliations appears at the end of the paper

 e-mail: tanmoy63@gmail.com; cristen@umich.edu; damrauer@upenn.edu

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-023-01510-y
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-023-01510-y&domain=pdf
mailto:tanmoy63@gmail.com
mailto:cristen@umich.edu
mailto:damrauer@upenn.edu


Nature Genetics | Volume 55 | November 2023 | 1831–1842 1832

Article https://doi.org/10.1038/s41588-023-01510-y

Fig. 4). Because approximately 45% of all cases were contributed by the 
VA Million Veteran Program (MVP) EUR analysis, we performed another 
meta-analysis without this cohort and tested for nominal significance 
(P < 0.05) in both datasets as sensitivity analysis. Among 126 index vari-
ants, three rare variants (minor allele frequency (MAF) < 0.01) failed to 
meet this threshold (Supplementary Fig. 5 and Supplementary Table 
2). Additionally, for two loci we lacked confidence, as genome-wide 
significant rare index variants were not supported by any additional 
variants in these loci. These five loci were not further investigated. We 
performed additional sensitivity analysis for the remaining 121 loci and 
observed consistent effect estimates across cohorts (Supplementary 
Fig. 6). We also observed consistent effect estimates (Supplementary 
Fig. 7 and Supplementary Table 2) and P < 0.05 in 80/121 loci in external 
replication cohorts (total 5,451 cases of EUR ancestry from FinnGen and 
PRS validation cohorts) that were not included in the meta-analysis. 
Of 121 genome-wide significant loci, 97 were not previously reported  
(Fig. 1b). We replicated all 24 loci that were reported previously as asso-
ciated with AAA13 with P < 5 × 10−8. The index variants represented a 
wide spectrum of allele frequencies, with six being low allele frequency 
(MAF = 0.01–0.05) and the rest common (MAF > 0.05). As expected, by 
substantially (~5-fold) increasing the number of participants with AAA 

(4) explore the spectrum of phenotypic consequences associated with 
AAA risk variants and (5) identify potential therapeutic targets that may 
help prevent and treat AAA.

Results
GWAS meta-analysis identifies 97 new risk loci
To identify genetic variants associated with AAA, we performed a 
meta-analysis of 17 individual GWAS from 14 discovery cohorts in the 
AAAgen Consortium (Fig. 1a, Supplementary Table 1 and Supplemen-
tary Figs. 1 and 2). Our analysis comprised 39,221 individuals with AAA 
(37,214 of European (EUR) ancestry and 2,007 of African (AFR) ancestry). 
After meta-analysis, we obtained single variant association statistics 
for 55.8 M variants, of which 33.4 M were present in two or more GWAS 
and were used for downstream analyses. We identified 126 index vari-
ants associated with AAA at a genome-wide significance threshold 
(P < 5 × 10−8; Supplementary Fig. 3 and Supplementary Table 2). None of 
the index variants displayed significant evidence for heterogeneity (het-
erogeneity test; P > 0.05/126) of effect estimates among the contribut-
ing GWAS (Supplementary Table 2). We observed consistent effect size 
estimation for index variants in a comparison between meta-analysis 
with or without summary statistics of AFR ancestry (Supplementary 
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Fig. 1 | GWAS meta-analysis and PRS of AAA. a, Flowchart of GWAS meta-
analysis. The initial analysis generated 126 genome-wide significant loci but five 
were excluded based on sensitivity analysis and QC. b, MAF is plotted against 
effect estimates (39,221 AAA cases and 1,086,107 controls) for genome-wide 
significant index variants. The robust increase in sample size compared to 
previous studies allowed for the identification of new disease-associated variants 
with smaller effect estimates. Two dashed lines represent MAF = 0.01 and 0.05. c, 

Performance of PRS constructed based on the current meta-analysis (AAAgen) 
was compared with the one in ref. 13, the largest previously published GWAS 
of AAA. We observed improved prediction by AUC in all validation datasets. d, 
C-index of Cox models (10-year risk) with 95% CI in UKBB (838 incident AAA cases 
and 329,983 controls). The baseline model includes age, age2 and sex. The dashed 
line is at the C-index value from the baseline model. All subsequent models with 
clinical measurements and PRS incorporate the baseline variables.
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compared to previous reports13, we were able to identify variants with 
lower effect estimates (Fig. 1b) that could not be discovered with smaller 
sample sizes. Using approximate conditional analysis, we identified 20 
additional genome-wide significant variants (Supplementary Table 3)  
within the associated regions that were statistically independent of 
the 121 index variants. This resulted in 141 statistically independent 
associated variants.

PRS explain AAA beyond clinical risk factors
To evaluate the ability of our meta-analysis to explain observed dis-
ease, we generated weights for PRS using Polygenic prediction via 
Bayesian regression and continuous shrinkage priors (PRScs)14. For 
comparison, we also generated weights from ref. 13 (7,642 cases), the 
largest GWAS of AAA before this study. These two sets of weights were 
then used to calculate PRS in three external validation cohorts, two 
with control groups representative of the general population (UK 
Aneurysm Growth Study-UK Biobank (UKAGS-UKB) and Aneurysm 
Consortium-Wellcome Trust Case Control Consortium (AC-WTCCC)) 
and one representative of populations with cardiovascular disease 
(Second manifestations of ARTerial disease (SMART)). The AAAgen 
PRS (area under the curve (AUC); UKAGS-UKB: 0.69, AC-WTCCC: 0.66) 
significantly (P < 0.0001) outperformed that of Klarin et al.13 PRS (AUC; 
UKAGS-UKB: 0.60, AC-WTCCC: 0.58) in the population-based validation 

cohorts, explaining an additional 13–14% of disease-associated variance 
in these cohorts. AAAgen PRS performed less well in the SMART cohort, 
in which the controls also had prevalent (nonaneurysmal) cardiovascu-
lar disease, but still outperformed the PRS from Ref. 13 (AUC 0.64 versus 
0.59, P < 0.0001). This also indicates the utility of PRS in distinguishing 
aneurysmal risk from broad cardiovascular risks for clinical applica-
tions (Fig. 1c, Supplementary Fig. 8 and Supplementary Table 4a).

To further evaluate the predictive power of the current PRS on 
incident AAA, we conducted analyses in data from the UK Biobank 
(UKBB; Fig. 1d and Supplementary Table 4b). To avoid overfitting, 
we performed a meta-analysis without UKBB summary statistics and 
generated weights for PRS. The predictive power of the model with 
PRS (C-index = 0.882 (0.872; 0.892)) exceeded the baseline model 
(C-index = 0.850, 95% confidence interval (CI) (0.840; 0.860)), as well 
as models with most clinical risk factors, including smoking status 
(C-index = 0.872 (0.863; 0.882)), and similar to the model including 
all tested clinical factors together (C-index = 0.884 (0.875; 0.894)). 
Furthermore, adding both the PRS and all clinical factors into one 
model yielded a C-index of 0.904 (0.894; 0.913), which represents 
remarkably high concordance between predicted and observed cases in 
a population-based cohort with notable selection bias toward healthy 
individuals, and substantial improvement over baseline demograph-
ics only (Δ = 0.054). This model additionally showed superiority over 
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Fig. 2 | Enrichment analysis. a, Gene-set enrichment analysis by DEPICT.  
Nodes represent the representative gene sets from DEPICT (colored by  
P value). Thickness of the edges represents the overlap between gene sets. 
b, P values for enrichment of per-SNP heritability calculated by LDSC using 
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from broad categories. The dashed line represents the significance threshold 
after correcting for multiple testings. c, P values for estimation of the nonzero 
regression coefficient for each cell type calculated by RolyPoly using single-cell 
RNA of the aorta. The dashed line represents the significance threshold after 
correcting for multiple testing. NK, natural killer.
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the model with clinical factors only when comparing the model fit (P 
value from the likelihood ratio test for nested models = 1.06 × 10−101). 
We did not notice any notable optimism bias in the C-indexes when 
bootstrapping the statistics.

Biological functions, tissues and cell types
We performed a gene-set enrichment analysis using reconstituted gene 
sets in DEPICT15. Of 14,462 reconstituted gene sets, 114 were signifi-
cant at false discovery rate (FDR) < 0.01 and P < 10−5 (Supplementary 
Table 5). The representative gene sets indicated diverse biological 
functions such as blood vessel development, hemorrhage, abnormal 
liver morphology, decreased erythrocyte cell number and increased 
inflammatory response (Fig. 2a).

To understand the causal tissues where genes in the GWAS loci 
might be functional, we used a stratified linkage disequilibrium score 
regression (LDSC)16 analysis using histone marks from ENCODE 
and Roadmap Epigenomics. This analysis identified enrichment of 
per-single nucleotide polymorphism (SNP) heritability in H3K27ac 
(P = 1.8 × 10−5), H3K4me1 (P = 2.6 × 10−5) and H3K4me3 (P = 7.8 × 10−5) 
marks in aorta (Fig. 2b). This indicates significant involvement of aortic 
tissue biology downstream of the observed GWAS signals.

Variants identified by GWAS often affect genes that are only 
active in a subset of cell types in a tissue. To further investigate the 
involvement of particular aortic cell types, single-cell RNA (scRNA; 
Supplementary Fig. 9) from aorta17 was analyzed using RolyPoly18. 
This regression-based polygenic model uses GWAS summary statistics 
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and scRNA data to learn a regression coefficient that captures each 
cell type’s influence on the variance of GWAS effect estimates. Using 
regression coefficients, 4 of 8 cell types were found to be enriched 
(P < 0.05/8), with endothelial (P = 1.1 × 10−10) and smooth muscle 
(P = 1.4 × 10−9) cells being most strongly associated with AAA (Fig. 2c). 
The involvement of endothelial cells likely highlights the overlap with 
atherosclerosis, whereas the smooth muscle involvement is consistent 
with the medial degeneration typical of AAA pathogenesis.

Gene prioritization identifies putative causal genes
Using our two-stage ensemble approach (Fig. 3, Supplementary Note 
and Supplementary Tables 2, 6–14), we were able to prioritize a single 
putative causal gene at the 121 genome-wide significant loci. Most of 
the prioritized genes (80 of 84 genes prioritized by protein-altering 
variation or consensus, 28 of 37 genes prioritized by distance only) 
were expressed in the aorta, particularly in endothelial and smooth 
muscle cells, as observed in bulk and scRNA-seq of abdominal aorta 
(Supplementary Fig. 10 and Supplementary Note).

Next, these 121 prioritized genes, as well as an additional ten genes 
(Supplementary Table 3) that were the gene closest to secondary sig-
nals at GWAS loci, were used to identify enriched Gene Ontology (GO) 
terms (Supplementary Table 15) using Enrichr19. We performed a sensi-
tivity analysis using 84 genes that were prioritized by protein-altering 
variation or consensus (Supplementary Table 15). Based on GO molecu-
lar function annotations, we observed enrichment of genes related to 
lipid metabolism (APOE, LDLR, LPL, PCSK9, PLTP, SCARB1), transforming 
growth factor beta (TGF-β) signaling (TGFBR3, TGFB2, SMAD3, TGFB3, 
TGFBRAP1, LTBP4, GDF7), cytokine activity/receptor binding (IL6R, 
VEGFA, INHBA, IL1F10) and growth factor activity/receptor binding 
(JAG1, FGF9, BDNF, PDGFRA, FER). The most substantially enriched GO 
cellular component term was the collagen-containing extracellular 
matrix (Supplementary Note).

Transcriptome-wide association study (TWAS) indicates the 
direction of gene expression changes
GWAS often identify noncoding variants that are hypothesized to be 
associated with disease via alteration of gene-expression levels of causal 
genes. To further explore this possibility, we integrated results from 
TWAS (aortic tissue reference panel20) with transcriptomic analysis of 
aortic tissue from mouse models of AAA (Supplementary Table 11). Of 
121 prioritized genes, 22 had the support of both TWAS and the mouse 
model of AAA. Of 22 genes supported by both, ten genes were differ-
entially expressed in the same direction during mouse AAA develop-
ment and TWAS prediction. Additionally, four genes displayed mixed 
direction in the mouse model, that is, direction matched with TWAS 
for some experimental conditions. Of these 14 genes that displayed 
consistency in direction, 11 (Fig. 4a) were prioritized as likely causal 
genes at GWAS loci by our consensus approach without distance as a 
tie-breaker (Supplementary Note).

We further validated the 11 genes using qPCR21 in 97 individu-
als with AAA and 36 without AAA. Five of these 11 genes (Fig. 4b and 
Supplementary Table 16) were differentially expressed (P < 0.05/11). 
Whereas all five genes were upregulated in both the TWAS prediction 
and in the mouse data, four genes (LIPA, MRC2, PRKD2 and PLTP) were 
upregulated while 1 (MFAP2) was downregulated, when comparing 
expression in aneurysmal to nonaneurysmal abdominal aortic tissue. 
Two of these five genes (LIPA and PLTP) likely act through lipids and 
atherosclerosis. Of the remaining gene products, MRC2 functions 
via extracellular matrix remodeling in conjunction with urokinase 
plasminogen activator and its receptor22 (PLAU and PLAUR, both of 
which were also prioritized by the GWAS); a microfibrillar glycoprotein 
(MFAP2) known to bind to FBN1 and FBN2 (ref. 23) and a serine/threo-
nine protein kinase (PRKD2) involved in regulation of cell proliferation 
via inhibition of HDAC7 (ref. 24), encoded by a gene also prioritized 
by the GWAS.

Genetic overlap with thoracic aortic aneurysm (TAA)
Although there is human genetic evidence regarding the role of the 
TGF-β signaling pathway in TAA25, which is characterized by dilation 
of the aortic root or the ascending/descending aorta nearest the heart 
itself, this GWAS provides human genetic evidence of the involvement 
of this pathway in AAA as well and suggests shared biology between 
the two diseases. To further investigate the overlap between AAA and 
TAA genes, we queried the association of AAA index variants in a recent 
TAA GWAS (n = 1,351)26 and observed 24 AAA index variants associated 
with TAA at P < 0.05. These variants are generally associated with AAA 
with weaker effect estimates compared to TAA (Supplementary Fig. 11). 
This observation is consistent in two genome-wide significant common 
variant associations of TAA intronic to the FBN1 (coloc; PP4: 0.94) and 
TCF7L2 (coloc; PP4: 0.92; Supplementary Fig. 11) as well. Although 7 of 
24 abovementioned variants (at ECM1, DNM3, TCF7L2, CMIP, RAB34, 
GDF7 and VCAN) are also associated with lipid traits, the effect estimates 
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for lipid traits are relatively weaker than either type of aneurysm for 
these variants (Supplementary Table 17).

Unlike AAA, ~10–20% of TAA cases have a monogenic origin27. Sup-
ported by varying levels of evidence, the study in ref. 28 compiled a list 
of 53 genes that may cause monogenic TAA because of single patho-
genic variants. Many of these genes represent pathways (for example, 
TGF-β signaling) involved in vascular development and/or extracel-
lular matrix organization. Among Renard’s 53 genes, we observed 
a genome-wide significant variant for AAA within 1 Mb of 14 (FBN1, 
ACTA2, SMAD3, SMAD4, SLC2A10, PKD2, TGFB2, HCN4, JAG1, ADAMTS10, 
TGFB3, COL4A1, VCAN and SMAD6). Of note, 12 of the 14 genes were sup-
ported by at least three indicators in the gene prioritization step and 
nine (FBN1, SMAD3, SMAD4, TGFB2, JAG1, ADAMTS10, TGFB3, COL4A1 
and VCAN) were prioritized as the likely causal genes. Although the 
contribution of the abovementioned pathways is evident in both AAA 
and TAA, stronger effect estimates or monogenic mechanisms likely 
indicate a stronger contribution to TAA compared to AAA. In contrast, 
differences in overlap with lipid metabolism genes likely indicate larger 
involvement of lipid levels as a risk factor for AAA compared to TAA. 
Consistent with this, we observed a significant genetic correlation 
between lipids and AAA, but not TAA (Supplementary Fig. 12).

Pleiotropy indicates shared heritability to lipid biology
We observed a significant genetic correlation between AAA and common 
cardiometabolic risk factors (Supplementary Fig. 13) as well as other vas-
cular diseases, including coronary artery disease (Supplementary Fig. 14). 
To assess the pleiotropy associated with AAA risk variants and identify 
conditions with shared genetic risk, we performed a phenome-wide asso-
ciation study (PheWAS) of the 121 genome-wide significant index variants 
against the MRC-IEU open GWAS project29. Based on follow-up network 
analysis (Methods) using PheWAS summary statistics, we identified seven 
distinct modules of phenotype clusters (Fig. 5a and Supplementary 

Tables 18 and 19) representing low-density lipoprotein (LDL) cholesterol, 
apolipoprotein B, coronary heart disease, anthropometric traits, apolipo-
protein A/metabolic biomarkers, blood cell traits and total cholesterol/
cardiovascular disease medications. Next, we specifically tested the 
association of AAA index variants with established clinical risk factors 
for AAA13,30 using the largest available GWAS summary statistics of four 
lipids traits31, three blood pressure traits32 and two smoking traits33. We 
observed 52 variants (42 lipids, 11 blood pressure and 2 smoking) that 
were genome-wide significant (P < 5 × 10−8) in at least one of these traits 
(Fig. 5b and Supplementary Table 17). To elucidate if the same variants 
are associated with AAA and the risk factors, pairwise colocalization 
between AAA and each risk factor trait was performed. At a threshold of 
PP4 > 0.8, we observed colocalization of 26 AAA loci with lipids (including 
PCSK9, PP4 = 1 for both LDL and total cholesterol) and 9 loci with blood 
pressure (Supplementary Table 20). This set of analysis highlights that 
a substantial proportion of AAA loci likely function through modulating 
blood lipid levels, which in turn contribute to AAA development.

Mendelian randomization (MR) identifies opportunities for 
lipid-modulating therapies
Given the strong contribution of lipid biology to the pathogenesis of 
AAA identified in our gene prioritization and PheWAS analyses, we 
next sought to prioritize the role of circulating lipoproteins on AAA 
risk. We first performed conventional inverse-variance weighted MR, 
finding associations between each major lipoprotein-related trait 
(nonhigh-density lipoprotein cholesterol (non-HDL-C), LDL choles-
terol (LDL-C), HDL-C, triglycerides, ApoA1, and ApoB) and AAA (Sup-
plementary Fig. 15, Supplementary Tables 21 and 22 and Supplementary 
Note). Given the substantial overlap in risk variants associated with each 
lipoprotein trait, we next performed an MR-Bayesian model averaging 
(BMA) analysis34, an analytical tool that applies Bayesian principles to pri-
oritize causal risk factors among correlated exposures (Supplementary  
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Table 23). LDL-C and non-HDL-C emerged as the most highly prioritized 
causal lipoproteins for AAA risk (LDL-C marginal inclusion probabil-
ity = 0.97, P = 0.0004; non-HDL-C marginal inclusion probability = 0.99, 
P = 6 × 10−5; Fig. 6a and Supplementary Table 24a). When comparing 
models containing LDL-C versus non-HDL-C variants, r2 and Bayesian 
information criterion values demonstrate better model fit and vari-
ance explained for non-HDL-C. This finding suggests that the additional 
remnant cholesterol contained within the non-HDL-C subfraction is 
contributing to AAA risk beyond the LDL-C component (Supplementary 
Table 24b). This observation is consistent with prior evidence in athero-
sclerotic coronary artery disease35. There was reduced evidence that 
ApoA1-containing particles (ApoA1 or HDL-C) also potentially contrib-
uted to AAA (marginal inclusion probability = 0.66/0.85, P = 0.01/0.004).

We next sought to leverage our genetic data to screen for possible 
new therapeutic targets for AAA. Leveraging MR to test the association of 
genetically predicted circulating protein levels on genetic liability to AAA, 
we identified 23 putatively causal protein–AAA association (Fig. 6b,c 
and Supplementary Table 25). Notably, we observed that higher geneti-
cally predicted circulating PCSK9 and lipoprotein(a) were associated 
with increased AAA risk; this was supported by evidence of significant 
colocalization between PCSK9 protein quantitative trait loci (pQTL) and 
AAA GWAS at the PCSK9 locus (PP = 1). In addition, higher genetically 
predicted circulating apolipoprotein A5 (APOA5) was associated with 
decreased AAA risk. Hyperlipidemic mice overexpressing Apoa5 have 
been shown to have markedly decreased circulating remnant lipoprotein 
particles36,37, and individuals with rare protein-altering variants in APOA5 
were observed to have increased levels of remnant cholesterol38, provid-
ing further evidence of the effects of remnant cholesterol on AAA risk. 
These findings further support the role of lipid biology in AAA patho-
genesis and the concept of lipid manipulation to prevent and treat AAA.

PCSK9 inhibition and AAA risk in a mouse model
PCSK9 inhibition presents an attractive therapeutic for AAA given the 
potency of its LDL-C reduction and favorable side-effect profile39. Using 
a porcine pancreatic elastase (PPE) infusion model of AAA in C57BL/6J 

mice (Fig. 7), we investigated whether Pcsk9 null mice demonstrated 
attenuated aneurysm growth compared to their wild-type counter-
parts. Ten-week-old mice received aortic PPE infusion as previously 
described40. We observed a significant decrease in expansion of the 
abdominal aortic diameter (AAD) from day 10 until day 28 for Pcsk9 
null mice compared with wild-type mice with brightness modulation 
(B-mode) ultrasound imaging performed 7, 14, 21 and 28 d after PPE 
infusion (Fig. 7; Mann–Whitney test, P < 0.05 on day 7; P < 0.01 on day 
28 for Pcsk9−/− versus wild type). As with previous studies41–43, Pcsk9−/− 
mice had lower plasma cholesterol, LDL and HDL levels compared to 
wild-type C57BL/6J mice (Supplementary Table 26). These experiments 
in Pcsk9 null mice provide orthogonal support to our human genetics 
findings highlighting the role of PCSK9 in AAA development.
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Discussion
We leveraged clinical and genetic data from 14 cohorts to identify 
and investigate the genetic determinants of AAA in 39,221 individu-
als with AAA and 1,086,107 controls. We identified 141 independent 
AAA-associated variants in 121 loci. We confirmed 24 previously iden-
tified AAA genetic risk loci and uncovered 97 new loci. The increased 
power in the meta-analysis, compared to the previously published 
studies, was also evident in the improved performance of PRS derived 
from the new summary statistics. These data enabled us to prioritize 
putative causal genes and pathways for AAA through a combination of 
functional annotation and gene-expression analyses in patients with 
AAA and mouse AAA models. We examined the spectrum of phenotypic 
consequences for AAA risk variants, revealing possible mechanisms 
through which these variants may lead to disease. Finally, through 
a combination of colocalization experiments, as well as analysis in 
human plasma and Pcsk9−/− mouse AAA models, we prioritized possible 
therapeutic targets for the treatment and prevention of AAA.

These findings permit several conclusions. First, this research 
identifies important programs of the human AAA pathobiology. Our 
findings highlight not only lipid metabolism but also vascular develop-
ment and remodeling, extracellular matrix dysregulation and inflam-
mation as key mechanisms in the pathogenesis of AAA (Fig. 8). Although 
the dysregulation of these pathways in this disease has been amply 
demonstrated in published studies of mouse models and in diseased 
human tissues, their identification in the context of population-scale 
GWAS suggests a likely role in upstream causation. The putative causal 
genes identified in this research are in some cases unique to AAA, and 
in others, already known or suspected to have a role in other cardio-
vascular diseases. Drug development pipelines and clinical trials are 
long, expensive and complex, so new putative interventions need to 

be carefully chosen. Our findings suggest that treatments that are 
beneficial for traits that we have now proven to be related to AAA geneti-
cally (for example, atherosclerotic vascular disease and inflammatory 
conditions) should also be tested for their effect on AAA.

Second, the genetic results highlight the critical role of lipids 
and lipid metabolism in AAA pathogenesis. Previous work has dem-
onstrated the likely causal relationship between lipids and AAA30,44, 
and current therapeutic strategies largely focus on LDL-C lowering 
for broad atherosclerotic risk factor modification in patients with 
AAA rather than specifically for disease prevention or treatment45,46 in 
individuals or families at future risk of AAA. Here we expand upon these 
findings by observing that 42 of the 121 AAA risk loci are also associated 
with lipids, supporting the notion of AAA as an end-organ manifestation 
of atherosclerosis and that lipid-modulating therapies may have a role 
in the management of AAA. We additionally prioritize lipid subfrac-
tions beyond LDL-C, namely remnant cholesterol, as likely causally 
related to AAA. Molecules targeting the lipoprotein lipase pathway 
via APOC3 (ref. 47) are emerging therapies for cardiovascular disease 
but remain unstudied in patients with aneurysm. More broadly, our 
findings suggest that AAA shares important pathobiology with other 
forms of atherosclerotic vascular diseases and should be considered 
on this disease spectrum.

Finally, our results lend human genetic support to PCSK9 inhibi-
tion as a potential therapeutic strategy for AAA. Although current data 
on the effects of statins on aortic expansion are conflicted45,48,49, human 
genetic evidence has overwhelmingly suggested that LDL-C reduction 
is likely to reduce AAA risk. PCSK9 inhibitors have been shown to dra-
matically reduce LDL-C [39] to levels well below those seen with other 
lipid lowering therapies.39 In addition, our Pcsk9 null mouse model 
demonstrated reduced AAA growth following elastase infusion in the 
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absence of a hyperlipidemic background, although small statistical 
differences in lipid fractions were observed between mice strata. Taken 
together, these data suggest that the relationship between circulating 
PCSK9 protein and AAA warrants further investigation.

Our study should be interpreted within the context of its limi-
tations. While this stands as the largest genetic analysis to date for 
AAA, the demographics of the cases in our study were overwhelm-
ingly male and EUR ancestry, thus our ability to detect sex-specific 
or ancestry-specific genetic associations was limited. Second, our 
AAA phenotype for many of the cohorts is based on electronic health 
record data that may have resulted in some misclassification of case 
status. Such misclassification should, however, reduce statistical power 
for discovery and, on average, bias results toward the null. Third, for 
a small number of loci our strategy of gene prioritization identified 
genes that are not well supported by literature. For example, CELSR2 
or PLTP instead of SORT1 or MMP9, respectively. We acknowledge that 
our gene prioritization scheme is imperfect, as are all current methods 
for gene prioritization. Fourth, MR methods examining the effects of 
PCSK9 inhibition on AAA reflect lifelong exposures to reduced LDL-C 
levels and may not represent the more acute lipid changes associated 
with drug administration later in life. Finally, although our analysis sug-
gests that LDL-C reduction through PCSK9 inhibition is likely to reduce 
AAA risk, it is unclear whether this treatment is likely to mitigate the 
progression of the disease once diagnosed. Although the results from 
our mouse model suggest this to be the case, further investigation into 
the effects of PCSK9 inhibition on AAA growth and rupture is warranted.

In summary, we identified 141 independent variants associated 
with AAA risk, prioritized candidate functional genes at these loci that 
implicated biological pathways, developed an improved and effec-
tive PRS, explored the phenotypic consequences of AAA risk variants 
through PheWAS, identified candidate causal AAA genes and multiple 
lipid pathways and genes that may be targeted for AAA risk reduction, 
including PCSK9. These results are demonstrative of how large-scale 
analyses of human genetic variation coupled with clinical data can be 
leveraged and used for the treatment of understudied diseases.
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Methods
Discovery cohorts
We performed a meta-analysis of 17 individual GWAS from 14 discovery 
cohorts in the AAAgen Consortium (Supplementary Table 1). These 
14 discovery cohorts are as follows: (1) Atherosclerosis Risk in Com-
munities (ARIC); (2) Copenhagen Hospital Biobank—Cardiovascular 
Disease Cohort and Danish Blood Donor Study (CHB-CVDC+DBDS); 
(3) Cardiovascular Health Improvement Project and Michigan Genom-
ics Initiative (CHIP + MGI); (4) deCODE; (5) DiscovEHR; (6) Electronic 
Medical Records and Genomics (eMERGE); (7) Trøndelag Health study 
(HUNT), (8) Mayo Vascular Disease Biorepository (Mayo VDB); (9) 
MVP; (10) NZ AAA Genetics Study; (11) Penn Medicine biobank (PMBB); 
(12) Triple A Barcelona Study (TABS); (13) UKAGS and Viborg Vascu-
lar (UKAGS+VIVA); (14) UKBB (Supplementary Fig. 16). All research 
participants provided informed consent and local IRB approval was 
obtained. See Supplementary Note for a description of discovery 
cohorts, recruitment, case–control selection, genotyping, imputation 
and GWAS methods. A central level quality control (QC) was performed 
on summary statistics from discovery cohorts. QQ plots (Supplemen-
tary Fig. 1) and genomic control (GC) lambda were calculated for each 
cohort (Supplementary Table 1). Cohorts that reported variants in hg38 
version were liftover to hg19 version. Cohorts that reported odds ratios 
(ORs) were converted to β/effect estimates using log(OR). We checked 
the consistency of effect estimates in nine index variants that were 
reported in a study discussed in ref. 12. Although we observed some 
heterogeneity, the effect estimates were generally consistent among 
well-powered studies (Supplementary Fig. 2). Variants with minor 
allele count of 3 and imputation r2 < 0.3 were excluded from individual 
summary statistics.

Meta-analysis and sensitivity analyses
Meta-analysis of 17 discovery cohort summary statistics was performed 
by METAL50 in s.e. mode with GC correction. After meta-analysis, vari-
ants that were present in only one cohort were excluded from down-
stream analysis. For sensitivity analyses, meta-analysis summary 
statistics were generated in the same approach, leaving one cohort out.

Definition of loci
Independent loci were defined as variants >1 Mb and >0.25 cM apart 
with at least one genetic variant associated with AAA at a genome-wide 
significance threshold of P < 5 × 10−8. Index variants are the variants with 
the lowest association P value in every locus. Index variants were tested 
for independence using GCTA COJO51 (cojo-joint) as described below.

External replication cohorts
We used three external cohorts for the replication of 121 loci identified 
in the meta-analysis. We obtained publicly available AAA summary 
statistics (2,434 cases and 288,638 controls) from Finngen (https://
r7.finngen.fi/pheno/I9_ABAORTANEUR). Additionally, we used two PRS 
validation sets (Supplementary Note) for this purpose. In loci where 
index variants were not present in external cohorts, we used variants 
that are in linkage disequilibrium (LD; >0.8) with index variants. For 
103 loci, we could find index/LD variant in >1 cohort. We performed a 
meta-analysis for these variants using METAL50 in s.e. mode. For 18 loci, 
we reported association statistics from Finngen only.

Conditional analysis
To perform conditional analysis, we first defined the loci as ±1 Mb from 
each of the 121 index SNPs. GCTA COJO51 and specifically the cojo-cond 
function was performed iteratively using a reference panel created 
from individuals in PMBB that represented the demographics of AAA-
gen (17:1 EUR to AFR ancestry). Iterations were performed at each locus 
until a minimum number of independently, genome-wide significant 
SNPs were identified. The maximum number of iterations performed 
was 4 at the rs10455872 locus. Next, we performed a joint analysis of 

variants using cojo-joint with the same reference panel and excluded 
variants that were not genome-wide significant in the joint analysis.

Effect estimates for PRS
A PRS represents an individual’s risk of a given disease conferred by the 
sum of the effects of many common DNA sequence variants. A weight 
is assigned to each genetic variant based on its strength of association 
with disease risk. Individuals are then additively scored in a weighted 
fashion based on the number of risk alleles they carry for each variant in 
the PRS. To calculate PRS, we used PRScs14 that calculates posterior SNP 
effect estimates or weights from original GWAS effect estimates using a 
Bayesian approach. We used default parameters of PRScs, allowing the 
method to generate the global shrinkage parameter phi through a Bayes-
ian approach. PRScs use information from an external LD reference 
panel for this calculation. PRScs calculated posterior SNP effect sizes 
using a precomputed LD reference panel from EUR ancestry (ldblk_1kg_
eur.tar.gz). These effect estimates were used to calculate AAA PRS of 
individuals in validation cohorts using PLINK2 --score command52. 
Validation cohorts for PRS are described in the Supplementary Note.

Cox proportional hazards model
We performed another meta-analysis without UKBB by METAL50, fol-
lowed by the calculation of PRS weights by PRScs14, as described above. 
The UKBB hospital registry data and cause of death data up to March 
2020 were used to test the predictive performance of the AAAgen PRS 
using Cox proportional hazards models. The PRS was adjusted with 
four first PCs and inverse normalized for the analysis. The analysis only 
included the white British subset due to the low number of AAA cases 
in the other ancestries. All variables used in the different models are 
listed in the Supplementary Table 4b. The baseline of the model was 
set to the individuals’ clinical assessment date. The first occurrence of 
International Classification of Diseases (ICD)9 codes 441.3 and 441.4 
or ICD10 codes I71.3 and I71.4 were recorded together with the date 
of diagnosis for all AAA cases. Ten-year survival was modeled with 
follow-up time as the time scale. Prevalent cases (n = 213) were excluded 
from the analyses and individuals who deceased during the follow-up 
for other causes than AAA were censored. The final analysis included 
838 incident AAA cases and 329,983 noncases with median follow-up 
time of 5.04 and 10.0, respectively. All Cox models were fitted using 
the R function coxph(). We further tested the models for optimism, 
and optimism-corrected C-indexes were calculated using R package 
rms function validate() with method=‘boot’ and 100 repetitions. The 
model fit of the nested Cox models was compared using likelihood 
ratio test implemented in R with function anova().

Gene-set enrichment
We performed gene-set enrichment analysis using DEPICT15. DEPICT 
uses reconstituted gene sets, consisting of 14,462 gene sets obtained 
from multiple sources and reconstituted using 77,840 publicly available 
microarray expression datasets. In the reconstituted gene sets, every 
gene in the human genome is assigned a z score for membership in the 
set. Using genes from GWAS loci, DEPICT calculates an enrichment P 
value for reconstituted gene sets. We used AAA summary statistics 
and clumping with a threshold of 5 × 10−8 as input to DEPICT. From the 
output, gene sets with FDR < 0.01 and P value < 10−5 are listed in Sup-
plementary Table 5. We identified 17 representative gene sets from 
this list. Similarity among gene sets (100 genes per gene set) was cal-
culated using the Jaccard index. The similarity matrix was then used 
to identify the ‘exemplar’ gene sets by affinity propagation algorithm, 
implemented in R53. These ‘exemplar’ gene sets are highlighted in  
Fig. 2a as the representative gene sets.

Tissue enrichment
Calculation of enrichment in specific tissue types was done by stratified 
LDSC16, a method for partitioning heritability. Using GWAS summary 
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statistics and tissue-specific chromatin marks, this method calcu-
lates the enrichment of per-SNP heritability. First, hapmap3 variants 
with MAF ≥ 0.01 were obtained from the AAA summary statistics 
using munge_sumstats.py. Then, the analysis was performed using 
the–-h2-cts option in LDSC. We reported P values of enrichment of 
per-SNP heritability in various chromatin marks from ENCODE and 
Roadmap Epigenome.

Cell type enrichment
Processing of scRNA sequencing data from the aorta is described in ref. 
17. Calculation of enrichment in specific cell types using scRNA-seq data 
was performed using RolyPoly18. RolyPoly uses a regression-based poly-
genic model to prioritize relevant cell types from GWAS summary statis-
tics and scRNA-seq data. Average expression per cell type was obtained 
by using Seurat54 AverageExpression() function. This generates a matrix 
with genes as rows and cell types as columns. Columns were normal-
ized using normalize.quantiles(), and rows were normalized using 
scale() function in R. Because RolyPoly does not work with negative 
values, we used the absolute values for each entry. To link gene expres-
sion with GWAS variants, we used block annotation of 25 kb around 
the gene’s start. For LD statistics, we used 1000 Genomes Phase 3  
data precomputed by RolyPoly. We ran the function rolypoly_roll() 
with 200 bootstrap iterations. P values from the bootstrap analyses 
were reported.

Identification of protein-altering variants
First, we identified variants that are in LD (>0.8) with index variants 
using 42,119 unrelated EUR individuals from CHIP + MGI. Variant effect 
predictor (VEP)55 was used to predict the molecular consequences of 
these variants. Genes with at least one variant (index or in LD > 0.8) 
altering amino acid (missense variant) from VEP output were reported. 
We observed 21 loci with such genes (Supplementary Table 2). We did 
not observe any gene with stop-gained or frameshift variants.

Genes causing related monogenic phenotypes
A list of 53 genes curated in ref. 28 that potentially causes monogenic 
form of heritable TAA and dissection was incorporated. For a range of 
related/risk factor phenotypes and disorders (Supplementary Tables 
9 and 10), we obtained ClinVar database56 entries with pathogenic or 
likely pathogenic variants on 23 June 2021. From these entries, genes 
(either start or end) that are within 1 Mb of index variant were incorpo-
rated. We found 48 loci with at least one gene from these two datasets.

Polygenic priority score (PoPS) for gene prioritization
We used PoPS57, a similarity-based gene prioritization method that 
uses a large set of publicly available RNA sequencing, curated pathway 
annotation and predicted protein–protein interaction datasets. PoPS 
was developed with the assumption that causal genes share similar 
functional characteristics. First, PoPS calculates gene level association 
statistics from GWAS variant level association statistics and MAGMA 
gene annotations. Second, features are selected based on precomputed 
statistics from public resources. Finally, PoPS computes a score for each 
gene. Based on these scores, for each genome-wide significant locus, 
we ranked the genes within 1 Mb (either direction) of the index variant 
and reported the gene with the highest score as the gene prioritized 
by PoPS. Of 121 loci, 111 loci had at least one gene with a score in the top 
10% of PoPS (Supplementary Table 8).

Expression quantitative trait loci (eQTL) colocalization
We performed colocalization analyses using the R package coloc58. 
Coloc performs an approximate Bayes factor analysis with association 
statistics. The function coloc.abf() was used to calculate the posterior 
probabilities for the following: (H0) no association with either trait; 
(H1/H2) association with one of the two tested traits; (H3) association 
for both traits but different causal variants and (H4) association for 

both traits with the same causal variant. A high posterior probability 
for H4 (PP4) indicates colocalization of the two trait associations. Colo-
calization was performed with eQTLs in aorta, liver, whole blood, adi-
pose subcutaneous and visceral omentum from The Genotype-Tissue 
Expression (GTEx) project v8 (ref. 20). Variants within 500 kb in either 
direction of GWAS index variants were extracted for the analyses. A 
threshold of PP4 > 0.5 was used as evidence of colocalization for iden-
tifying candidate genes at stage 1 of gene prioritization. This analysis 
identified 82 loci with at least one gene (Supplementary Table 7). In 
Supplementary Table 7, we also listed genes with stronger colocaliza-
tion evidence (PP4 > 0.8).

TWAS
We used the paradigm of TWAS which performs gene-based association 
tests. These methods are used to test the association between gene 
expression predicted by cis-eQTLs and phenotype. The MetaXcan 
package59 was used to run TWAS with AAA summary statistics. Briefly, 
we used GWAS tools from the MetaXcan package for summary statistics 
harmonization and imputation. The imputation step imputes missing 
GWAS variants using present GWAS variants and the GTEx genotypes. 
Next, we ran SPrediXcan with the imputed variants and the MASHR 
expression model (eQTL) of the aorta, liver, whole blood, adipose 
subcutaneous and visceral omentum from GTEx v8 (ref. 20). For each 
tissue, significance threshold was decided with correction for multiple 
testing (0.05/number of genes). This analysis identified 75 loci with at 
least one gene by TWAS (Supplementary Tables 6 and 7).

Details of gene prioritization indicators at stage 2
In total, we obtained 523 candidate genes from 121 loci using five indica-
tors at stage 1. At stage 2, these 523 genes were queried in three other 
datasets to obtain evidence of additional indicators. (1) We used a 
trio of datasets60,61 (unpublished data: GSE197748) examining gene 
transcriptional profiling in two mouse models of AAA (AngII infusion 
in ApoE−/− mice and aortic PPE infusion in C57BL/6J mice), specifically  
those comparing sham/control aortic gene expression versus expres-
sion in AAA aortic tissue in experiments featuring 10-week-old male and 
female mice. Of the 523 candidate genes, 214 demonstrated differential 
expression in the mouse AAA gene set (Supplementary Table 11). (2) 
Expression in human abdominal aortic tissue (AAA versus control) 
from ref. 62 where 79 genes with q < 0.05 were included as supported 
by this indicator (Supplementary Table 12). (3) Related phenotypes 
observed in mouse knock-outs for candidate genes. We queried data 
from the Mouse Genome Informatics database and International Mouse 
Phenotyping Consortium to identify genes for which knockout mice 
had been reported to have aortic phenotypes consistent with AAA. 
This generated additional support for five genes in this approach 
(Supplementary Table 13).

Gene expression by qPCR
The study was approved by the Ethical Committee of Investigación 
Clínica del Hospital Santa Creu i Sant Pau. Written informed consent 
was obtained from all patients. The study conformed to the principles 
outlined in the Declaration of Helsinki. All patients underwent surgery 
at Hospital de la Santa Creu i Sant Pau. Samples were obtained from the 
remaining mid-infrarenal aortic wall after exclusion and prosthetic 
replacement of AAA. Normal aortas were obtained from healthy aorta 
from multiorgan donors, and samples were also taken from the midpor-
tion of the infrarenal abdominal aorta during organ collection. When a 
luminal thrombus was present, it was separated before the aorta biopsy 
was taken and aortic tissue was washed twice with cold PBS. A portion 
of each sample was placed in an RNAlater solution (Qiagen GmbH) and 
stored at 4 °C for 24 h before long-term storage at −80 °C until further 
processing for RNA isolation. Further information can be found in ref. 21.  
Tissues were homogenized in the FastPrep-24 homogenizer and Lys-
ing Matrix D tubes (MP Biomedicals). RNA was extracted using Trizol 
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(Invitrogen) following the manufacturer’s instructions. cDNA was 
prepared by reverse transcribing 1 µg RNA with a High-Capacity cDNA 
Archive Kit with random hexamers (Applied Biosystems). mRNA expres-
sion of the selected genes was studied by real-time PCR in an ABI Prism 
7900HT using predesigned validated assays (TaqMan Gene Expression 
Assays; Applied Biosystems) and universal thermal cycling parameters. 
Relative expression was expressed as transcript/β-actin ratios.

Genetic correlation
Genetic correlations between AAA and other traits were calculated 
using cross-trait LDSC63. This method relies on GWAS summary sta-
tistics to estimate the genetic correlation between pairs of traits. The 
GWAS summary statistics were filtered to identify genetic variants 
included in the HapMap3 reference panel. Cross-trait LDSC was then 
performed using ldsc v.1.0.1 using the default EUR ancestry LD panel.

PheWAS analysis
We performed a logistic-regression-based PheWAS of 121 independ-
ent variants against the entirety of the MRC-IEU open GWAS project29. 
The full summary statistics were then filtered to exclude the following 
phenotypes: methylation quantitative trait locus (mQTLs), pQTLs, 
eQTLs, sex-specific GWAS and non-EUR and nonmixed ancestry GWAS. 
Furthermore, the full summary statistics were filtered to GWAS stud-
ies that contained 50 or more cases. When the trait was measured at 
multiple locations (that is, right and left arm), only results from one 
side were queried. For replicate phenotypes, the largest study of that 
phenotype was chosen. PheWAS results for each independent variant 
were considered significant if they passed a Bonferroni-corrected 
threshold for 161,535 (121 variants and 1,335 phenotypes) tests con-
ducted. After calculating the node and edge maps using NETMAGE64, 
only connections that represent a weight of >3 SNPs were used to make 
the graph more interpretable. Raw network statistics were calculated in 
Gephi65 including modularity or cluster ID using details in ref. 66. This 
method works to create modules that minimize the number of edges 
that enter and leave the module. The granularity of the definition of the 
modules or resolution can be adjusted, with lower resolution generat-
ing a higher number of modules. Our optimization efforts led us to set 
the resolution parameter as 0.561 generating seven distinct modules. 
Colocalization analysis with the largest available GWAS of lipid31, blood 
pressure32 and smoking33 traits was performed by coloc58, as described 
in the eQTL colocalization section.

Mendelian Randomization (MR)
Genetic associations between lipoprotein fractions (exposure) and 
AAA outcome were tested initially using inverse-variance weighted 
MR for a single lipid exposure and then using the MR-BMA method-
ology for multivariable models34. MR-BMA is an extension of multi-
variable MR using a Bayesian variable selection method in an effort to 
identify likely causal risk factors among correlated exposures. In the 
primary analysis, the instrumental variables consisted of independent 
genetic variants (r2 < 0.001 based on 1000 Genomes67 EUR ancestry 
Reference Panel) associated with any major lipoprotein-related traits 
(ApoB, LDL-C, HDL-C, TG, ApoA1 and non-HDL-C) at genome-wide 
significance in the UKBB based on 361,194 EUR-ancestry participants 
as previously described68 (Supplementary Table 23). Given the sub-
stantial correlation between the non-HDL-C and LDL-C lipid fractions 
(r2 > 0.9), the following two separate models were used for analysis: 
one containing LDL-C, HDL-C, ApoA1, ApoB and triglycerides (n = 519 
independent genetic variants), and another substituting non-HDL-C for 
LDL-C (n = 450 independent genetic variants; Fig. 6a). The subsequent 
MR-BMA analysis was completed using AAA GWAS summary statistics 
from the current study. Variable selection was based on marginal inclu-
sion probabilities for which an empirical permutation procedure was 
used to derive P values. The Nyholt procedure of effective tests was 
used to account for the strong correlation among the lipoproteins, with 

a multiple testing—adjusted P value of P = 0.05 set as the significance 
threshold69. Further details of statistical analysis are described in the 
Supplementary Note.

Proteome-wide MR
To identify possible therapeutic targets for AAA, we performed a 
proteome-wide MR analysis using high-confidence cis-acting genomic 
instruments for circulating plasma proteins passing pleiotropy and 
consistency filters as previously described70. In brief, variants were 
selected that were associated with any protein at genome-wide sig-
nificance (P < 5 × 10−8). For this analysis, we focused only on cis-pQTLs 
previously classified as having the highest relative level of reliability 
(‘Tier 1’ as defined in ref. 70). After excluding the major histocompatibil-
ity complex region, LD clumping to identify instruments composed of 
independent pQTLs was performed using the TwoSampleMR package71 
with an r2 threshold of <0.001. After restricting to 717 circulating pro-
teins with overlapping proteomic and genomic data (Supplementary  
Table 27), we performed a pQTL screen as follows: (1) for exposure–
outcome pairs with two or more available genetic instruments as 
proxies for the exposure, inverse-variance weighted MR was per-
formed; (2) when only a single genetic proxy for the exposure was 
present, Wald-ratio MR was performed. We set a Benjamini–Hochberg 
FDR < 0.05 for statistical significance. For each protein–AAA associa-
tion in cis-pQTL-MR above, we performed colocalization to provide 
supporting evidence for causal associations among traits. Colocaliza-
tion was performed using HyPrColoc72.

Pcsk9 −/− mice and AAA progression
All animal protocols were approved by the Administrative Panel on 
Laboratory Animal Care at Stanford University (http://labanimals.
stanford.edu/) and the VA Palo Alto Health Care System Institutional 
Animal Care and Use Committee and followed the National Institutes 
of Health and US Department of Agriculture Guidelines for Care and 
Use of Animals in Research. Male mice (wild-type and Pcsk9−/− mice on 
a C57BL/6J background) were purchased from the Jackson Laboratory.

PPE infusion model
The PPE infusion model to induce mouse AAA was performed as previ-
ously described at 10 weeks of age39. The proximal and distal aorta were 
temporarily ligated or clamped, followed by an aortotomy above the 
iliac bifurcation. A catheter was used to infuse the aorta for 5 min at 
120 mmHg with saline containing type I PPE (2.5 U ml−1; Sigma-Aldrich), 
and the aortotomy was then repaired. The induced AAA aortic segment 
(between the left renal artery and the bifurcation) was collected at 
28-d postsurgery.

Lipid measurements
Plasma cholesterol, LDL and HDL levels were measured at Stanford 
Animal Diagnostics Laboratory on the Siemens Dimension EXL200/
LOCI analyzer.

Aortic diameter measurements by ultrasound imaging
At baseline and 3, 7, 14, 21 and 28 d after aneurysm induction, B-mode 
ultrasound imaging was performed on the operated mice to assess the 
AAD as previously described39.

Mouse AAA model statistical analysis
Data are presented as means ± s.e.m. Level of significance was deter-
mined using the Mann–Whitney test. Shapiro–Wilk test was per-
formed to test normality. A P value < 0.05 was considered statistically 
significant.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
Meta-analysis summary statistics and PRS weights are available at 
https://csg.sph.umich.edu/willer/public/AAAgen2023/. Unpublished 
mouse transcriptome data are available at Gene Expression Omnibus 
(GSE197748). Due to stipulations of the IRB, AAA bulk RNA-seq data 
are only available directly from the authors (isurakka@med.umich.
edu) and will be provided to qualified investigators with appropriate 
IRB approval and materials transfer agreement.

Code availability
Software tools used for discovery cohort GWAS are outlined in the 
Supplementary Note. Publicly available software tools were used to 
perform meta-analysis and downstream analysis. These tools include 
METAL 2011-03-25 (http://csg.sph.umich.edu/abecasis/Metal/), PRScs 
v1.0.0—April 11, 2020 (https://github.com/getian107/PRScs), GCTA 1.92.1 
(https://yanglab.westlake.edu.cn/software/gcta/), DEPICT version 1 
rel194 (https://github.com/perslab/depict), LDSC v1.0.0 (https://github.
com/bulik/ldsc), RolyPoly (https://github.com/dcalderon/rolypoly), VEP 
(https://useast.ensembl.org/info/docs/tools/vep/), PoPS v0.2 (https://
github.com/FinucaneLab/pops), Coloc v3.2.1 (https://cran.r-project.
org/web/packages/coloc/), MetaXcan v0.7.5 (https://github.com/haky-
imlab/MetaXcan), Gephi (https://github.com/gephi/gephi), MR-BMA 
v2021-10-05 (https://github.com/verena-zuber/demo_AMD), TwoSam-
pleMR v0.5.6 (https://mrcieu.github.io/TwoSampleMR/) and HyPrColoc 
v2021-07-23 (https://github.com/jrs95/hyprcoloc).
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