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Studying the genetics of participation using 
footprints left on the ascertained genotypes

Stefania Benonisdottir    1  & Augustine Kong    1,2 

The trait of participating in a genetic study probably has a genetic 
component. Identifying this component is difficult as we cannot 
compare genetic information of participants with nonparticipants 
directly, the latter being unavailable. Here, we show that alleles that are 
more common in participants than nonparticipants would be further 
enriched in genetic segments shared by two related participants. 
Genome-wide analysis was performed by comparing allele frequencies 
in shared and not-shared genetic segments of first-degree relative 
pairs of the UK Biobank. In nonoverlapping samples, a polygenic 
score constructed from that analysis is significantly associated with 
educational attainment, body mass index and being invited to a dietary 
study. The estimated correlation between the genetic components 
underlying participation in UK Biobank and educational attainment 
is estimated to be 36.6%—substantial but far from total. Taking 
participation behaviour into account would improve the analyses of the 
study data, including those of health traits.

For all sample surveys, ascertainment bias, meaning that the sample 
is not representative of the target population, could lead to seriously 
misleading conclusions1,2. By its very nature, ascertainment bias usu-
ally cannot be evaluated based on the sample alone3. Typically, other 
variables (covariates) that have known distributions for both sample 
and population are needed for adjustments1,3. Such adjustments are 
inherently imperfect as the covariates are unlikely to fully capture the 
underlying bias1,3. For genetic studies, among participants of the pri-
mary study who have contributed DNA, further engagement in optional 
components of the study has been demonstrated to have associations 
with genotypes and phenotypes4–7. That, however, does not address 
the genotypic difference between the primary study participants and 
the target population. Thus, it is striking that one can investigate how 
the sampled genotypes are biased based on themselves alone. A recent 
study identified single nucleotide polymorphisms (SNPs) that had 
significant allele frequency differences between the sampled males 
and females, and proposed that those variants have differential partici-
pation effects for the sexes8. This approach, however, cannot identify 
variants that affect primary study participation of both sexes in a similar 
manner. Here, we show how to do so.

Results
Three allele comparisons
All individuals are genetically related to some degree. Furthermore, 
each individual has two copies of genetic segments on autosomal 
chromosomes, and some of these segments are identical by descent 
(IBD), that is inherited from a recent common ancestor, with genetic 
segments in a relative. Instead of comparing individuals, we compare 
genetic segments. The key idea is that an allele that has higher fre-
quency in participants than nonparticipants would also have higher 
frequency in segments that are in two participants than in segments 
that are in only one. Following this observation, we present below three 
principles of genetic induced participation bias, and show how to use 
only the sampled genetic data to perform genome-wide association 
scans (GWAS) for study participation that capture only direct genetic 
effects9,10, and are unaffected by population stratification11.

First principle of genetic induced ascertainment bias. On average, 
between two ascertained individuals, genetic segments shared IBD, rela-
tive to segments that are not, are enriched with alleles that have positive  
direct effects on ascertainment probability. Figure 1a illustrates this 
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Ascertained sib-pairs, parents not ascertained. At a specific locus, 
assuming random Mendelian transmission, a sib-pair has probability 
1/2 of inheriting the same allele IBD from the father, and the same 
independently from the mother. Consequentially, a sib-pair shares 2, 1  
or 0 alleles IBD with probabilities 1/4, 1/2 and 1/4, respectively. With 
dense SNPs, the IBD state of a locus can usually be determined with 
high accuracy. For a specific SNP, based on the sib-pairs with known 
IBD states, two comparisons are made.

For each sib-pair that has IBD state 1 for a given SNP (Fig. 1c), there 
are one distinct shared allele (S) and two distinct not-shared alleles (NS1 
and NS2). Let FIBD1S and FIBD1NS denote the frequency of allele 1 among 
the S alleles and the NS (NS1 and NS2 combined) alleles, respectively. 
The difference

FIBD1S − FIBD1NS (2)

is the within-sib-pair comparison (WSPC). For any such pair, if the  
S allele is paternally inherited, then the two NS alleles are maternally 
inherited, and vice versa. Despite that, conditional on the genotypes 
of the two parents, without ascertainment bias, the frequency differ-
ence has expectation 0. Assuming random transmissions, the shared 
allele is equally likely to be paternal or maternal (Extended Data Fig. 1). 
Thus, any systematic difference between fathers and mothers cancels 
in expectation.

For the sib-pairs sharing two alleles IBD at a locus, let FIBD2 be the 
frequency of allele 1. Similarly, let FIBD0 be the allele 1 frequency among 
sib-pairs that share no allele IBD. The difference (Fig. 1d)

FIBD2 − FIBD0 (3)

is the between-sib-pairs comparison (BSPC). This compares different 
sib-pairs and does not require splitting genotypes into shared and 
not-shared alleles. For a sib-pair at a particular locus, the chance to be in  
IBD state 0 or 2 is the same and, thus, without ascertainment bias, the 
frequency difference has expectation zero. In general, a sib-pair would be 
in IBD state 2 for some regions, and in IBD state 0 (or 1) in other regions.

Results from the three comparisons introduced can be combined, 
for testing, estimation or prediction purposes. However, having the 

general principle. With a large sample of individuals of the same ances-
try, at a specific SNP locus, many pairs of individuals would share one 
long haplotype inherited IBD from a not-very-distant common ances-
tor. Each of such pairs has one distinct shared haplotype, and two dis-
tinct not-shared haplotypes. The SNP allele that promotes participation 
would tend to have a higher frequency in the shared than the not-shared 
haplotypes. The shared and not-shared alleles are considered as cases 
and controls, respectively, and matched as they are in the same indi-
viduals. Still, that does not remove potential confounding entirely 
as haplotypes driven to higher frequency through natural selection 
would also be shared by more individuals. Ascertainment bias is a 
form of selection and, to cleanly distinguish it from other forms of 
selection, requires more stringent matching of shared and not-shared 
haplotypes. That is achieved by using ascertained parent–offspring 
and sibling pairs (sib-pairs).

Ascertained parent–offspring pairs. For an ascertained parent–off-
spring pair (Fig. 1b) where the other parent is not ascertained, there are 
three distinct alleles by descent for a given SNP: the allele transmitted 
from parent to offspring (T), the parental allele not transmitted to the 
offspring (NT) and the allele inherited by the offspring from the other 
parent (O). The T allele is shared, and the other two are not-shared. The 
NT and T alleles are perfectly matched as both are in the ascertained 
parent. Mendelian inheritance dictates that each would have the same 
chance to be transmitted to the offspring to become the shared allele. 
The principle is similar to that underlying the transmission disequilib-
rium test12. The O allele is not as perfectly matched and is currently not 
used. For the ascertained parent–offspring pairs, with alleles coded as 
0/1, and FT and FNT denoting the frequency of 1s among the T and NT 
alleles respectively, the difference

FT − FNT (1)

can be used to test for association between SNP and ascertainment 
(Methods). We call this the transmitted–nontransmitted comparison 
(TNTC). When both parents are ascertained, that can be treated as two 
parent–offspring pairs as the transmissions from the two parents are 
independent without a participation effect.
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Fig. 1 | The first principle of genetic induced participation bias: comparing shared and not-shared alleles. a, General relative pairs sharing one allele IBD.  
b, Parent–offspring pairs. c, Sib-pairs sharing one allele IBD (IBD1). d, Sib-pairs sharing two alleles or no allele IBD (IBD2 and IBD0). Different shading denotes segments 
that are distinct by descent.
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individual results separately is important because they could capture 
different effects depending on the nature of the participation bias. 
Most importantly, they are impacted differently by genotyping and 
data-processing errors.

Analyses of UK Biobank data
The UK Biobank (UKBB) is a large-scale database with genetic and  
phenotypic information of individuals from across the UK13. Individuals  
aged between 40 and 69 years and living within a 25-mile radius of 
any of the 22 UKBB assessment centers were invited to participate14. 
Among the 9,238,453 invited, 5.5% (~500,000 individuals) participated 
and went through baseline assessments that took place from 2006 to 
2010 (ref. 14). In addition to phenotypic details collected at the baseline 
visit, information continued to be added, including follow-up studies 
for large subsets of the cohort14–16. It is known that the UKBB sample is 
not fully representative of the UK population13,14,17. Participants were 
more likely to be female, less likely to smoke, older, taller, had lower 
body mass index (BMI)14 and more educated17.

We applied our methods to 4,427 parent–offspring pairs and 
16,668 sib-pairs with White British descent in UKBB (Supplementary 
Note section 1; Methods). To start, association analysis was performed 
for 658,565 SNPs available in the UKBB phased haplotype data13. For 
each SNP, t-statistics for TNTC, WSPC and BSPC were computed by 
dividing each of the frequency difference, equations (1) to (3), by its 
standard error (s.e.) (Supplementary Note section 2; Methods). When 
results from all the SNPs were examined together, we observed a ten-
dency for the major allele to be positively associated with participation. 
Investigations supported by extensive simulations revealed three 
causes to this bias: (a) IBD-calling errors, (b) phasing errors, (c) geno-
typing errors (Methods). (a) affects the processing of sib-pair data 
when the IBD sharing status (0, 1 or 2) of every SNP is ‘called’ and impacts 
WSPC and BSPC. The problem with (a) was mostly eliminated when we 
replaced KING18, a ‘general’ IBD-calling program, by snipar9, specifically 
designed for sib-pairs (Extended Data Fig. 2), and trimmed away 250 
SNPs from each end of an IBD segment (contiguous SNPs with the same 
IBD status called; Extended Data Fig. 3; Methods). (b) and (c) affect 
TNTC and WSPC, which require splitting genotypes into shared and 
not-shared alleles; (b) enters when the relatives are both heterozygous 
and phasing with neighboring SNPs is required to determine the shared 
allele9 (Extended Data Fig. 4). Through theoretical calculations and 
simulations, we found that under most scenarios, (b) and (c) would 
contribute to the observed major-allele bias (Supplementary Note 
section 3; Methods). For variants with minor allele frequency 
(MAF) > 0.10, we estimated that around 50% of the observed 
major-allele bias can be explained by phasing errors, while genotyping 
errors play a greater role for low frequency variants (Extended Data 
Figs. 5 and 6; Methods). As (b) and (c) do not impact BSPC and with (a) 
addressed, results based on BSPC can be used in a straightforward 
manner. When LD score regression (LDSC)19 is applied to the χ2 statis-
tics computed from the BSPC GWAS, the fitted intercept is nearly 
exactly 1 (0.9998), indicating that the χ2 statistics are neither inflated 
because of data artefacts, nor are they affected by issues such as popu-
lation stratification. For TNTC and WSPC, the major-allele bias and 
related problems affect different analyses differently, as illustrated by 
analyses below and information in Methods and Supplementary Note 
section 3. For most SNPs individually, the bias induced by (b) and (c) is 
small and apparent only when analyzed as a group. However, in the 
major histocompatibility complex (MHC), a difficult region with 
extended linkage disequilibrium (LD), 17 SNPs have P < 5 × 10−8   
with WSPC. These are clearly data artefacts as none is even nominally 
significant with BSPC (all P values presented are two-sided). We dis-
carded SNPs from the MHC and other extended LD regions20 and 
applied other quality control filtering (Supplementary Note section 
4; Methods), leaving 500,632 remaining SNPs with MAF > 1% in our 
participation genome scans. To handle the data-error induced biases 

separately for TNTC and WSPC, a two-step allele frequency adjustment 
was applied, which eliminated the correlation with allele frequency 
and shrank the t-statistics towards zero (Extended Data Fig. 7; Methods).  
Figure 2 summarizes the steps underlying the procedure used to test 
SNPs for association with participation.

GWAS based on BSPC does not give any genome-wide significant 
SNP, which is unsurprising given that the power is not high. Combining 
the association results from all three comparisons, one SNP, 
rs113001936 on chromosome 16 (P = 3.4 × 10−9), passed the genome- 
wide significant threshold. However, since the positively associated 
allele has a frequency of 0.988, and the significance is driven mainly by 
WSPC (P = 0.048  for BSPC), we consider this SNP as only suggestive. 
To validate and to provide a proper understanding of the results, we 
constructed three separate participation polygenic scores (pPGSs) 
whose SNP-weights are based on these three sets of t-statistics (Meth-
ods). Values of each of the three pPGSs, standardized to have variance 
1, were computed for 272,409 White British individuals without rela-
tives in UKBB of third degree or closer, referred to as the ‘unrelateds’. 
Associations between each of the three pPGSs and various quantitative 
traits were examined using the unrelateds (Supplementary Note  
section 5; Methods). Table 1 shows some of the strongest associations 
plus a few nonsignificant ones for reference. The BSPC pPGS and the 
WSPC pPGS are supposed to estimate essentially the same effects with 
comparable power (see simulation results below). Thus, it is comforting 
that their associations with the various traits are generally compatible. 
With multiple-comparison adjustment, the difference between the 
BSPC and the WSPC pPGS associations is not significant for any of the 
traits. Considering that the TNTC pPGS is based on a smaller sample 
size, its association results are also in general agreement. This shows 
that the data errors impacting TNTC and WSPC have only a small effect 
on polygenic score prediction. Indeed, even without adjustments, the 
TNTC and WSPC pPGSs give associations (Supplementary Table 1) 
similar to those in Table 1.

We constructed a combined pPGS using the results from all three 
comparisons (Methods). Its strongest association is with educational 
attainment (EA) where the effect (in standard deviation (s.d.) units) is 
0.0309 with P = 3.9 × 10−53. The effect, 0.0300, is nearly as strong for 
age-at-first-birth (AFB) of women (P = 8.6 × 10−21). The next strongest 
association, notably negative, is with BMI (P = 4.0 × 10−22 ). These 
results, consistent with the known differences in EA and BMI between 
the UKBB sample and population14,17, validated that our GWAS per-
formed without phenotype data can nonetheless capture genetic 
associations with participation.

Some UKBB participants were invited to answer a dietary study 
questionnaire in 2011–2012 (ref. 16), and some were invited to a physical 
activity study in 2013–2015 that required wearing an accelerometer 
for a week15. Not everybody was invited (criteria included having  
a valid email address) and only a subset of those invited actually par-
ticipated. We call participation in these follow-up studies ‘secondary 
participation’. For the dietary study, the estimated effect of the com-
bined pPGS on being invited, in loge odds-ratio ( log (OR)), is 0.0342 
(P = 4.8 × 10−16 ; Table 1). For those invited, the estimated effect  
on actual participation in log(OR) is 0.0272 (P = 2.5 × 10−7). For the 
physical activity study, the corresponding estimates are 0.0277 
(P = 1.1 × 10−12) and 0.0300 (P = 6.4 × 10−8).

Associations with the combined pPGS were further examined 
adjusting for EA (Table 1). For traits/variables with P < 1 × 10−3 origi-
nally, the adjusted effects shrink but all remain significant. Relatively, 
the effect on participating in the physical activity study when invited 
shrinks the least, by 18%, from 0.0300 to 0.0246, while the effect on 
dietary study invitation shrinks by 38%, from 0.0342 to 0.0213. This 
difference in shrinkage is partly because the estimated effect of EA on 
dietary study invitation is 0.4661, much larger than its effect on physical 
activity study participation, 0.1826. From the EA effects alone, the 
ascertainment bias would seem to be much stronger with dietary study 
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invitation. By contrast, the genetic component of the ascertainment 
bias for physical study participation is stronger than that for dietary 
study invitation after EA adjustment. Thus, while the participation 
genetic component is associated with EA, its effect on other traits is 
not manifested mainly through EA. Importantly, phenotypes known 
to correlate with participation do not fully capture the nature and 
magnitude of the ascertainment bias. When males and females are 
analyzed separately for the traits/variables in Table 1 (Fig. 3), no sig-
nificant difference is found for the pPGS effects with multiple- 
comparison adjustment. Furthermore, while UKBB participation rates 
differ by sex and age14, the combined pPGS is associated with neither 
(P > 0.05), implying that the effect of the combined pPGS is additive 
to the effects of sex and age on participation, with no detectable  
statistical interactions. This, however, does not rule out the existence 
of variants with strong differential effects for the sexes as the combined 
pPGS is based on GWASs that are not sex specific and thus not designed 
to capture such variants.

Advancing from hypothesis testing to parameter estimation, we 
note that the UKBB did not recruit families, and participants were all 
adults providing their own consent13. Under these conditions, for alleles 
associated with participation, relative frequencies in different groups 
of individuals and genetic segments depend on many factors, most 
important of which are overall participation rate, denoted here by α, 
and the participation rate of close relatives of participants (Fig. 4 and 

Extended Data Fig. 8). For sib-pairs, the participation rate of an indi-
vidual given that its sibling participates divided by α  is the sibling 
recurrence participation rate ratio, denoted by λS. Simulating from a 
simplified scenario where the population consists of a set of sib-pairs, 
we examined the relationships between allele frequencies in various 
groups of individuals and segments (Fig. 4 and Extended Data Fig. 8; 
Methods). We assumed a liability-threshold model where a person 
participates if the liability score is above a certain threshold (Methods). 
Given α, the correlation of siblings’ liability scores, induced by both 
genetic and nongenetic factors, determines λS. Results based on assum-
ing α = 5.5%, the participation rate of UKBB, are presented here. For an 
SNP, let fpop and Fsamp denote respectively the frequency of allele 1  
in the population and in the participants. Allele 1 is assumed to have a 
positive participation effect. Results highlighted here are frequency 
differences relative to (Fsamp − fpop). The latter has the following rela-
tionship with the frequency difference between participants and 
nonparticipants:

(Fsamp − fpop) = (1 − α)(Fsamp − Fnonparticipants). (4)

In Fig. 4, the simulated averages of the ratios

FIBD1S − FIBD1NS
Fsamp − fpop

(5)

Identify �rst-degree relatives

Sibling pairsParent–o�spring pairs

Identify regions with 0, 1 and 2 alleles shared
IBD (IBD0, IBD1, IBD2)

Trim 250 SNPs in the beginning and end
of each IBD region for each sibling pair

IBD1 IBD2 IBD0

Infer IBD shared allele (use phasing
information for double heterozygotes)

Compute the TNTC statistics Compute the WSPC statistics Compute the BSPC statistics

Two-step allele-frequency-
based adjustment

Two-step allele-frequency-
based adjustment

For each SNP, combine the adjusted
TNTC, WSPC statistics with the unadjusted

BSPC statistic into one test statistic

Compute PGS

Test association between
PGS and phenotypes

Examine PGS
di�erences between

siblings and unrelateds

Estimate genetic correlations
and heritability

with LD score regression

Fig. 2 | Flowchart summarizing the procedure implemented to test genetic 
variants for association with primary participation using genotypes of 
participants only. Core steps are shown as yellow rectangles. The procedure 
involves dividing the data into different data groups, shown here as blue 

rectangles. Gray rectangles show additional quality control steps, implemented 
to reduce or adjust for genotyping and data-processing errors. Pink rectangles 
show within-study validation steps.
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and

FIBD2 − FIBD0
Fsamp − fpop

(6)

are nearly identical, indicating that WSPC and BSPC are capturing real 
effects in a similar manner. Both ratios are close to 1 when λS is close 
to 1, and decrease gradually as λS increases. For λS = 2, the reported 
UKBB sib-pair enrichment, the ratios are around 0.86. Results here are 
simulated from an SNP with fpop = 0.5 and with effect accounting for 
0.1% of the variance of the liability score. Ratios for other parameter 
values are similar if the individual SNP effect is small. Results in  
Fig. 4 are for the genotype having an additive effect. Assuming allele 1 
has a dominant effect, (FIBD2 − FIBD0), is about 10% smaller than 
(FIBD1s − FIBD1NS). For a recessive model, (FIBD1s − FIBD1NS)  is about  
8% smaller than (FIBD2 − FIBD0) . Based on the same set of sib-pairs,  
BSPC and WSPC are directly comparable. TNTC is based on a  
separate set of participant pairs and thus relative effects of SNPs  
can differ. Reasons include the parents being older and the asymmet-
ric relationship between parent and offspring (Supplementary Note  
section 6).

Alleles in the unrelateds are not IBD shared through a recent com-
mon ancestor with any other participant, while participants with close 
relatives participating have both shared and not-shared alleles. This 
leads to the second principle.

Second principle of genetic induced ascertainment bias. The sec-
ond principle is that alleles that promote participation would have 
different frequencies in participants with participating close relatives 
and in those without. In most cases, the frequencies in the former would 
be higher. From the same simulations, Fig. 4 displays the simulated 
average of the ratio

FSIBS − FSING
Fsamp − fpop

(7)

where FSIBS  is the allele frequency in the participating sibling  
pairs, and FSING  (SING denotes ‘singletons’) is the allele frequency  
in the participating individuals whose sibling does not participate. 
Examining this empirically without overfitting, we randomly  
partitioned the UKBB sibling pairs into two halves. The pPGS with 
weights derived from the GWASs using data of the first half (pPGS1) has 
average value for the second half of the sibling pairs that is 0.044 s.d. 
higher than that of the unrelateds (P = 5.0 × 10−6) . In reverse, the  
first half of the sibling pairs have average pPGS2 value, weights derived 
from the second half, that is 0.026 s.d. higher than the unrelateds 
(P = 8.5 × 10−3).

Genetic correlation and heritability. We applied LD score regression 
using LDSC21 to estimate the correlations between the genetic compo-
nent underlying primary participation and the genetic components of 

Table 1 | Primary pPGSs association with phenotypes

Phenotypes TNTC pPGS WSPC pPGS BSPC pPGS Combined weights 
pPGS

Combined weights 
pPGS adjusted for EA

Sample size

Quantitative Effect P value Effect P value Effect P value Effect P value Effect P value N

EA 0.0094 3.5 × 10−6 0.0231 3.0 × 10−30 0.0198 1.1 × 10−22 0.0309 3.9 × 10−53 - - 260,950

AFB (women) 0.0084 8.9 × 10−3 0.0196 1.1 × 10−9 0.0223 3.4 × 10−12 0.0300 8.6 × 10−21 0.0197 1.1 × 10−10 98,653

BMI −0.0112 9.9 × 10−9 −0.0077 8.1 × 10−5 −0.0147 4.5 × 10−14 −0.0189 4.0 × 10−22 −0.0148 6.5 × 10−14 271,535

HDL cholesterol 0.0038 7.5 × 10−2 0.0065 2.2 × 10−3 0.0095 7.8 × 10−6 0.0118 3.0 × 10−8 0.0085 7.5 × 10−5 237,785

Height 0.0035 9.1 × 10−2 0.0089 1.5 × 10−5 0.0028 0.17 0.0087 2.1 × 10−5 0.0043 3.6 × 10−2 271,820

Glycated hemoglobin −0.0072 3.7 × 10−4 0.0009 0.66 −0.0057 5.2 × 10−3 −0.0060 3.0 × 10−3 −0.0039 5.9 × 10−2 259,594

Number of siblings −0.0042 3.9 × 10−2 −0.0044 3.1 × 10−2 −0.0008 0.69 −0.0050 1.4 × 10−2 −0.0003 0.89 268,191

Number of children −0.0013 0.51 −0.0037 5.7 × 10−2 −0.0029 0.13 −0.0047 1.5 × 10−2 −0.0030 0.13 271,317

Glucose −0.0006 0.79 −0.0041 4.6 × 10−2 −0.0020 0.33 −0.0041 4.9 × 10−2 −0.0028 0.18 237,629

Vitamin D −0.0006 0.75 −0.0019 0.35 −0.0010 0.63 −0.0020 0.32 −0.0005 0.82 249,079

Sex hormone binding 
globulin

0.0074 4.1 × 10−4 0.0021 0.31 −0.0039 6.2 × 10−2 0.0019 0.37 0.0020 0.35 235,960

Grip strength −0.0024 0.21 0.0010 0.62 −0.0009 0.63 −0.0010 0.60 −0.0023 0.24 270,525

Lipoprotein A −0.0017 0.41 −0.0026 0.20 0.0022 0.27 −0.0009 0.66 −0.0005 0.82 251,698

Testosterone 0.0031 0.11 0.0023 0.25 −0.0031 0.12 0.0008 0.70 0.0009 0.65 257,570

Binary log(OR) P value log(OR) P value log(OR) P value log(OR) P value log(OR) P value Ncase/Ncontrol

Dietary study invitation 0.0091 3.1 × 10−2 0.0244 7.2 × 10−9 0.0237 1.9 × 10−8 0.0342 4.8 × 10−16 0.0213 1.3 × 10−6 166,993/105,416

Dietary study 
participation

0.0150 4.3 × 10−3 0.0123 2.0 × 10−2 0.0207 8.4 × 10−5 0.0272 2.5 × 10−7 0.0199 2.4 × 10−4 54,124/112,869

Physical activity study 
invitation

0.0137 4.2 × 10−4 0.0163 3.0 × 10−5 0.0184 2.2 × 10−6 0.0277 1.1 × 10−12 0.0182 6.5 × 10−6 132,633/139,776

Physical activity study 
participation

0.0170 2.2 × 10−3 0.0203 2.4 × 10−4 0.0159 4.2 × 10−3 0.0300 6.4 × 10−8 0.0246 1.6 × 10−5 59,455/73,178

Regression was used for analyzing quantitative traits and logistic regression was used for binary traits. Displayed are fitted coefficients (Effect/log(OR)) and P values from regressing 
phenotypes on the pPGS in a subset of White British unrelateds, taking sex, year of birth, age at recruitment, genotyping array and 40 principal components (PCs) into account (Methods). Grip 
strength was additionally adjusted for height. The pPGS and the quantitative phenotypes were transformed to have a variance of 1 and thus effect is in s.d. units. When computing P values, to 
account for population stratification, the standard errors of the test statistics (t-tests for quantitative phenotypes and z-tests for binary phenotypes) are adjusted using the LD score regression 
intercept (Methods). P values are two-sided without multiple-comparison correction. Association results for four different pPGSs are shown with weights derived from (1) TNTC with a two-step 
allele-frequency-based adjustment, (2) WSPC with a two-step allele-frequency-based adjustment, (3) BSPC and (4) a linear combination of TNTC, WSPC and BSPC results (Combined weights). 
Also shown are association results for the combined pPGS adjusted for educational attainment (EA).
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Fig. 3 | Sex-specific analysis of pPGS associations. Centers of error bars 
correspond to effect estimates in Table 1 for the pPGS based on combined 
weights; here, the association analyses were performed for male (blue error bars) 
and female (red error bars) unrelateds separately. Error bars correspond to  

95% CI (estimate ±1.96 s.e.). Quantitative phenotypes were standardized to have 
a variance of 1 in males and females separately (Supplementary Note section 5). 
For secondary participation traits, the sample size shown equals number of cases 
plus controls.
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Fig. 4 | Relative frequency differences as functions of sib-pairs enrichment in 
sample. For α = 0.055, the participation rate of UKBB, three frequency 
difference ratios of an SNP (indicated in the figure) with participation effects  
are displayed as functions of the sibling recurrence participation rate ratio, λS.  
The results are from simulations under a liability-threshold model where the 
participation of an individual is determined by its liability score and the 
participation rate α. Given α, λS is a function of the correlation between the 
liability scores of two siblings (Methods). In particular, for α = 0.055, a 
correlation of 0.193 between the siblings’ liability scores leads to λS = 2,  
the reported enrichment of sib-pairs in the UKBB data. We simulated 500 
replications from a population of 5× 107 sib-pairs. Allele 1 of the SNP is assumed 

to have a population frequency of 0.5 and the effect of the SNP is assumed to 
account for 0.1% of the variance of the liability score. The simulated averages of 
the two ratios, (FIBD1S − FIBD1NS)/(Fsamp − fpop) and (FIBD2 − FIBD0) / (Fsamp − fpop) , 
shown with red hollow squares and blue solid triangles respectively, are virtually 
indistinguishable from each other; they are roughly 1 when λS is close to 1 and 
decrease gradually as λS increases, but are always positive. The simulated average 
of the third ratio (FSIBS − FSING)/(Fsamp − fpop) , where FSIBS  is the allele frequency 
in the participating sibling pairs and FSING is the allele frequency in the 
participating individuals whose sibling does not participate, is shown with gray 
solid circles. For λS = 2, the first two ratios are around 0.86 and the third ratio is 
around 0.32.
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other traits included in Table 1. Results for traits where the 95% confi-
dence interval (CI) for the correlation excludes zero are in Table 2. For 
primary participation, the data errors that affect TNTC and WSPC are 
found to induce a bias in the χ2 statistics that is negatively correlated 
with the LD scores (Methods). While the described adjustments reduce 
the problem (Supplementary Note section 3; Methods), to avoid resid-
ual artefacts, the LDSC results here are based on BSPC only. For the 
other traits, GWAS results are based on the same unrelateds used for 
the results in Table 1 (Methods). While the primary participation genetic 
correlations with EA and the secondary participation traits are all 
significantly positive and substantial, they are all below 0.5. That could 
be partly because, while BSPC captures only direct genetic effects, the 
other GWASs were performed in the ‘standard’ manner and thus capture 
population effects that include both direct and nondirect genetic 
effects9,10. Genetic correlation estimates based on the adjusted WSPC 
results (Supplementary Table 2) are not very different. However, further 
research is needed to determine how best to use the WSPC and TNTC 
results for genetic correlation estimates.

Using the BSPC GWAS results, we obtained an estimate of 12.5% 
for the heritability of the liability score underlying primary participa-
tion (Methods). This required making several adjustments to the 
LDSC-estimated heritability and involved utilizing the 0.86 estimated 
value for the ratio (FIBD2 − FIBD0)/ Fsamp − fpop) (Supplementary Note 
section 7; Methods). For α = 0.055, heritability of 12.5% would mean 
that the average value of the genetic component underlying the liability 
score is 0.72 s.d. higher for the participants than the population.  
Heritability estimates for the liability scores underlying the secondary 
participation events are distinctly smaller, ranging from 3.4% to 6.2% 
(Supplementary Table 3). This could be partly because these heritabil-
ity estimates are computed from a biased sample. Notably, studying 
secondary participation is not the same as studying the bias underlying 
the primary sample, which affects everything that follows.

Third principle of genetic induced ascertainment bias. If genetics 
contribute to participation, there would be more close relative pairs 
among the participants than what is expected if participation is  
random. The third principle holds because if a participant has an above 
average genetic propensity to participate, so would its close relatives. 
Even though UKBB did not purposefully recruit families, the number 
of sib-pairs are twice as many as expected under random sampling13. 
It was speculated that mutual consultation and possibly shared envi-
ronment contributed to correlated participation of close relatives13. 

Another likely contributor is shared DNA. With the liability-threshold 
model, α = 0.055  and λS = 2.0  correspond to a 0.193 correlation 
between the liability scores of sib-pairs. Assuming the liability score 
heritability is 12.5%, the direct genetics effect can account for 
(0.125/2)/0.193 = 32% of the liability score correlation.

Discussion
Participation bias, a concern for all sample surveys, is becoming increas-
ingly relevant in the age of ‘Big Data’1,3. In addition to obvious pitfalls, 
it could induce, for genetic studies, more subtle consequences that 
include collider bias17 and the introduction of artificial epistatic effects 
(Supplementary Note section 8). Here, we show how ascertainment bias 
leaves footprints in the genetic data that can be exploited to study the 
bias itself. Our approach shares some principles with affected sib-pairs 
linkage analysis22. However, whereas the latter relies only on IBD, our 
method is an IBD-based association analysis.

Two of the three comparisons we proposed are sensitive to geno-
typing and phasing errors. This complicates analyses, but also creates 
a secondary usage of our method as a data-quality monitoring tool, like 
the Hardy–Weinberg equilibrium (HWE) test. For example, results that 
are significantly different between WSPC and BSPC at the MHC region 
would indicate data or data-processing problems. Furthermore, note 
that the genotyping-error induced bias also affects the transmission 
disequilibrium test—a test usually considered as fully robust.

There can be a common genetic component underlying many 
different participation events, for example, the pPGS constructed 
for primary participation associates with both the passive (being 
invited) and active (deciding to participate when invited) phases of 
the secondary participation events. Thus, the effect of a genetic com-
ponent associated with participation could accumulate through many  
participation events of a person’s lifespan, or it can be magnified 
through nested participation, for example, the participants in the 
dietary and physical activity studies have higher average genetic pro-
pensity to participate than the other UKBB participants, who have 
higher average propensities than the population. Instead of thinking of 
participation as a consequence of other characteristics and established 
traits, we propose that the propensity to participate in a wide range of 
events is a behavioral trait in its own right. While our method exploits 
information previously not utilized, even more could be achieved by 
combining it with other available information.
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Methods
Genetic data
The UKBB has a Research Tissue Bank approval (Research Ethics 
Committee reference 21/NW/0157) from the North West Multicenter 
Research Ethics Committee, and all participants gave informed con-
sent. For our data application, we used the UKBB 500K data release 
previously described by Bycroft et al.13. We filtered out individuals 
that had withdrawn consent, were not in the kinship inference and 
phasing input, had a duplicate/twin in sample, with excess of third 
degree relatives, with missing rate above 2% as well as heterozygosity 
and missingness outliers and those who showed potential sex chromo-
some aneuploidy or potential sex mismatch.

The current analysis started with 658,565 biallelic sequence vari-
ants in the UKBB phased haplotype data13. We refer to them as SNPs 
even though a very small fraction are short indels. Compared with 
standard GWAS, some of our analyses are more sensitive to data arte-
facts. Thus, we applied a number of filters to the SNPs in addition to 
those applied by Bycroft et al.13 (see Supplementary Note section 4 
for details). Together with the trimming described below, association 
results were obtained for 500,632 high-quality SNPs.

Identifying relatives and the group of unrelateds
Using kinship coefficients from the UKBB data release, we identi-
fied 16,668 White British sib-pairs (42.4% male, mean (year of birth 
(YOB)) = 1950.8), and 4,427 White British parent–offspring pairs  
(parents: 31.0% male, mean (YOB) = 1941.7; offsprings: 38.9% male, 
mean (YOB) = 1965.0, Supplementary Note section 1). White British 
descent was determined from self-identified ancestry and PC analysis13. 
For sibling-ships with more than two siblings, the first two participat-
ing siblings were chosen. Sib-pairs and parent–offspring pairs were 
chosen to have no overlap. Within the White British subset, 272,409 
individuals have no relatives within the UKBB of third degree or 
closer (46.7% male, mean (YOB) = 1951.3). Those are referred to as the  
‘unrelateds’ here.

Inferring IBD segments and trimming
We inferred IBD segments for sibling pairs using snipar9, a program 
designed for sib-pairs. Compared with KING18 (v.2.2.4) a program not 
tailored for sib-pairs, snipar entails a substantial improvement in IBD 
estimation (Extended Data Fig. 2). Neither program uses phasing infor-
mation as input. Considering the uncertainty around recombination 
events, we trimmed away 250 SNPs from the beginnings and ends of the 
inferred IBD segments before tabulating allele frequencies (Extended 
Data Fig. 3). This removed 11,000 SNPs all together (2 × 250 × 22) and 
reduced the sample sizes for the remaining SNPs (median reduction 
of 1,565 sibling pairs).

Inferring shared allele
For a biallelic SNP and a relative pair, there are five possible unor-
dered combinations of genotypes for IBD1. The IBD shared allele is 
clear except when both individuals are heterozygous. For that, the 
phasing information provided13 was utilized. The closest neighboring  
SNP, for which one individual was heterozygous and the other 
homozygous, was identified and used to determine the shared 
haplotype and, through that, the shared allele of the target SNP  
(Extended Data Fig. 4).

Test statistics
For each SNP, we computed separate t-statistics for TNTC, WSPC and 
BSPC, by dividing each of the frequency differences, equations (1) 
to (3), by its s.e. For TNTC and WSPC, the s.e. values were computed 
assuming the shared versus not-shared frequency differences of each 
pair were independent of each other. For BSPC, for every SNP, the allele 
frequencies computed for individual sibling pairs, whether IBD0 or 
IBD2 pairs, were assumed to be independent of each other. No further 

assumptions, for example, HWE or independence of genotypes of two 
siblings in the IBD0 case, were made. Essentially, TNTC and WSPC were 
treated as one-sample t-tests (of differences), and BSPC were treated 
as a two-sample t-test. Specific equations are given in Supplementary 
Note section 2, which also contains information on sample sizes.

Sources of errors inducing the major-allele bias in the test 
statistics
When the initial results for all the SNPs were examined together, the 
t-statistics showed a tendency towards favouring the major allele as 
having higher frequency in the shared alleles. We identified three 
sources to this bias:

IBD estimation errors. For every sib-pair, the analysis starts with deter-
mining the IBD status for each SNP. Error here could lead to biases. This 
problem was addressed by replacing the KING18 program by snipar9, as 
noted above. Together with the trimming noted above, the impact of 
IBD estimation errors seems to be mostly eliminated (see Supplemen-
tary Note section 3 for further discussion).

Phasing errors. Phasing errors can induce a systematic major-allele 
bias in the WSPC and TNTC t-statistics. We focus more on WSPC below 
as it captures essential the same real effects as BSPC. The induced bias 
on TNTC is similar.

For TNTC and WSPC, when the genotypes of both relatives are 
heterozygous, to determine the shared allele, we use phased haplo-
types that include neighboring SNPs. Phasing errors can thus induce 
a bias. Let the frequency of allele 1 be fpop = f. For simplicity, assume 
the SNP is in HWE in the population and not associated with participa-
tion. When two siblings share one allele IBD and both are heterozygous, 
the chance that the shared allele is 1 is (1 − f) . Let εf , a function of f , be 
the error rate of calling the shared allele 0 when it is actually 1. By sym-
metry, the error rate of calling the shared allele 1 when it is actually 0 
is ε1−f . Because the probability of the shared allele being actually 1 is 
(1 − f), the induced bias of the two type of errors combined is 
fε1−f − (1 − f) εf . For f > 0.5, the bias is positive if

εf
ε1−f

< f
1 − f

(8)

Using data from 739 UKBB trios, where the shared allele between 
a parent–offspring pair in the double-heterozygotes case could be 
resolved by the genotype of the other parent, we estimated εf  
(Extended Data Fig. 5), which satisfies equation (8). More details 
about the quantitative results and the induced bias on the t-statistics 
are given in Supplementary Note section 3. One observation, high-
lighted by Extended Data Fig. 6, is that, for SNPs with MAF > 0.10 , 
around 50%  of the observed bias of the WSPC t-statistics can be 
explained by the double-heterozygote errors. However, as MAF 
becomes small, the fraction of the empirical bias explainable by 
double-heterozygote errors decreases, for example, to 21% when 
MAF = 0.01. We believe genotype-calling errors are responsible for 
the additional bias.

Genotyping errors. Genotyping errors can induce a systemic bias to 
the WSPC and TNTC statistics. Simulations show that random errors 
where each genotype has a small probability to be replaced by a random 
genotype drawn from the population would induce a bias on 
FIBD1S − FIBD1NS  which is positive if allele 1 has frequency >0.5. This  
happens even though such error mechanism would not even change 
the sampling distribution of the called genotypes. Furthermore, geno-
type error rate is known to be higher for SNPs with lower MAFs. We 
believe the main driving force of the major-allele bias is the minor allele 
being overcalled in the not-shared alleles (explanation in Supplemen-
tary Note section 3).
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Two-step adjustment: adjustments of t-statistics and χ2 
statistics
For WSPC and TNTC, separately, we made a simple adjustment by 
regressing the t-statistics on centred allele frequency (cf), cf = ( f − 0.5), 
through the origin and took the residuals as the adjusted values. This 
corresponds to deducting (0.6464 × cf )  and (0.3781 × cf )  from the 
unadjusted t-statistics of WSPC and TNTC, respectively. This adjust-
ment avoids artificial association with other GWASs that are also sub-
ject to a major-allele bias, but resulting from a different mechanism. If 
the other GWASs exhibit major-allele biases for the same reasons,  
this adjustment would reduce, but not eliminate, an artificial 
association.

Effect of the major-allele bias on the χ2 statistics. The errors underly-
ing the major-allele bias of the t-statistics would also inflate the average 
values of the χ2 statistics. The t-statistic adjustment above will reduce, 
but not eliminate, this inflation. This is because the adjustment is based 
on allele frequency, that is, it removes the average bias of alleles with 
similar frequency. As SNPs with similar allele frequency will have biases 
that vary around the average, the variation of the adjusted t-statistics 
would still be inflated, and through that inflate the average value of the 
χ2 statistics. Notably, the average χ2 value for BSPC is 1.011 for the 

500,632 SNPs, 1.025 for the 110,533 SNPs with MAF > 0.25, and 1.007 for 
the 390,099 SNPs with MAF < 0.25. By contrast, for WSPC, the corre-
sponding average χ2 values are 1.136, 1.039 and 1.163, respectively, 
without t-statistic adjustment, and 1.074, 1.029 and 1.086, respectively, 
after adjustment. With t-statistic adjustment, the average χ2 value for 
WSPC is only modestly inflated relative to BSPC for SNPs with 
MAF > 0.25, but remain substantially inflated for SNPs with MAF < 0.25. 
Moreover, while the χ2 statistics for BSCP are slightly positively cor-
related with MAF (r = 0.006), the χ2 statistics for WSCP, even with 
t-statistic adjustment, have a larger but negative correlation with MAF 
(r = −0.021). The latter is because the major-allele bias of an SNP 
increases as MAF decreases. The negative correlation between the 
WSPC χ2 values and MAF is problematic for the application of LD score 
regression as the LD scores have a substantial positive correlation 
(r = 0.35) with MAF. Without further adjustments, applying LD score 
regression to the WSPC χ2 values gives a negative fitted slope, or a 
negative estimated heritability. To address this, we performed MAF
-specific genomic control. Specifically, we started by regressing the χ2 
values computed from the adjusted t-statistics on polynomial of MAF 
up to the third power. The fitted values of the χ2 values as a function of 
MAF are displayed in Extended Data Fig. 7. The χ2 values were then 
adjusted by dividing the original values by the fitted values. By con-
struction, these χ2  values have average equal to 1. Taking the 
square-root and multiplying by the sign of the adjusted t-statistics gave 
the ‘final’ z-(or t-) scores of the WSPC GWAS. The same method was 
used for the TNTC GWAS. These z-scores were used to evaluate the 
significance of individual SNPs and to compute the polygenic scores 
used for Table 1. These adjustments reduce the impact of the artefacts, 
but the results are still imperfect (see Supplementary Note section 3 
for further discussion). Thus, the LD score regression estimates of 
genetic correlations in Table 2 of the main text are based on the BSPC 
results only, and so is the heritability estimate given. However, the 
estimates in Supplementary Table 2, based on the adjusted WSPC 
results, are broadly consistent with those in Table 2, supporting that 
the adjustments have reduced the problems that arise in the application 
of LD score regression.

When we use the GWAS results to construct polygenic scores, we 
find the adjustments described above to have a very small effect on the 
predictive power of the polygenic scores. In particular, the polygenic 
score constructed from the WSPC t-statistics, with or without adjust-
ments, has very similar predictive power as the polygenic score con-
structed from the BSPC t-statistics (Table 1 and Supplementary Table 1).  
This is because the bias is quite small per SNP for this 

filtered set and so would only be adding a little noise to the polygenic  
score prediction.

Polygenic score analysis
The pPGS was computed with PLINK 1.90 (ref. 24) by summing over 
the weighted genotypes of the 500,632 SNPs fulfilling quality control, 
using the z- (or t-) statistics from the primary participation GWASs as 
weights. The relationship between the pPGS, standardized to have a 
variance of 1, and the phenotypes in Table 1 was estimated with a linear 
regression and logistic regression in R (v.3.4.3) in the group of White 
British unrelateds, taking sex, YOB, age at recruitment, genotyping 
array and 40 PCs into account. The quantitative phenotypes were 
transformed to have a variance of 1 for men and women separately (for 
further information see Supplementary Note section 5). To account 
for population stratification, the P value for each pPGS-phenotype 
association was adjusted through dividing the squared test statistic 
(t-test for quantitative phenotypes and z-test for binary phenotypes) 
by the LD score regression intercept estimated from GWAS summary 
statistics for the corresponding phenotype (see below).

LD score regression
We performed LD score regression with the program LDSC (v.1.0.1)  
(ref. 19) using the European Ancestry LD scores computed by the 
Pan-UKB team23 (downloaded on 7 April 2021). Analyses were based 
on the 500,632 SNPs used to compute the pPGS.

LD score regression intercepts and genetic correlations were 
estimated for the primary participation test statistics described above 
and the phenotypes shown in Table 1. We obtained summary statistics 
for the phenotypes shown in Table 1 by running GWASs in the group 
of White British unrelated individuals in the UKBB using BOLT-LMM 
(v.2.3) (ref. 25). For quantitative phenotypes, which had been adjusted 
for sex, age, YOB and 40 PCs and transformed to have variance of 1 as 
described in Supplementary Note section 5, genotyping array was 
added as an additional covariate in the GWASs. For the binary pheno-
types, YOB, age at recruitment up to the order of three, 40 PCs, sex and 
genotyping array were added as covariates. For LD score regression, 
we used the standard linear regression P values, P_LINREG, from the 
BOLT output. Heritability of participation traits was estimated for a 
liability-threshold model (see below).

Liability-threshold model for participation of individuals and 
sib-pairs
The liability-threshold model assumes that a liability score, denoted 
here by X , underlies a 0/1 trait or response. X  is assumed to have a 
standard normal distribution (or roughly so). Let I  be the 0/1 partici-
pation variable, and participation rate is P (I = 1) = α . It is assumed  
that I = 1 if X > τ, where τ = Φ−1(1 − α) and Φ is the cumulative distribu-
tion of the standard normal. Correlation of participation between 
individuals is modeled through the correlation of their liability scores.

For n sib-pairs, let i = 1,… ,n index the pairs and j = 1, 2 index the 
two siblings in a pair. Focusing on one SNP with its standardized geno-
type denoted by g, the liability of sibling ij is modeled as

Xij = w1gij + wAAi +wBBij (9)

where Ai and Bij are standard normal variables. The variables Ai, Bi1 and 
Bi2 are assumed to be independent of gi1 and gi2, and each other. Ai 
captures effects from shared environment as well as shared genetic 
factors other than g. We assume w2

1 +w2
A +w2

B = 1  so that var(Xij) = 1. 
Because cor(gi1, gi2) = 1/2, cor (Xi1, Xi2) = w2

A +w2
1 /2.  Here Xij is not  

exactly normally distributed because of gij, but it is close if w1 is small.

Simulations to study relationships between various frequency 
differences of an SNP. Results in Fig. 4 were simulated with α = 0.055, 
the participation rate of UKBB. Allele 1 of the SNP is assumed to have a 
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population frequency of 0.5 and a positive participation effect with 
w2
1 = 0.001 . Sixteen different values of wA are chosen so that 

cor (Xi1, Xi2) = w2
A +w2

1 /2 takes on values of 0.0005, 0.025, 0.050, 0.075, 
0.100, 0.125, 0.150, 0.175, 0.193, 0.225, 0.250, 0.275, 0.300, 0.325, 0.350 
and 0.375. Notably, cor (Xi1, Xi2) = 0.193 leads to λS = 2.0, the reported 
sibling enrichment in UKBB13.

Simulations for dominant and recessive models were performed 
similarly. For the dominant model, the gij in the liability score defini-
tion is taken as the standardized version of a 0/1 variable, which is 1 if 
the actual genotype is 1 or 2, and 0 otherwise. For the recessive model, 
gij is the standardized version of a 0/1 variable, which is 1 if the actual 
genotype is 2.

Estimating heritability for liability scores
Here, we show how the heritability of the participation traits were 
estimated, starting with secondary participation. When the LDSC 
program is given the χ2  statistics and sample sizes for a set of 
genome-wide SNPs, the heritability estimate produced is an estimate 
of the fraction of variance of the trait accountable by the genetic com-
ponent, or r2 between trait and the genetic component. If genetic 
component G influences the participation variable I  through liability 
score X , then

cor (G, I) = cor (G,X) × cor (X, I) (10)

Heritability of X  and I  thus satisfy

h2 (X) = h2 (I)
cor2 (X, I)

(11)

with

cor(X, I) = E(XI) − E(X)E(I)
√(var(X)var(I))

= αE(X|I = 1)
√α(1 − α)

=
α ϕ(τ)
1−Φ(τ)

√α(1 − α)
= ϕ(τ)
√α(1 − α)

(12)

where ϕ is the density function of the standard normal and E stands for 
expectation. Consider the Dietary Study invitation event. Feeding the 
LDSC program the χ2 statistics from the GWAS analyses and a sample size  
of 272,409 (166,993 invited; 105,416 not-invited), the heritability esti-
mate is 0.0372. Here α = 166993/272409 = 0.613,  τ = Φ−1 (1 − 0.613) =
−0.287, and cor (X, I) is 0.786. The heritability of X  is estimated as the 
estimated heritability of I  multiplied by the adjustment factor 
[1/cor2 (X, I)], or

0.0372 × 1
0.7862

= 0.060 (13)

The heritability of the liability scores of the other secondary 
participation events are similarly estimated. The r2 between a genetic 
component, or the genotype of an individual SNP, is weaker, or sta-
tistically less efficient, with I  than with X . In this sense, the adjust-
ment factor is inversely proportional to the statistical efficiencies 
of the test statistics used, a principle that also applies to the two 
other adjustments described below. Moreover, Supplementary Note 
section 7 describes how the adjustment could be alternatively 
applied through providing the LDSC program with modified  
sample sizes.

With primary participation, heritability estimation requires the 
adjustment step above plus two others because the BSPC results are 
not direct comparisons of genotypes of participants and nonpartici-
pants. Let nIBD2 and nIBD0 be the respective number of IBD2 and IBD0 
pairs at the SNP location. Feeding the LDSC program the χ2 statistics 
from the BSPC GWAS with number of ‘cases’ equals nIBD2 and number 
of controls equals 2 × nIBD0, the estimated heritability given is 0.0838. 

Here α = 0.055, τ = 1.598 and cor (X, I) = 0.488. Hence, the first adjust-
ment factor is (1/0.488)2 = 4.2. However, the numbers of participants 
and nonparticipants have a 0.055 to 0.945 ratio. By contrast, the cases 
to controls ratio for BSPC is around 1:2, much more efficient as the 
variance of the comparison is roughly proportional to

1
ncases

+ 1
ncontrols

(14)

As variance here is inversely proportional to efficiency, this leads 
to the adjustment factor, for arbitrary n,

1
n×(1/3)

+ 1
n×(2/3)

1
n×(0.055)

+ 1
n×(0.945)

=
3 + ( 3

2
)

18.18 + 1.06 = 0.2338 (15)

There is a third adjustment because the allele frequency difference 
between the IBD2 sibs and the IBD0 sibs is smaller than the frequency 
difference between the participants and nonparticipants. Specifically, 
for α = 0.055 and λS = 2.0, our simulations gave

E [ FIBD2 − FIBD0
Fsamp − fpop

] ≈ 0.86 (16)

Since (Fsamp − fpop) = (1 − α) (Fsamp − Fnonparticipants)

E [ FIBD2 − FIBD0
Fsamp − Fnonparticipants

] ≈ 0.86 × (1 − α) = 0.86 × 0.945 = 0.8127 (17)

Because efficiency is proportional to effect2, the adjustment  
factor is

( 1
0.8127 )

2
= 1.514 (18)

With the three adjustments, the estimated heritability of primary 
participation is

0.0838 × 4.2 × 0.2338 × 1.514 = 0.125 (19)

or 12.5%.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The primary participation GWAS summary statistics generated in 
this study have been deposited to the GWAS catalog under the acces-
sion codes GCST90267220, GCST90267221, GCST90267222 and 
GCST90267223. Researchers can apply for access to individual-level 
UKBB data on their website (http://www.ukbiobank.ac.uk/
register-apply/).

Code availability
The genotype data was handled with QCTOOL v.2.0.1 (https://www.
well.ox.ac.uk/~gav/qctool_v2/) and PLINK24 v.1.90 (https://www.
cog-genomics.org/plink/1.9/) and v.2.00 (https://www.cog-genomics.
org/plink/2.0/). IBD segments of siblings were inferred with snipar9 
(https://github.com/AlexTISYoung/snipar/blob/ff48c642da1e45067a-
fae1e21f5e5e450d4d4ef9/) and also with KING18 v.2.2.4 (https://www.
kingrelatedness.com) for comparison. Statistical analysis were per-
formed in Python v.2.7.11 (https://www.python.org) and R v.3.4.3 
(https://www.R-project.org/). LD score regression intercepts and 
estimates of heritability and genetic correlations were attained with 
LDSC19,21 v.1.0.1 (https://github.com/bulik/ldsc). GWAS summary statis-
tics for the phenotypes shown in Table 1 were attained with BOLT-LMM25 
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v.2.3 (https://alkesgroup.broadinstitute.org/BOLT-LMM/). Scripts for 
reproducing the analysis in the current study are available at https://
github.com/stefaniabe/PrimaryParticipationGWAS (ref. 26).
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Extended Data Fig. 1 | Parental transmissions to sibling pairs. Displayed are 
the 16 possible equally likely combinations of transmissions of parental genetic 
segments to a sibling pair at a given locus. The father has two blue genetic 
segments, one solid and one striped, and the mother has two orange genetic 
segments, solid and striped. The different colors and fills indicate distinct origins 
of inheritance. That is, the four parental genetic segments could be identical by 

state but they are all distinct with regard to grandparental origin. The sibling 
pairs are shown as diamond shapes, each carrying one blue genetic segment 
(solid or striped) inherited from the father and one orange genetic segment 
(solid or striped) inherited from the mother. In the case the siblings share one 
segment IBD (IBD1), 8 out of the 16 combinations, the shared segment is paternal 
for 4 combinations and maternal for the other 4 combinations.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Expected and called fractions of sibling pairs sharing  
0, 1, and 2 alleles IBD. The figure shows, for each SNP, chromosomal position 
(x-axis, build 37) and the estimated IBD fractions among the 16,668 white British 
sibling pairs in UKBB (y-axis). The black solid lines denote the theoretical 
expected fraction for each IBD state, equals 0.25, 0.5, and 0.25 for IBD0, IBD1, and 

IBD2 respectively. The two black dashed lines indicate the theoretical 95% 
probability interval, that is expectation ± 1.96 SD. Figure a) shows the empirical 
sibling fractions for each of the three IBD states computed based on results from 
the program KING18, and figure b) shows the sibling fractions computed with the 
results from the program snipar9.
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Extended Data Fig. 3 | Trimming SNPs at the beginning and end of IBD regions. Noting that the error-rate of inferring IBD state is higher in the beginning and end of 
IBD regions, we trimmed away 250 SNPs from the beginning and end of each called IBD segment.
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Extended Data Fig. 4 | Inferring shared allele for IBD1 when both individuals 
are heterozygous for target SNP. Within the IBD1 region, we search for a 
neighboring SNP for which one individual is heterozygous while the other is 

homozygous. If such a neighboring SNP exists, and is phased with the target SNP, 
the shared allele of the target SNP can be inferred through the shared haplotype. 
This method was also used by Young et al.9 to infer the IBD1 shared allele.
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Extended Data Fig. 5 | Phasing error rate as a function of allele frequency. For 
each biallelic sequence variant, we estimate the phasing error rate (y-axis) from 
trios where the offspring and one parent are heterozygous while the other parent 
is homozygous. The latter allowed us to determine the shared allele without 
using phasing and is taken as the truth. Error is when the shared allele deduced 
through phasing for the double-heterozygotes parent–offspring pair differs 

from the ‘truth’ supported by the genotype of the homozygous parent. The error 
rate here is, for instances where the true shared allele is 1, the fraction of times 
that allele 0 is deduced as the shared allele through phasing. The solid line shows 
the fit from regressing the estimated error rate on allele frequency up to the third 
power in the set of 500,632 SNPs.
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Extended Data Fig. 6 | Estimated bias of the WSPC t-statistics as a function 
of allele frequency. The solid line shows the fit from regressing the unadjusted 
WSPC t-statistics through the origin on centered allele frequency (cf = f - 0.5) 
and cf3 in the set of 500,632 SNPs. The dashed line shows the fit for the estimated 
bias induced by miscalling the shared allele for the double-heterozygotes as 
a function of allele frequency. As described in Supplementary Note section 3, 

the estimated phasing induced bias was computed as 2f (1-f) [fϵ 1-f - (1-f) ϵf]/SEf 
with f being the frequency for the allele coded as 1, ϵ1-f and ϵf being the estimated 
phasing error rate for a given f (see Extended Data Fig. 5) and SEf being the 
standard error of the shared-not-shared allele frequency difference for a given f. 
We note that, mainly due to the variation in sample sizes, SEf has modest variation 
among SNPs with very similar f. For the figure here, a fitted value of SEf is used.
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Extended Data Fig. 7 | χ2 values as a function of minor allele frequency (MAF). 
The two solid lines show the fit from regressing the χ2 statistics, computed from 
the allele-frequency adjusted TNTC and WSPC t-statistics, on MAF up to the third 
power. The t-statistics are for the 500,632 SNPs. The fitted value for a particular 
MAF can be interpreted as the average χ2 values for SNPs with MAFs close to that. 
The broken line is the corresponding fit for the BSPC χ2 statistics. Given that BSPC 
and WSPC capture similar true effects with comparable power, the difference 
between the MAF-specific fitted/average χ2 values is a measure of the average 
inflation of the WSPC χ2 values. Notably, for WSPC, the fitted χ2 value is much 
higher for SNPs with low MAFs. By contrast, the fitted χ2 value for BSPC has an 
increasing trend as MAF gets bigger. When MAF is low, the WSPC fitted χ2 value is 

substantially higher than that of BSPC, indicating that data errors are inducing a 
higher inflation there. As MAF increases, the difference between the WSPC and 
BSPC fitted χ2 values decreases. The fitted χ2 value of BSPC actually becomes 
slightly bigger than that of WSPC for MAF > 0.46, although that difference is not 
statistically significant. This is consistent with the WSPC results being close to 
unbiased when MAF is close to 0.5, which makes sense as the difference between 
major and minor alleles is small, and so is the major allele effect, when MAF is 
close to 0.5. The TNTC fitted χ2 value is in general smaller than that of WSPC. 
That is mainly due to the smaller effective sample size of TNTC, which affects the 
contributions of both the true effect and the bias to the χ2 statistics.
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Extended Data Fig. 8 | Relative frequency differences as a function of 
enrichment of sibling pairs in sample. Displayed are relative allele frequency 
differences for different groups and segments as functions of the sibling 
recurrence participation ratio, λS. These differences are estimated from the same 
simulations underlying Fig. 4 and are described in the main text and Methods. 
FIBD2 and FIBD0 denote the allele frequency among sibling pairs sharing the SNP 

IBD2 and IBD0 respectively, while FIBD1S and FIBD1NS denote the allele frequency 
among the shared and not-shared alleles among sibling pairs sharing the SNP 
IBD1. FSIBS is the allele frequency in the participating sibling pairs, FSING is the allele 
frequency in the participating individuals whose sibling does not participate and 
fpop is the population allele frequency.
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