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Multiparameter prediction of myeloid 
neoplasia risk

Muxin Gu1,2, Sruthi Cheloor Kovilakam1,2, William G. Dunn1,2, 
Ludovica Marando1,2, Clea Barcena    1,2,3, Irina Mohorianu1, Alexandra Smith4, 
Siddhartha P. Kar    5,6,7, Margarete A. Fabre1,2,8, Moritz Gerstung9, 
Catherine A. Cargo10,11, Luca Malcovati    12,13, Pedro M. Quiros    1,2,14   
& George S. Vassiliou    1,2,15 

The myeloid neoplasms encompass acute myeloid leukemia, 
myelodysplastic syndromes and myeloproliferative neoplasms. Most 
cases arise from the shared ancestor of clonal hematopoiesis (CH). 
Here we analyze data from 454,340 UK Biobank participants, of whom 
1,808 developed a myeloid neoplasm 0–15 years after recruitment. We 
describe the differences in CH mutational landscapes and hematology/
biochemistry test parameters among individuals that later develop myeloid 
neoplasms (pre-MN) versus controls, finding that disease-specific changes 
are detectable years before diagnosis. By analyzing differences between 
‘pre-MN’ and controls, we develop and validate Cox regression models 
quantifying the risk of progression to each myeloid neoplasm subtype. We 
construct ‘MN-predict’, a web application that generates time-dependent 
predictions with the input of basic blood tests and genetic data. Our study 
demonstrates that many individuals that develop myeloid neoplasms can 
be identified years in advance and provides a framework for disease-specific 
prognostication that will be of substantial use to researchers and physicians.

The myeloid neoplasms encompass the myeloproliferative neoplasms 
(MPN), myelodysplastic syndromes (MDS), chronic myelomonocytic 
leukemia (CMML) and acute myeloid leukemia (AML), and collectively 
affect approximately 10 per 100,000 individuals per year. Advances in 
understanding their molecular pathogeneses have led to the development 
of some new therapies; however, the majority of patients with myeloid 
neoplasms still succumb to their disease1,2. Recently, it became clear 
that in the majority of cases, myeloid neoplasms develop from clonal 

hematopoiesis (CH), their shared preclinical ancestor3–6. We and others 
have shown that individuals en route to developing AML can be identified 
years in advance by the genetic characteristics of their CH7,8, propos-
ing that AML prevention may be a viable alternative to the treatment of 
established disease9. However, our ability to identify those at risk remains 
limited and is largely derived from targeted case-control studies7,8.

The study of large cohorts of volunteers has been instrumental in 
understanding genetic determinants of common and rare diseases10 
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to complement the mutation calls (Methods and Supplementary  
Tables 2 and 3). Using these criteria, we identified 23,951 CH driver 
mutations among 22,735 individuals with driver gene prevalence, clonal 
sizes, number of variants per sample and age distribution in line with 
previous reports (Fig. 1a–e)13.

To investigate the relationship between myeloid neoplasm risk 
and genetic or nongenetic variables, we analyzed data from all 454,340 
UKB participants, including age (56.5 ± 8.1 years, mean ± s.d.), sex 
(female:male (F:M) = 1.18), CH driver mutations, blood test results at 
recruitment and electronic health records obtained throughout the 
study (follow-up: 7.4–15.5 years, median 12.6 years). At the time of 
recruitment, 648 individuals (of whom 233 had CH driver mutations) 
had been previously diagnosed with a myeloid neoplasm and an addi-
tional 108 had, according to the latest diagnostic criteria17, blood count 
results that were consistent with a probable diagnosis of polycythemia 
vera (n = 26; hemoglobin concentration (HGB) = 17.9 ± 1.43 g dl−1 and 
JAK2-V617F variant allele fraction (VAF) = 0.38 ± 0.2, mean ± s.d.)  
or essential thrombocythemia (n = 82; platelet count (PLT) = 675 ±  
225 × 109 l−1 mean ± s.d., 51 with JAK2-V617F, 25 with CALR and 6 with 
MPL mutations). These individuals were excluded from subsequent 
analyses. During follow-up, 1,937 of the remaining 453,584 individu-
als developed a myeloid neoplasm at a median of 7.9 years from 
recruitment, including 372 diagnosed with de novo AML, 517 with 
MDS, 892 with MPN and 27 with CMML (Fig. 1f). CMML cases shared 
similar mutation patterns to MDS (Supplementary Fig. 1) and were 
incorporated into the MDS category for subsequent analyses. Those 
who developed a chronic myeloid neoplasm (that is, MDS, MPN or 
CMML) and then progressed to AML were considered under their 
first myeloid neoplasm diagnosis. The remaining 129 individuals were 
diagnosed with multiple myeloid neoplasms contemporaneously or 
with AML followed by another myeloid neoplasm. To avoid misclassi-
fication, these were classed as ‘MN-indeterminate’ and excluded from  
analyses (Methods).

and many investigators have pursued this approach to study the causes 
and consequences of CH11,12. We recently analyzed data from 200,453 
UK Biobank (UKB) participants and found that certain drivers of CH 
are associated with a greater risk of progression to myeloid neoplasms 
than others and that some of these higher-risk mutations were associ-
ated with more significant changes in blood cell parameters13. In light 
of these findings, the recent release of data from almost their entire 
cohort offers an opportunity to use the linked genetic and phenotypic 
data in the UKB to develop an improved approach for predicting the 
risk of development of myeloid neoplasms in the general population. 
To this end, here we study data from 454,340 UKB participants and 
reveal the genomic landscape of individuals that went on to develop 
myeloid neoplasms, capture the significance of blood cell and bio-
chemical parameters for myeloid neoplasm risk and construct a new 
regression model that enables prognostication of the risk of progres-
sion to different types of myeloid neoplasms. We go on to validate our 
model in two independent cohorts of patients with clonal cytopenia 
of undetermined significance (CCUS), the evolutionary stage between 
CH and myeloid neoplasm, thus confirming the robustness and clini-
cal utility of our approach. Finally, to help clinicians and researchers 
dealing with patients with CH or clonal cytopenias, we developed 
‘MN-Predict’ a user-friendly web application to generate individual-
ized risk predictions.

Results
To identify carriers of CH in the UKB, we analyzed whole-exome 
sequencing (WES) data from all 454,340 participants using Mutect2 
(ref. 14) focusing on 38 genes known to be recurrently mutated in CH 
and myeloid neoplasm and applied filters adapted from a recent study 
aimed at harmonizing the identification of CH mutations by removing 
sequencing artifacts and germline variants15 (Methods and Supplemen-
tary Table 1). To overcome low coverage or mapping problems (U2AF1)16, 
we carried out a targeted analysis of 22 recurrent mutation hotspots 
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Fig. 1 | Summary of driver mutations in the 11 most commonly mutated genes 
in CH. a, Percentages of cases per driver gene among the 22,735 UKB participants 
with CH. b, Distribution of clone sizes (VAF) by driver mutation. Medians are 
depicted by black dots and upper/lower quartiles by vertical lines. c, Rising 
prevalence of CH mutations with advancing age. d, Increase in size (VAF) of CH 

clones with advancing age. The line follows the mean of VAFs in each integral age 
group and the gray area indicates the 5–95% confidence interval estimated by 
Student’s t-distribution. LASSO regression was used to smoothen the curves  
in c and d. e, Number of individuals with 1, 2, 3, 4 and ≥5 driver mutations.  
f, Cumulative incidence of different types of myeloid neoplasms in the UKB.
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Among the 1,808 included participants who went on to develop 
myeloid neoplasm (‘pre-MN’), we identified CH mutations in WES 
from 515 (28.5%), a lower proportion than reported with deep targeted 
sequencing8. By contrast, we identified CH mutations in only 4.8% 
(21,814 of 451,647) of those who did not develop myeloid neoplasms 
(controls). In line with previous studies, pre-MN cases commonly had 
mutations in ‘high-risk’ genes such as JAK2, SRSF2, SF3B1 and IDH2, 
while mutations in controls mainly affected DNMT3A, TET2 and ASXL1 
(Fig. 2a). The proportion of pre-MN participants harboring CH driver 
mutations was similar among pre-AML (126/372 = 33.9%), pre-MDS 
(179/544 = 32.9%) and pre-MPN (210/892 = 23.5%) cases. However, 
there were marked differences in the relative prevalence of different 
CH driver genes among different types of myeloid neoplasms that 
reflected their known driver landscapes (Fig. 2b). For example, DNMT3A 
R882 mutations were more common in AML; TET2, SRSF2 and SF3B1 
mutations in MDS and JAK2; and CALR and MPL in MPN (Fig. 2c and 
Supplementary Fig. 2). Clonal sizes increased with advancing age in 
all pre-MN subtypes (Fig. 2d).

We previously showed that target gene identity and VAF of driver 
mutations can be used to predict the risk of developing AML8. In addi-
tion, we and others found that changes in blood cell counts were also 
associated with AML risk4,8, but we were unable to investigate whether 
combining gene mutations and blood counts can improve prognostica-
tion due to limited data availability. Also, the ability to predict the risk 
of progression to MDS or MPN has not previously been investigated 

in this manner. As the UKB captures both gene mutations (genotype) 
and blood test results (phenotype) from the same individual, we next 
investigated whether the integration of both data types can improve 
predictive models of myeloid neoplasm risk. Abbreviations of the 
parameters are listed in Supplementary Table 5.

Before building myeloid neoplasm risk models, we considered 
that pre-MDS, pre-AML and pre-MPN cases showed varying or even 
inverse associations with certain blood count parameters (Supple-
mentary Fig. 3). To account for these divergent associations, we chose 
to analyze each type of myeloid neoplasm separately. In addition, to 
streamline onward analyses, we removed highly correlated blood 
count parameters (Spearman correlation > 0.9), retaining only the 
parameter most commonly used in clinical reporting (Methods and 
Supplementary Fig. 4).

We proceeded to quasi-randomly partition the UKB cohort into 
a training set with 207,035 samples and a validation set with 207,039 
samples and then trained time-dependent Cox proportional hazards 
models on the training set, including death by other causes as a com-
peting risk (Methods). Starting with a core model based solely on age, 
sex, VAF and mutations in genes previously found to be predictive 
of progression to myeloid neoplasms7,8,18, we used forward stepwise 
regression to iteratively add additional parameters to each of three 
distinct models for AML, MDS and MPN prediction. Parameters were 
added to individual models one at a time such that the developing 
model displayed the highest concordance until the improvement in 
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concordance was less than 0.1% of the total (Methods; Extended Data 
Fig. 1 and Supplementary Tables 5 and 6).

Using the three final models, we quantified the hazard ratios (HRs) 
associated with each predictive variable for AML, MDS and MPN. This 
revealed that HRs associated with individual parameters varied sub-
stantially for different myeloid neoplasms (Fig. 3a), something that is 
also evident when applying univariate analyses (Supplementary Fig. 5).  
For example, DNMT3A R882 mutations were specifically associated 
with AML, SF3B1 mutations with MDS and JAK2/CALR mutations with 
MPN (Fig. 3a). By contrast, mutations in genes such as SRSF2 and IDH2 
afforded similar HRs for different types of myeloid neoplasms. Also, 
multiple phenotypic features, including increasing age, predicted an 
increased risk of all myeloid neoplasms. With other parameters such as 
HGB, higher values predicted an increased MPN risk, while lower values 
predicted a higher risk of MDS and AML (Fig. 3a). We also found that for 
many of the higher-risk driver mutations, a higher VAF was associated 
with a significant decrease in disease-free survival (Fig. 3b–g).

The presence of mosaic chromosomal abnormalities (mCAs) 
in leukocyte DNA has also been associated with an increased risk of 
hematological malignancy19 and we observed significant associations 
of pre-AML cases with mosaic loss of the long arm of chromosome 
5 (−5q), pre-MDS with −5q and 4q loss-of-heterozygosity (4q LOH), 
and pre-MPN with 9p LOH, +9p and +9 in the UKB (Extended Data 

Fig. 2a). Addition of mCAs to our models improved the identification 
of pre-MNs among individuals with mCAs, while missing a smaller 
number of pre-MNs who did not have mCA (Extended Data Fig. 2b). 
However, the addition of mCAs only had a modest effect on overall test 
performance (Extended Data Fig. 2c–e). In view of this and as mCAs 
are not routinely captured by standard diagnostic assays, we did not 
include them in our final models. Furthermore, to test the impact of 
genetic ancestry on myeloid neoplasm prediction, we incorporated 
the first five principal components of genetic ancestry into each of 
the three MN-predictive models and found that this had a negligible 
effect (Extended Data Fig. 3).

To assess the performance of our models, we run them on the UKB 
validation set to predict the risk of developing different types of mye-
loid neoplasms, at any time from recruitment to the end of follow-up 
(median = 12.6 years). We found that the respective model performed 
well for predicting future MPN (area under curve (AUC) = 0.82; concord-
ance = 0.81 ± 0.01), MDS (AUC = 0.86; concordance = 0.86 ± 0.01) and 
AML (AUC = 0.78; concordance = 0.76 ± 0.02; Extended Data Fig. 4a).  
Similar results were observed using logistic regression models trained 
in a similar way on the training set, with the exception of AML, for 
which the Cox regression model performed better (Extended Data 
Fig. 4b). We also tested random survival forest models trained on all 
mutational, blood and biochemistry data with three sets of parameters 
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and observed no significant improvement in performance compared 
with Cox models (Supplementary Fig. 6). Notably, the Cox models 
performed very similarly on the training and validation sets (Sup-
plementary Fig. 7), indicating there was no significant overfitting or 
underfitting. Furthermore, the predicted probability of developing a 
myeloid neoplasm by the end of the follow-up period agreed closely 
with the observed incidence of myeloid neoplasms in the UKB valida-
tion set (Extended Data Fig. 5).

The UKB data are subject to selection biases toward European 
ancestry, healthy individuals and those who are willing to volun-
teer, while the measurement of blood, biochemistry and genetic 
data are subject to batch effects. To validate the performance of our 

models outside the UKB, we tested our models on an independent 
cohort (Leeds CCUS cohort) composed of 204 individuals with CCUS 
recruited from 2014 to 2016 (138 men and 76 women aged 31–91 years, 
mean ± s.d. = 74 ± 9.6). Individuals were followed-up until 2019 with 
a follow-up period of up to 5.5 years (mean ± s.d. = 3.0 ± 1.7), during 
which 8 individuals developed AML, 35 developed MDS and 1 developed 
MPN (Supplementary Table 8). We ran our AML and MDS models on 
this cohort and observed good performance for predicting both AML 
(AUC = 0.74) and MDS (AUC = 0.73), as well as ‘any myeloid neoplasm’ 
(AUC = 0.76; Extended Data Fig. 6a–c). Furthermore, the predicted 
probability of developing a myeloid neoplasm within 5 years agreed 
well with the observed fraction of myeloid neoplasm diagnoses in 
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Fig. 4 | Time-dependency of predictive models and blood parameters in 
relation to myeloid neoplasm diagnosis. a–c, Time-dependent ROC curves 
computed using predicted outcomes on the validation set versus clinical 
diagnoses of myeloid neoplasm in 0–1 year, 1–5 years and over 5 years after blood 
sampling in pre-AML (a), pre-MDS (b) and pre-MPN (c) participants. ROC curves 
were computed using the incident/dynamic method (see Methods for details); 
n = number of individuals with the relevant diagnosis in the validation set.  

d–f, Impact of time to diagnosis on the distribution of HGB, PLT, MCV, RDW and 
CYS in pre-AML (d), pre-MDS (e) and pre-MPN (f) participants, respectively, 
compared with controls. (*P < 0.05 Wilcoxon rank-sum test; see Supplementary 
Table 10 for details). In the box plots, central lines indicate medians, boxes 
indicate 25–75% quantiles and ranges indicate 1.5 interquartile ranges from the 
upper or lower quartiles.
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the follow-up period, with a slight over-estimation of 5-year risks of 
myeloid neoplasms (Extended Data Fig. 6d), which was most likely 
due to follow-up of most patients being less than 5 years. To overcome 
this, we then analyzed a separate clinical cohort (Pavia CCUS cohort) 
containing 312 individuals with CCUS (147 men and 165 women aged 
18–89 years, mean ± s.d. = 57 ± 17.3) and a longer follow-up period of 
up to 15.1 years, during which 49 developed MDS and 2 developed 
AML (Supplementary Table 9). Our MDS model performed very well in 
predicting MDS development with a receiver operating characteristics 
(ROC) curve AUC = 0.84 and a very good agreement between predicted 
and observed cases of MDS (Extended Data Fig. 7).

Next, to understand the time-dependency of our models, we 
tested their performance at 1, 2 and 5 years before myeloid neoplasm 
diagnosis and found that performance generally improved nearer 
the time of diagnosis, particularly for AML (Fig. 4a–c). To investigate 

this further, we looked at how blood test parameters differed by time 
before diagnosis of a myeloid neoplasm. This revealed that many key 
blood test parameters changed with time to diagnosis, in patterns that 
differed between different types of myeloid neoplasms (Fig. 4d–f and 
Supplementary Figs. 8–10). For example, PLT was substantially higher 
in pre-MPNs even 10 years before diagnosis, while the corresponding 
fall in PLT associated with AML was not observed until the final year 
before diagnosis (Fig. 4d–f). Also, parameters like mean corpuscular 
volume (MCV) and hemoglobin concentration (HGB) only changed 
substantially in pre-AML samples during the final year before diagno-
sis (Fig. 4d), reflecting the improved performance of our AML model 
during this year. By contrast, for MDS and MPN, many of the predictive 
parameters were substantially different >5 years before diagnosis.

Finally, to aid clinical hematologists managing patients with high- 
risk CH, we built a user-friendly web-based application MN-predict 
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Fig. 5 | MN-predict, a web-based platform for quantification of future risk  
of developing myeloid neoplasms. a–c, Examples of predictions of MN risk by 
MN-predict in three individuals who went on to develop AML after 3.7 years (a), 
MDS after 7.4 years (b) and MPN after 2.7 years (c), respectively. The predictions 
were derived using three separate Cox regression models for predicting AML, 
MDS and MPN. In each panel, the values of input parameters for the model 

relevant to the downstream diagnosis are shown on the left (gene mutations, 
highest VAF and blood tests results depicted as normalized values relative to the 
median on a log scale) and the actual predictions on the right. The probability of 
different outcomes is represented by the vertical height of the corresponding 
color at any given time.
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(https://bioinf.stemcells.cam.ac.uk/shiny/vassiliou/MN_predict) that 
can predict the risk of MN using selected genetic and blood test param-
eters (Methods). MN-predict enables individualized predictions of the 
risk of developing different types of myeloid neoplasms over time and 
also aggregates these predictions to infer the probability of MN-free 
survival (Fig. 5).

Discussion
The demonstration that individuals at risk of developing AML can be 
identified years in advance from the genetic characteristics of their CH 
clones7,8 has spurned significant interest in the prospect of myeloid 
cancer prevention9,20. However, less is known about the predictability of 
myeloid malignancies like MPN and MDS, which also arise from CH3,4,13, 
or the prognostic relevance of nongenetic variables such as blood cell 
counts and biochemical tests/parameters8.

Here using data from 454,340 UKB participants, we investigate 
the characteristics of individuals that went on to develop a myeloid 
neoplasm and use these to construct three separate models for pre-
dicting the development of AML, MDS or MPN, which incorporate both 
genetic and nongenetic variables. We first found that while the CH 
driver landscape in pre-MN participants reflected that of the onward 
diagnosis, there was significant overlap among different myeloid 
neoplasm subtypes. Underlying this, we observed varying strengths of 
association between particular gene mutations and each of the three 
myeloid neoplasm subtypes (Fig. 2). For example, SF3B1 mutations were 
substantially associated with a higher risk of MDS, while SRSF2 muta-
tions were substantially associated with all myeloid neoplasm subtypes, 
with SRSF2/TET2 comutated cases were more likely to develop MDS 
and SRSF2/IDH2 comutated cases were more likely to develop AML. 
Also, DNMT3A R882 mutations were specifically associated with AML.

Next, starting with a core model based on age, sex and muta-
tions in CH genes known to be associated with AML risk8, we used 
forward stepwise regression to build three Cox regression models 
for estimating the likelihood of developing AML, MDS and MPN, as 
well as delineating the risk of different gene mutations in a multi-
variate context. This revealed that the incorporation of blood test 
parameters improved model performance. Notably, parameters like 
HGB had opposite effects on the risk of developing MDS versus MPN, 
justifying the construction of separate models for these myeloid neo-
plasm types. Predictive performance (AUC for validation set) of the 
MDS and MPN models at >1 year and >5 years to diagnosis was better 
than that of the AML model, while in the final year, all three models 
performed similarly. In line with this, changes in blood cell counts/
indices were evident many years before diagnosis in both pre-MDS 
and pre-MPN (Fig. 4). In general, the improved model performance 
nearer the time of myeloid neoplasm diagnosis may reflect the fact 
that larger clones have a more deterministic behavior than small ones, 
whose fate is more dependent on chance. A similar conclusion can be 
drawn from a large study of JAK2-V617F mutation frequency, which 
reported that small clones (VAF ≤ 1%) are a lot more abundant than 
large ones21. Separately, as a further check of model performance, we 
noted that predicted and observed numbers of myeloid neoplasms in 
the validation set agreed closely, despite a slightly higher number of 
MPN diagnoses in the UKB than reported in other European popula-
tion studies1,22. We separately developed and tested predictive models 
based on logistic regression and random survival forests, which also 
displayed good predictive performances in our validation set but 
did not exceed those of the Cox models (Extended Data Fig. 4b and 
Supplementary Fig. 6).

Next, to ensure that our Cox models perform well in independent 
datasets, we tested them on two separate clinical CCUS cohorts of 204 
(Leeds CCUS cohort) and 312 (Pavia CCUS cohort) patients. Despite 
having to impute certain missing parameters, we found that our models 
performed well with both, supporting their generic applicability and 
suitability for use in real-life clinical cohorts.

Using these Cox models, we then constructed MN-predict, an 
accessible web-based tool that calculates the likelihood of developing 
different types of myeloid neoplasms over 15 years after input of age, 
sex, somatic mutations and a milted set of routine blood test results 
(Fig. 5). Of note, a contemporaneous study using UKB data developed a 
different prognostic approach that uses somatic mutations and blood 
parameters to classify individuals into high, intermediate or low-risk 
groups for myeloid neoplasms23. This is a very valid approach that 
makes for an easy-to-use clinical tool but provides less granularity com-
pared with MN-Predict as it groups all types of myeloid neoplasms into 
a single category and does not capture the fact that individuals within 
the same risk group can have very different likelihoods of progression 
to myeloid neoplasms. By contrast, MN-Predict can help clinicians 
to further individualize CH management by providing year-by-year 
probabilities for each type of myeloid neoplasm over 15 years. Also, by 
excluding individuals who met diagnostic criteria for MPN diagnosis 
at UKB entry, MN-Predict gives more realistic estimates of MPN risk.

We anticipate that MN-predict will be of substantial use to 
researchers and to hematologists managing patients with high-risk 
CH and CCUS. Users of MN-predict need to be aware that UKB partici-
pants display a ‘healthy volunteer bias’. However, as epidemiological 
factors are not major determinants of myeloid neoplasm risk, it is 
unlikely that prediction accuracy will be substantially affected by this 
bias. Also, as UKB participants are predominantly of European ancestry 
(~80%)24, caution should also be exercised when using MN-predict in 
other ancestries. The latter is partially mitigated by the fact that the 
top five principal components of ancestry did not substantially alter 
model performance.

Collectively, our study represents an important advance in the 
field of myeloid cancer prediction and provides accessible predictive 
models that can guide research in this field, assist the management 
of patients with high-risk CH and help define entry criteria for future 
interventional studies for myeloid cancer prevention.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41588-023-01472-1.

References
1. Roman, E. et al. Myeloid malignancies in the real-world: 

occurrence, progression and survival in the UK’s 
population-based Haematological Malignancy Research Network 
2004–15. Cancer Epidemiol. 42, 186–198 (2016).

2. Maynadie, M. et al. Survival of European patients diagnosed with 
myeloid malignancies: a HAEMACARE study. Haematologica 98, 
230–238 (2013).

3. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk 
inferred from blood DNA sequence. N. Engl. J. Med. 371,  
2477–2487 (2014).

4. Jaiswal, S. et al. Age-related clonal hematopoiesis associated  
with adverse outcomes. N. Engl. J. Med. 371, 2488–2498  
(2014).

5. Xie, M. et al. Age-related mutations associated with clonal 
hematopoietic expansion and malignancies. Nat. Med. 20, 
1472–1478 (2014).

6. McKerrell, T. et al. Leukemia-associated somatic mutations drive 
distinct patterns of age-related clonal hemopoiesis. Cell Rep. 10, 
1239–1245 (2015).

7. Desai, P. et al. Somatic mutations precede acute myeloid 
leukemia years before diagnosis. Nat. Med. 24, 1015–1023 (2018).

8. Abelson, S. et al. Prediction of acute myeloid leukaemia risk in 
healthy individuals. Nature 559, 400–404 (2018).

http://www.nature.com/naturegenetics
https://bioinf.stemcells.cam.ac.uk/shiny/vassiliou/MN_predict
https://doi.org/10.1038/s41588-023-01472-1


Nature Genetics | Volume 55 | September 2023 | 1523–1530 1530

Article https://doi.org/10.1038/s41588-023-01472-1

9. Sellar, R. S., Jaiswal, S. & Ebert, B. L. Predicting progression to 
AML. Nat. Med. 24, 904–906 (2018).

10. Tam, V. et al. Benefits and limitations of genome-wide association 
studies. Nat. Rev. Genet. 20, 467–484 (2019).

11. Bick, A. G. et al. Inherited causes of clonal haematopoiesis in 
97,691 whole genomes. Nature 586, 763–768 (2020).

12. Thompson, D. J. et al. Genetic predisposition to mosaic  
Y chromosome loss in blood. Nature 575, 652–657 (2019).

13. Kar, S. P. et al. Genome-wide analyses of 200,453 individuals 
yield new insights into the causes and consequences of clonal 
hematopoiesis. Nat. Genet. 54, 1155–1166 (2022).

14. Van der Auwera, G. A. & O’Connor, B. D. Genomics in the Cloud: 
Using Docker, GATK, and WDL in Terra (O’Reilly, 2020).

15. Vlasschaert, C. et al. A practical approach to curate clonal 
hematopoiesis of indeterminate potential in human genetic 
datasets. Blood https://doi.org/10.1182/blood.2022018825  
(2023).

16. Miller, C. A. et al. Failure to detect mutations in U2AF1 due to 
changes in the GRCh38 reference sequence. J. Mol. Diagn. 24, 
219–223 (2022).

17. Arber, D. A. et al. International consensus classification of myeloid 
neoplasms and acute leukemias: integrating morphologic, 
clinical, and genomic data. Blood 140, 1200–1228 (2022).

18. McKerrell, T. et al. JAK2 V617F hematopoietic clones are present 
several years prior to MPN diagnosis and follow different 
expansion kinetics. Blood Adv. 1, 968–971 (2017).

19. Niroula, A. et al. Distinction of lymphoid and myeloid clonal 
hematopoiesis. Nat. Med. 27, 1921–1927 (2021).

20. Uckelmann, H. J. et al. Therapeutic targeting of preleukemia 
cells in a mouse model of NPM1 mutant acute myeloid leukemia. 
Science 367, 586–590 (2020).

21. Cordua, S. et al. Prevalence and phenotypes of JAK2 V617F and 
calreticulin mutations in a Danish general population. Blood 134, 
469–479 (2019).

22. Hultcrantz, M. et al. Incidence of myeloproliferative neoplasms—
trends by subgroup and age in a population-based study in 
Sweden. J. Intern. Med. 287, 448–454 (2020).

23. Weeks, L. D. et al. Prediction of risk for myeloid malignancy 
in clonal hematopoiesis. NEJM Evid., https://doi.org/10.1056/
EVIDoa2200310 (2023).

24. Fry, A. et al. Comparison of sociodemographic and health-related 
characteristics of UK Biobank participants with those of the 
general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons license, and 
indicate if changes were made. The images or other third party 
material in this article are included in the article’s Creative Commons 
license, unless indicated otherwise in a credit line to the material.  
If material is not included in the article’s Creative Commons license 
and your intended use is not permitted by statutory regulation 
or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this license, visit 
http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023, corrected publication 2023

http://www.nature.com/naturegenetics
https://doi.org/10.1182/blood.2022018825
https://doi.org/10.1056/EVIDoa2200310
https://doi.org/10.1056/EVIDoa2200310
http://creativecommons.org/licenses/by/4.0/


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01472-1

Methods
Data acquisition
UKB is a large-scale biomedical database and research resource con-
taining genetic, lifestyle and health information from half a million 
UK participants. UKB has approval from the North West Multicentre 
Research Ethics Committee (11/NW/0382) and all participants provided 
written informed consent. The present study has been conducted 
under approved UKB application number 56844. Electronic health 
records were downloaded from the UKB portal in April 2022. For each 
participant, the disease phenotypes were extracted using the fol-
lowing ICD-9/ICD-10 codes: AML—205.0, 205.2, 205.3, 205.8, 205.9, 
206.0, 206.2, 207.0, 207.2, 238.4, 238.5, 238.7, C92.0, C92.2, C92.3, 
C92.4, C92.5, C92.6, C92.7, C92.8, C92.9, C93.0, C93.2, C94.0 or C94.2; 
MDS—238.4, 238.5, C94.6 or D46; MPN: 238.7, D45, D47.0, D47.1, D47.3 
or D47.4; CMML—206.1, C93.1. The Pavia cohort study was approved 
by the Ethics Committee of the IRCCS Policlinico San Matteo Founda-
tion, Pavia, Italy (reference: 20180009874). The Leeds cohort study 
was approved by the North East—York Research Ethics Committee 
(reference: 16/NE/0105).

Statistics and reproducibility
Individuals (n = 129) with more than one myeloid neoplasm diagnosed 
within 35 d (n = 71, of whom 60 had AML + another myeloid neoplasm), 
and those diagnosed with AML and then another myeloid neoplasm 
(n = 58, with the second diagnosis made 36–18,39 d later, mean = 497 d), 
were classed as ‘MN-indeterminate’ and excluded from analysis, as we 
wanted to be certain of the specific myeloid neoplasm diagnosis given 
that our aim was to develop different predictive models for each of the 
main myeloid neoplasm subtypes. Additionally, 39,465 samples with 
more than two missing values in blood count and biochemistry data 
were excluded from modeling to reduce noise.

Whole-exome sequence data processing, CH mutation calling 
and filtering
Whole-exome sequencing of blood DNA from 454,340 participants 
was used to identify somatic mutations using Mutect2 software 
(GATK version 4.1.3.0) through the DNAnexus platform using Docker 
image broadinstitute/gatk:4.1.3.0. Mutect2 was run in ‘tumor-only’ 
mode with default parameters, over the exon intervals of 38 genes 
previously associated with CH (Supplementary Table 1). To minimize 
sequencing artifacts and to filter out potential germline variants, we 
used a ‘panel-of-normals’ from the 1000 Genomes Project (1000GP) 
and the Genome Aggregation Database (gnomAD) obtained from 
the GATK best practices repository (https://gs://gatk-best-practices/
somatic-hg38). Raw variants called by Mutect2 were filtered out with 
FilterMutectCalls using the estimated prior probability of a reading ori-
entation artifact generated by LearnReadOrientationModel. Putative 
variants marked ‘PASS’ by FilterMutectCalls were selected for filtering. 
Variants marked as ‘germline’ or ‘weak_evidence’ were rescued if they 
were present at least five times in the PASS ones. Gene annotation was 
performed using Ensembl Variant Effect Predictor (v.102). For identi-
fying CH, we required variants with a minimum number of alternate 
reads of 2, evidence of the variant on both forward and reverse strands, 
a minimum depth of 7 reads for SNVs and 10 reads for short indels and 
substitutions and a minor allele frequency in the population lower than 
0.001 (according to 1000GP phase 3 and gnomAD r2.1).

From the resulting calls, we selected those meeting the inclusion 
criteria established by Vlasschaert et al.15, to optimize the exclusion of 
germline variants and sequencing artifacts (Supplementary Table 1).  
For TET2 and CBL, for which individual driver definitions are not exhaus-
tively defined, variants were removed if they failed a one-sided exact 
binomial test (P > 0.01), where the null hypothesis was that the number 
of alternative reads supporting the mutation were 50% of the total 
number of reads. Variants with n ≤ 20 were all retained. To find the 
best cut-off for the minimum number of reads required to call a CH 

mutation, we tested three different cut-offs: ≥2, ≥3 and ≥5 reads on 
Mutect2 output and found that ≥2 read is most suitable for our study 
as it improved concordance indices of our AML model while leaving the 
MDS and MPN model performance unchanged (Supplementary Fig. 11).

Samtools mpileup (version 1.15) was used to capture 
single-nucleotide variations (SNVs) at 22 known hotspots (Supple-
mentary Table 2), including U2AF1 SNVs that were missed due to a 
mistake in the human GRCh38 assembly16. SNVs with ≥3 reads and 
VAF > 0.1 were retained and used for predictive models. Additionally, 
4-nucleotide-insertions in NPM1 within the range of chr5:171410538-
171410544 were examined manually with prior knowledge of the com-
mon 4-nt inserts and only two known cases were identified25.

mCA data were obtained from the UKB Application 19808 Return 
3094 (ref. 26). Associations between mCAs and myeloid neoplasms 
were tested using Fisher’s exact test. Significant mCAs (P < 0.00001) 
were extracted, including chromosome 1p LOH, 4q LOH, 5q loss,  
7q LOH, 8 gain, 9p LOH, 9 gain, 12q loss, 14q LOH, 17q loss and 20q loss. 
X- and Y-chromosome mCAs were not investigated.

Predictive modeling for myeloid neoplasms
All data types used in model development with explanations of relevant 
abbreviations are provided in Supplementary Table 5.

To optimize model performance, 39,465 samples with more than 
2 missing values in blood count and biochemistry data (n = 39,283 
controls and n = 171 pre-MNs) were excluded from modeling. Next, 
we removed interderivable variables, namely RBC, MCH and HT, from 
the complete blood count results and retained HGB, MCV and MCHC. 
Missing values were imputed using the median of the UKB population. 
We excluded individuals who had a myeloid neoplasm diagnosis before 
blood collection (n = 648), individuals whose blood test results were 
consistent with a probable diagnosis of polycythemia vera (n = 26; 
HGB > 16.5 g dl−1 and with JAK2-V617F) or essential thrombocythemia 
(n = 82; PLT > 450 × 109 l−1 and with JAK2-V617F/CALR/MPL mutations) 
and individuals (n = 129) with more than one myeloid neoplasm diag-
nosed within 35 d or with AML and then another myeloid neoplasm. 
While it is possible that some additional UKB participants with slightly 
abnormal blood counts at study entry had a myeloid neoplasm (for 
example, MDS), we had no way to identify them and also note that their 
blood test results did not trigger a clinical referral. Samples of remain-
ing individuals were used to test for linear dependency between each 
pair of parameters of phenotypic variables within the entire dataset 
and within each type of myeloid neoplasm using Spearman correla-
tion (Supplementary Fig. 4). For each highly dependent pair or cluster 
(Spearman correlation > 0.9 in all myeloid neoplasms), we selected the 
most commonly used parameter in clinics and excluded the others, 
retaining PLT over plateletcrit (PCT), reticulocyte count (RET) over high 
light scatter reticulocytes (HLR) and cholesterol (CHOL (serum)) over 
apolipoprotein B/low-density lipoprotein direct. We did not attempt to 
distinguish between CH and CCUS in our models, as blood test results 
that define CCUS are included and as a formal CCUS diagnosis requires 
persistence of cytopenia over several months as well as the clinical 
exclusion of other etiologies17,27.

Samples were split quasi-randomly into training and validation 
sets to obtain roughly equal numbers of cases of pre-AML, pre-MDS, 
pre-MPN and pre-CMML in each set. Specifically, we first separated 
each type of pre-MN and controls, and then randomly split each into 
two similar size sets using the random function (Math.random() in 
Java). We then merged one control with one pre-MN set to generate 
the training set of 207,035 samples and a validation set of 207,039 
samples. All subsequent model development was performed on the 
training set using both genotype and phenotype parameters and model 
performance was tested on the validation set. For each type of myeloid 
neoplasm, an initial Cox proportional hazards model was trained using 
the R package of ‘survival’ with all 38 binary genotypic variables (Sup-
plementary Table 1), 30 continuous preselected phenotypic variables 

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01472-1

(Supplementary Table 5), sex, age, body mass index (BMI) and the 
highest VAF. All continuous variables including phenotype, age and 
BMI were standardized using the following:

x′ i =
xi −Med(x)

σ(x)

where Med(x) is the median and σ(x) is the standard deviation of the 
variable. A Cox proportional cause-specific hazard model was used for 
each of the myeloid malignancies, considering death by other causes 
before the end of the censoring period as a competing risk. To reduce 
the number of variables in the final model, we used forward stepwise 
regressions starting with a set of 13 MN-related variables, namely sex, 
age, VAF and somatic mutations in any of 11 genes that were commonly 
mutated in CH and/or known to be associated with progression to 
myeloid neoplasms7,8,18 (DNMT3A, JAK2, MPL, CALR, SRSF2, SF3B1, IDH2, 
TP53, TET2, ASXL1 and U2AF1). To avoid overfitting, we excluded genes 
with ≤4 mutations (that is, ≤2 mutations in the training or validation 
set) in the relevant pre-MN sample group, namely JAK2, MPL, CALR and 
U2AF1 from pre-AML, CALR and MPL from pre-MDS, and TP53, MPL and 
U2AF1 from pre-MPN. Then from the candidate pool of the 27 remaining 
genes, BMI and 30 blood/biochemistry parameters, we proceeded to 
iteratively add one variable to the model at a time. In each iteration, we 
added each of the n variables to the starting set, resulting in n sets of 
variables and trained n Cox models on these sets. Of the n models, we 
selected the one with the highest concordance index (C-index)28 as the 
new starting set and removed the newly added variable from the can-
didate pool for the next iteration. We drew the threshold at the iteration 
where the increase in C-index was <0.1% of the maximum increase of 
all iterations (that is, the highest C-index of all iterations minus the 
C-index of the starting concordance), with the variables in that iteration 
chosen for the final model (Supplementary Table 6). To test the per-
formance of the final models, we constructed time-dependent ROC 
curves by examining three groups of individuals who developed mye-
loid neoplasms 0–1 year, 1–5 years and >5 years after the blood assess-
ment separately. For each group, ‘observed positives’ were defined as 
the individuals who developed this myeloid neoplasm within this 
period and ‘observed negatives’ were defined as the ones who devel-
oped this myeloid neoplasm outside this period or ones who never 
developed the myeloid neoplasm. Predicted probabilities of develop-
ing myeloid neoplasms in a time period were calculated as the average 
of predicted values of all time points within this period from the out-
come of Cox regression models. By varying the threshold of predicted 
probability from its lowest to highest, we compared predicted posi-
tives/negatives with observed positives/negatives to obtain pairs of 
sensitivity and specificity and plotted the ROC curves.

Additionally, we used logistic regressions with the ‘glm’ function of 
R to obtain similar results as Cox proportional hazard models. We also 
trained models with random survival forest on the training set using the 
‘randomForestSRC’ package of R. We scanned three sets of parameters 
across various numbers of trees (that is n(tree)), and numbers of node 
splits per tree (that is n(split)) for each model: n(tree) = 50 and n(split) = 10; 
n(tree) = 100 and n(split) = 10; n(tree) = 100, n(split) = 20. Time-dependent 
ROC curves were constructed using the same method as described.

Validation on independent cohorts
To validate our models, we obtained the genotype, blood and bio-
chemistry data of 204 individuals with CCUS, including 7 pre-AML, 31 
pre-MDS and 1 pre-MPN cases (Leeds CCUS cohort). Available genotypic 
parameters were mutations in genes DNMT3A, IDH2, TET2, U2AF1, 
ASXL1, SRSF2, JAK2, TP53, SF3B1, CALR and MPL and VAFs of the largest 
clone. Available phenotypic parameters are sex, age, MCV, PLT and 
HGB. Missing phenotypic parameters were imputed as the median of 
the UKB population and input parameters were processed in the same 
way as we processed UKB data. We applied all three models to this 
cohort and compared the predicted probabilities of developing each 

type of myeloid neoplasm in the next 5 years with observed myeloid 
neoplasm diagnosis in the follow-up period (up to 5.5 years), using the 
same methods as we used for the UKB analysis.

To validate the MDS model, we obtained an independent cohort 
of 312 individuals, containing 49 cases of pre-MDS and 263 control 
cases (Pavia CCUS cohort). Available genotypic parameters were 
mutations in genes DNMT3A, SRSF2, SF3B1, IDH2, TP53, TET2, ASXL1, 
U2AF1, JAK2, MPL and CALR and VAFs of the largest clone. Available 
phenotypic parameters include age, sex, PLT, HGB, MCV and NE. 
Missing phenotypic values were imputed as the median of the UKB 
population and input parameters were processed in the same way as 
we processed UKB data. To validate our MDS model, we applied the 
MDS model to this cohort and compared the predicted probabilities 
of developing each type of myeloid neoplasm in the next 15 years with 
observed myeloid neoplasm diagnosis in the follow-up period (up to 
15.1 years), using the same methods as we used for the UKB analysis.

MN-predict: a web-based myeloid neoplasm risk calculator
As CH can progress to any of the main types of myeloid neoplasms,  
it would be useful to assess the probability of progression to any of the 
myeloid neoplasm subtypes for each individual with CH. To achieve this 
and to provide a one-stop predictive tool for researchers and clinicians 
managing high-risk CH, we built MN-predict, an accessible web-based 
tool that generates time-dependent predictions of future risk of pro-
gression to AML, MDS or MPN. To do this, we amalgamated the prob-
abilities of developing each of the three myeloid neoplasm subtypes 
calculated from their respective models using the following approach:

Disease-free survival probabilities for each myeloid neoplasm are 
predicted as a function of time and the overall probability of getting 
myeloid neoplasm x (where x is AML, MDS or MPN) at time point t is 
calculated as

Pr (x, t) = (1 − ∏
i∈(AML,MDS,MPN)

Surv(i, t)) 1 − Surv(x, t)
∑i∈(AML,MDS,MPN)(1 − Surv (i, t))

where Surv(x,t) is the probability of disease-free survival for each of 
the myeloid neoplasm subtypes at time point t.

After inputting the genotypic and phenotypic parameters 
included in their respective Cox models, the MN-predict website gen-
erates time-dependent plots of projected probabilities for developing 
AML, MDS and MPN (or remaining MN-free) over 15 years.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Individual-level UK Biobank data can be requested via application to 
the UK Biobank (https://www.ukbiobank.ac.uk). The CH call has been 
returned to the UK Biobank to enable individual-level data linkage for 
approved UK Biobank applications.

Code availability
The MN-predict web application is hosted at https://bioinf.stemcells.
cam.ac.uk/shiny/vassiliou/MN_predict. Codes for analyses and figure 
reproduction have been uploaded to https://github.com/muxingu/
mnpredict_paper.
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Extended Data Fig. 1 | Feature selection in different pre-MN models using 
stepwise regression. Improvement in concordance by the stepwise addition 
of predictive variables to the core Cox regression model for developing 
disease-specific Cox regression models for: (a) AML, (b) MDS and (c) MPN. 

Variables were added one at a time, such that each iteration resulted in the 
greatest improvement in concordance index until the increase in concordance 
<0.1% of the maximum increase of all iterations. The iterations (that is number of 
additional variables) used in the final models are indicated by the red lines.
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Extended Data Fig. 2 | Impact of mosaic chromosomal abnormalities on 
MN prediction models. (a) Associations between the risk for different types 
of MN and mosaic chromosomal alterations (mCA, * = Fisher’s test p < 10−5, see 
Supplementary Table 10 for details; OR = odds ratio). (b) Number of true pre-MN 
cases whose prediction changed by the inclusion of mCAs to the models. We 
calculated differences between 15-year MN-free survival probabilities of models 
including mCAs (with mCA) vs excluding mCAs (without mCA). We then tested 
three thresholds for the difference in MN probability between the two models. 

The lowest probability difference of 0.2 led to the correct identification of an 
additional ~45 pre-MN cases (true positives), at the expense of missing 12 such 
cases (false negatives). Higher difference thresholds still identified more true 
positives than false negatives. (c–e) Inclusion of mCA to our MN prediction 
models did not significantly improve model performance as assessed by area 
under curve (AUC) of recover operating curve for (c) AML, (d) MDS or (e) MPN. 
Dotted diagonal lines indicate AUC = 0.5.
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Extended Data Fig. 3 | Genetic ancestry does not have a major impact on MN 
prediction models. Hazard ratios (HRs) associated with predictive variables, 
after incorporation of the first five principal components of genetic ancestry 
(PC1-PC5) into MN predictive models for: (a) AML, (b) MDS and (c) MPN. The plots 
show that ancestry has a negligible impact on these models, with HRs close to 1 

(Log1 = 0). Central squares indicate estimated HRs and lines represent the 5–95% 
confidence intervals. VAF = variant allele frequency of the largest clone. The 
central squares indicate hazard ratios and the lines indicate 5–95% confidence 
intervals. Vertical dotted lines indicate HR = 1. Abbreviations for blood/
biochemistry parameters are defined in Supplementary Table 5.
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Extended Data Fig. 4 | Comparison of Cox to logistic regression models for 
MN prediction. (a) Recover operating curve (ROC) curves from Cox proportional 
hazard models for prediction of progression to AML, MDS and MPN. (b) ROC 

curves from logistic regression models. To make the models comparable, we  
used MN outcomes at any time to the end of the study to compute ROC curves. 
AUC = area under curve. Dotted diagonal lines indicate AUC = 0.5.
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Extended Data Fig. 5 | Close agreement between prediction and actual 
incidence of MN. Comparison of the predicted probability of developing any 
MN with the observed MN incidence in the UKB validation cohort of 207,039 
individuals at any time during the follow-up/observation period (dots showing 
the mean and error bars showing 1.96 standard deviations that is 5–95% CI). 

Samples were binned according to predicted probability ranges as follows: 
0–0.05, 0.05–0.1, 0.1–0.3, 0.3–0.5 and 0.5–1. Individuals who died during 
the observation period without having developed MN were not included in 
the calculations. The plot shows close agreement (along the dotted line y = x) 
between prediction and observed incidence.
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Extended Data Fig. 6 | Validation of models on the Leeds CCUS cohort.  
(a-c) Receiver Operating Characteristics (ROC) curves of the independent cohort 
computed from predicted probabilities in 5 years versus clinical diagnosis of 
individuals who developed MN within 5 years after blood sampling. AUC=area 
under curve. (a) AML model. (b) MDS model. (c) ROC curves of combined 
probabilities of any MN versus clinical diagnosis. Diagonal lines indicate  

AUC = 0.5. (d) Comparison of the predicted probability of developing any MN in 
the next 5 years with the observed MN diagnosed at any time during the follow-up 
period (dots showing the mean and error bars showing 1.96 standard deviations 
that is 5–95% CI). Individuals who died before the end of the follow-up period 
without developing any MN were excluded from the calculation.
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Extended Data Fig. 7 | Validation of MDS model on the Pavia CCUS cohort.  
(a) ROC curve of Cox proportional hazard model for MDS prediction established 
from predicted 15-year probability of developing MDS and diagnosis by the end 
of the 15-year follow-up period. AUC = area under curve. Diagonal line indicates 
AUC = 0.5. (b) Comparison of the predicted MDS probability and observed MDS 

incident at any time during the follow-up period (dots showing the mean and 
error bars showing 1.96 standard deviations that is 5–95% CI). Individuals who 
died before the end of the follow-up period without developing any MDS were 
excluded from the calculation. Dotted line shows y = x.
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