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Imputation of low-coverage sequencing data 
from 150,119 UK Biobank genomes
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The release of 150,119 UK Biobank sequences represents an unprecedented 
opportunity as a reference panel to impute low-coverage whole-genome 
sequencing data with high accuracy but current methods cannot cope 
with the size of the data. Here we introduce GLIMPSE2, a low-coverage 
whole-genome sequencing imputation method that scales sublinearly in 
both the number of samples and markers, achieving efficient whole-genome 
imputation from the UK Biobank reference panel while retaining high 
accuracy for ancient and modern genomes, particularly at rare variants and 
for very low-coverage samples.

Recent work and method advances1–4 highlight the advantages of 
low-coverage whole-genome sequencing (lcWGS), followed by geno-
type imputation from a large reference panel, as a cost-effective geno-
typing technology for statistical and population genetics. Large-scale 
whole-genome sequencing projects, such as the recent release of 
150,119 samples from the UK Biobank5 (UKB), offer new opportuni-
ties to improve lcWGS imputation, potentially improving accuracy at 
rare variants (minor allele frequency (MAF) < 0.1%). However, current 
methods struggle to scale to the size of this new generation of refer-
ence panels resulting in prohibitive computational costs. To address 
this issue, we propose GLIMPSE v.2 (GLIMPSE2), a major improvement 
of GLIMPSE1, that scales to a reference panel containing millions of 
reference haplotypes, with high imputation accuracy at rare variants 
(MAF < 0.1%) and for very low-coverage samples (0.1× to 0.5×).

To demonstrate the benefits of using sequenced biobanks for 
lcWGS imputation, we phased the recent release of the UKB WGS 
data5,6 using SHAPEIT5 (ref. 7) and created a UKB reference panel of 
280,238 haplotypes and 582,534,516 markers (Supplementary Note 
1). We used the UKB panel to impute lcWGS samples with GLIMPSE2 
and other recently released imputation methods: GLIMPSE1 (ref. 1) 
and QUILT v1.0.4 (ref. 2). Compared to other reference panels, the 
UKB leads to considerable accuracy improvements for British sam-
ples across all tested depths of coverage. Furthermore, GLIMPSE2 
outperforms GLIMPSE1, particularly at rare variants (MAF < 0.1%) 
and for very low-coverage (for 0.1× and 1.0× data at 0.01% MAF, 
GLIMPSE1 and GLIMPSE2 obtain an r2 of 0.561 and 0.892 compared 
to 0.725 and 0.927, respectively) and matches QUILT v.1.0.4 accu-
racy, designed to condition on the full set of reference haplotypes 

(for 0.1× and 1.0× data at 0.01% MAF, QUILT v.1.0.4 obtained an r2 of 
0.728 and 0.925, respectively; Fig. 1a, Supplementary Note 2, Sup-
plementary Figs. 1–3 and Supplementary Tables 2–4). We also find 
that the accuracy of GLIMPSE2 and QUILT v.1.0.4 methods is similar 
when imputing 42 non-European samples from 1,000 Genomes 
Project using the UKB reference panel (Supplementary Note 2, Sup-
plementary Fig. 4 and Supplementary Table 5).

We further investigate the effect of the reference panel by imputing 
individuals of 129 human populations from the Simons Genome Diver-
sity Project and we show that the UKB panel drastically improves impu-
tation accuracy of European samples compared to the 1,000 Genomes 
Project reference panel, in particular of Northern Europe origin, for 
which the UKB reference panel obtains a reduction of non-reference 
discordance rate >67% (Supplementary Note 3, Extended Data Fig. 2 
and Supplementary Fig. 8). Additionally, we imputed three ancient 
Europeans and a Yamnaya sample for which high-coverage data (>18×) 
are available and find similar improvements (Supplementary Note 4 
and Supplementary Fig. 9), showing that some ancient populations, 
such as Viking, Western Hunter-Gatherer and Yamnaya could be well 
imputed from the UKB reference panel.

The imputation of a single lcWGS genome using the UKB refer-
ence panel is expensive or prohibitive using existing methods. On the 
UKB research analysis platform (RAP), the cost is £1.11 and £242.80 for 
GLIMPSE1 and QUILT v.1.0.4, respectively. In contrast, the same task 
performed with GLIMPSE2 only costs £0.08, due to major algorithmic 
improvements that drastically reduce the imputation time for rare 
variants (Fig. 1b, Supplementary Note 2 and Supplementary Figs. 5 
and 6). We confirm this trend for up to 2 million reference haplotypes, 
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To assess the impact of these improvements on genome-wide 
association studies (GWAS), we imputed 10,000 UKB samples that 
we used to test 22 quantitative traits for association, comparing the 
respective abilities of lcWGS and SNP array data to recover the signals 
found with high-coverage sequencing data (Supplementary Note 6). 
We find that 0.5× leads to P values and effect size estimates as accurate 
as those obtained from Axiom array data (Fig. 1d and Supplementary 
Figs. 10–12) while delimiting regions of association with matching 
sensitivity and specificity (Supplementary Note 6 and Extended Data 
Fig. 4). We also look at rare loss-of-function, missense and synonymous 
variants10 and show that 1.0× outperforms the Axiom array for all cate-
gories of variants, an improvement that will be reflected in downstream 

using simulated data (Supplementary Note 2 and Supplementary  
Fig. 7). These improvements in imputation running time and mem-
ory requirements are crucial to keep lcWGS close to single nucleo-
tide polymorphism (SNP) arrays in terms of computational costs8,9  
(Supplementary Note 5) while maintaining the major advantage of 
providing better genotype calls. Indeed, we find that imputation of 
0.5× data yields similar or more accurate results compared to the UKB 
Axiom array, with a notable difference at rare variants (for 0.5× cover-
age, accuracy improvement of r2 > 0.1 for variants with a MAF < 0.01%, 
Fig. 1c). Using simulated SNP arrays, we further confirm that 0.5× yields 
at least the same imputation accuracy as the densest SNP array model 
tested (Omni 2.5 array; Extended Data Fig. 3).
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Fig. 1 | Accuracy, running time and power of low-coverage imputation using 
the UKB WGS data. a,b, Imputation performance of different imputation 
methods: QUILT v.1.0.4 (black), GLIMPSE1 (gray) and GLIMPSE2 (blue); across 
the 1,000 Genomes Project (KGP), HRC and UKB reference panels, for 100 UKB 
British samples at 1.0× coverage. a, Accuracy on chromosome 20 (Pearson 
r2, y axis), of imputation methods and reference panels: KGP (dotted line), 
HRC (dashed line) and UKB (full line). Accuracy is plotted against MAF of the 
appropriate reference panel (x axis, log scale). b, Cost per sample on the RAP for 
whole-genome imputation (y axis, log scale) across different reference panels 
(x axis). c,d, Performance of imputed data using the UKB reference panel across 

coverages (0.1–4.0×, different shades of blue, GLIMPSE2 imputation) and Axiom 
array data (red). c, Accuracy on chromosome 1 of 10,000 UKB British samples 
(Pearson r2, y axis) against MAF of the appropriate reference panel (x axis, log 
scale). d, Power in association testing of 10,000 UKB British samples compared 
to high-coverage data. Correlation of betas and P values (Pearson r2, y axis) of 
different imputed datasets (x axis) across 22 UKB phenotypes. Lower and upper 
limits of the box plots represent the first and third quartiles (Q1 and Q3); the 
median is marked at the center of the box. Lower and upper whiskers are defined 
as Q1 − 1.5 (Q3–Q1) and Q3 + 1.5 (Q3–Q1), respectively.
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burden-test analysis (Supplementary Note 7 and Extended Data Fig. 5). 
Altogether, this shows that lcWGS constitutes a powerful alternative to 
SNP array for downstream GWAS and rare-variant analysis.

In this work, we introduce several improvements to the GLIMPSE 
method that solve the computational problem of imputing lcWGS 
data from the 150,119 WGS samples in the UKB. We demonstrate that 
this reference panel leads to striking accuracy improvements across 
several sample ancestries, allele frequencies and depths of coverages. 
Our study further confirms the advantage of lcWGS over SNP arrays for 
GWAS, by showing that using imputed data with coverage as low as 0.5× 
are enough to outperform SNP array data, particularly at rare variants. 
Our work can be applied to other sequenced and diverse biobanks, 
such as Trans-Omics for Precision Medicine11, gnomAD12 or AllofUs13, 
thereby facilitating lcWGS imputation of non-European individuals. We 
believe that the difference between low-coverage and high-coverage 
WGS will become increasingly smaller as large reference panels will 
keep collecting more human haplotype diversity.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-023-01438-3.
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Methods
This study relies on analyses of genetic data from the UKB cohort, which 
was collected with informed consent obtained from all participants. 
Data for this study were obtained under the UKB applications licence 
number 66995 and are available to registered researchers through 
the UKB data-access protocol. Additional data used in this study are 
all publicly available.

GLIMPSE2
To perform imputation of low-coverage WGS data, GLIMPSE2 uses 
a Gibbs sampler algorithm that alternates between haploid imputa-
tion and phasing, using a modified version of the Li and Stephens 
hidden Markov model (HMM)14. The method necessitates a genotype 
likelihoods matrix for the target samples and a reference panel of 
haplotypes as input. The initialization step begins with the selec-
tion of a set of haplotypes from the reference panel via rare-variant 
calls derived from the low-coverage genotype likelihoods. Following 
that, two consecutive steps of haploid imputation are executed, one 
for each of the two target haplotypes. At the end of the initialization 
step, a diplotype is assigned to each target sample. GLIMPSE2 subse-
quently runs a series of burn-in and main Gibbs iterations to refine 
the genotype calls and phasing of each target sample. The algorithm 
determines haploid likelihoods for one of the two target haplotypes, 
based on the original genotype likelihoods and conditional on the 
current estimate of the other haplotype. To integrate over phasing 
uncertainty, the approach averages imputation posteriors across all 
main iterations.

Conversely from the GLIMPSE1 method, GLIMPSE2 approach is 
primarily focused on imputation only from the reference panel and 
it optimizes this task by incorporating new features. First, the refer-
ence panel is represented sparsely in memory, allowing for efficient 
storage of dense cohorts. The sparse representation of the reference 
panel facilitates the introduction of a new data structure to hasten 
haplotype matching and an efficient implementation of the HMM, 
which calculates posterior probabilities by leveraging the sparsity of 
the panel. Additional features of GLIMPSE2 include a genotype caller 
that integrates genotype likelihood computations directly into the 
GLIMPSE software and imputation of small insertions and deletions and 
low-quality variants separately from SNPs, by performing imputation 
into a haplotype scaffold obtained from high-quality SNPs.

The subsequent sections will provide a more comprehensive expla-
nation of three of the previously referenced features, which are critical 
for the ability of the model to scale when applied to deeply sequenced 
reference panels. Further details regarding the method can be found 
in Supplementary Note 1.2.2.

Sparse reference panel representation
GLIMPSE2 represents the reference panel as a sparse matrix, encoding 
haplotypes with one bit per allele if the variant is defined as common 
(MAF ≥ 0.001 by default) and storing the indices of the haplotypes that 
carry the minor allele, otherwise. This data representation allows for 
small memory usage but also for a fast identification of the haplotypes 
carrying a rare variant. Additionally, the transpose of the data struc-
tures gives efficient access to the rare variants of each haplotype. More 
details can be found in Supplementary Note 1.2.2.1.

We encoded the sparse reference panel representation in a binary 
file format to be efficiently stored on the disk. The file format trans-
lates directly into the memory data structures used by GLIMPSE2 
and does not require any general-purpose compression algorithm. 
Together with the reference file format, we store the run-length 
encoded sparse positional Burrows–Wheeler transform (PBWT) data 
structure in the same file file, together with the recombination map. 
As a result, all the data related to the reference panel can be quickly 
loaded in memory, in much faster running times than standard file 
formats, such as VCF and BCF.

Sparse positional Burrows–Wheeler transform matching
One of the key components of the GLIMPSE1 model is to reduce the 
state space using PBWT15, a data structure that allows efficient query 
searches in haplotype cohorts, linear in the number of samples 
and markers. Similarly, GLIMPSE2 extends the PBWT and proposes 
an algorithm designed for large sequencing cohorts, here called 
sparse PBWT.

By using the sparse representation of the reference panel, rare 
variants are treated differently than common variants, allowing the 
computation of smaller PBWTs which speeds up the algorithm. This is 
based on the idea that between two adjacent common variants most 
of the haplotypes do not contain the minor allele in the region and 
therefore most of the haplotypes would form a single invariable block 
of major alleles that preserves their relative haplotype order. Therefore, 
a smaller PBWT is constructed only on haplotypes that have at least one 
minor allele between two adjacent common variants. The positional 
prefix array of the small PBWT at the end of the rare-variant interval is 
simply concatenated with the positional prefix array of other haplo-
types that are not changing in the interval. A schematic illustration of 
the sparse PBWT is shown in Extended Data Fig. 1 and more details are 
provided in Supplementary Note 1.2.2.2.

Haplotype selection is performed by querying target samples in 
the sparse PBWT, looking at neighboring haplotypes at common vari-
ants (at 0.1 cM intervals by default). The selection is complemented 
with variant sharing at rare variants, as rare-variant sharing is likely to 
arise from a recent common ancestor.

Sparse HMM computations
Imputation and phasing are performed using the forward–backward 
algorithm on the Li and Stephens HMM14, where reference haplotypes 
represent the states of the HMM. The computation of posterior prob-
abilities is a computationally intensive task, linear in the number of 
haplotypes and markers.

The sparse matrix representation of the reference haplotypes in 
GLIMPSE2 implementation allows to remove the linear component at 
the marker level during the HMM calculations. GLIMPSE2 selects only 
K  (default K = 2,000) haplotypes with the sparse PBWT selection to 
assemble a custom reference panel in which most of the rare variants 
present in the original reference panel are monomorphic. In the for-
ward–backward algorithm these monomorphic variants do not con-
tribute to the overall state probability. Therefore, in GLIMPSE2 the 
forward–backward probabilities are computed only at sites that are 
polymorphic in the custom reference panel, adjusting the transition 
probability to consider the physical distance between two consecutive 
polymorphic sites. Posterior probabilities of variants that are mono-
morphic in the custom reference panel can be quickly computed using 
the appropriate emission probability.

Our method takes advantage of low-level programming language 
(AVX2 intrinsics) to optimize the HMM forward–backward computa-
tions at the hardware level, working on blocks of eight floats. This 
allows the method to be efficient in the core part of the algorithm 
and therefore use twice the number of states and larger imputation 
windows compared to the previous version of GLIMPSE. More details 
are provided in Supplementary Note 1.2.2.3.

Evaluation of imputation accuracy
We measured imputation performance as the squared Pearson cor-
relation between high-coverage genomes and imputed dosages. We 
pooled all validation and imputed dosages belonging to the same 
frequency bin and computed a single squared Pearson correlation 
value per bin. Statististics summarizing the number of variants falling 
in each allele count bin are provided in Supplementary Tables 2–4. We 
used the GLIMPSE2_concordance tool to measure the squared Pearson 
correlation by streaming the imputed and validation data to maintain 
low memory requirements.
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We also evaluated the non-reference discordance rate (NRD), 
defined as the rate between mismatches at the three possible geno-
types, divided by the same mismatches plus heterozygous and homozy-
gous alternative matches. We define the non-reference concordance 
rate as NRC = 1 − NRD. We provide more information about the bench-
mark and measurement of imputation accuracy in Supplementary 
Notes 1.3 and 1.3.1, respectively.

Evaluation of association tests
We used chromosome 1 data for a subset of 10,000 unrelated UKB 
individuals of white British ancestry randomly sampled and a total of 
99 phenotypes, selected as phenotypes with <10% of missing data in 
our call set across anthropomorphic traits and blood measurements. 
We performed association tests using plink2 (ref. 16) with default 
parameters and the first ten principal components plus sex and age as 
covariates to test phenotypes for associations with the seven call sets 
we generated: high-coverage WGS, five low-coverage WGS (0.1×, 0.25×, 
0.5×, 1.0× and 4.0×) and the UKB Axiom array. We selected associa-
tions that are genome-wide significant (P < 5 × 10−8) and independent 
(being at least 500 kilobases apart). Out of the phenotypes analyzed, 
a total of 22 showed significant associations on chromosome 1 in the 
high-coverage dataset. These 22 phenotypes were chosen for compari-
son across the six imputed call sets.

To assess the accuracy of GWAS performed using imputed call 
sets, we compared association strength and effect sizes by computing 
the Pearson correlation between imputed and high-coverage GWAS 
experiments. We additionally assess the ability of GWAS experiments 
to distinguish significant from non-significant signals, considering the 
high-coverage GWAS to be the ground truth. For this, we computed 
the sensitivity, the proportion of genome-wide significant associa-
tions that can be retrieved, and the specificity, the proportion of 
genome-wide non-significant associations that can be retrieved using 
imputed call sets.

Statistics and reproducibility
This study was based on the UKB SNP array and WGS datasets, Simons 
Genome Diversity Project, 1,000 Genomes Project and the Haplotype 
Reference Consortium (HRC). Variants and samples selected are based 
on quality controls and ancestry as described by the respective dataset. 
For certain analysis samples were extracted randomly from the UKB 
cohort, according to their ancestry. Statistical analyses, including 
Wilcoxon tests were performed with R v.4.0. All code to reproduce 
analyses is publicly available (Code availability section).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The 1,000 Genomes Project phase 3 dataset sequenced at high cov-
erage by the New York Genome Center is available on the European 
Nucleotide Archive under accession no. PRJEB31736, the Interna-
tional Genome Sample Resource (IGSR) data portal and the Uni-
versity of Michigan school of public health ftp site (ftp://share.sph.
umich.edu/1000g-high-coverage/freeze9/phased/). The publicly 
available subset of the HRC dataset is available from the European 
Genome-phenome Archive at the European Bioinformatics Institute 
under accession no. EGAS00001001710. The publicly available Simons 
Genome Diversity project is available on the IGSR data portal and Can-
cer Genomics Cloud, powered by Seven Bridges. The UKB WGS data 
and phenotypes can be accessed via RAP: https://ukbiobank.dnanexus.
com/landing. The phased WGS reference panel can be accessed via RAP: 
https://ukbiobank.dnanexus.com/landing. Source data are provided 
with this paper.

Code availability
GLIMPSE2 source code is available with MIT licence from https://github.
com/odelaneau/GLIMPSE and https://odelaneau.github.io/GLIMPSE/. 
This includes code to the chunk, split_reference, phase, ligate and 
concordance. The documentation is available at https://odelaneau.
github.io/GLIMPSE/. Code and source data to reproduce analysis and 
figures have been deposited in a Zenodo repository17.
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Extended Data Fig. 1 | Sparse PBWT positional prefix array computation. 
(a) We consider a reference panel H with M = 6 markers and N = 8 haplotypes, 
h0,h1,…, h7. Here, marker 1 and marker 6 are common variants (light blue), and 
markers from 2 to 5 are rare variants (red). (b) Full prefix array A of the reference 
panel. (c) Sparse PBWT positional prefix array. At common variants (markers 1 
and 6) the standard PBWT update is performed (light blue sites). At rare variants 

(red sites), no computation is required for the L = 5 haplotypes containing 
only the major allele in the region (h0,h1,h2,h5, h7) and they can be copied at the 
beginning of A5 in the same relative order as they appear in A1. For the haplotypes 
that contain the minor allele in the region (h3,h4,h6), we compute the positional 
prefix array A’at the rare variants in the interval. The last positional prefix array 
(A'5) can be directly copied into A5 from position N-L.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | Imputation performance of SGDP samples using 
different reference panels. (a-b) Comparison between KGP and the UKB 
reference panels to impute 276 SGDP samples across 129 world-wide populations 
at 1.0x coverage on chromosome 20. (a) Per sample comparison. Each circle 
represents one sample of SGDP and is colored according to the reduction 
in NRD achieved when using the UKB reference panel (red) or KGP (blue). 

Location represents the geographical origin of the sample. (b) Population-level 
comparison. Samples belonging to the same population (x-axis) have been 
considered together (number shown in the x-axis label), showing the reduction 
of NRD between the two panels (y-axis). Populations have been colored and 
ordered according to the continent and country of origin. Striped bars represent 
populations where KGP performs better than UKB reference panels.

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | Imputation performance of simulated SNP arrays and 
low-coverage. Chromosome 1 imputation accuracy (Aggregate r2, y-axis) for 
10,000 British samples of three simulated SNP arrays (Omni 2.5 Array, yellow; 
GSA array, orange; Axiom Array, red), and sequencing coverages (0.1–4.0x, 

shades of blue) using the UKB reference panel. The lifted-over (non-simulated) 
Axiom array data from the UK Biobank is shown in black. We imputed low-
coverage data using GLIMPSE2 and SNP array data using BEAGLE v5.4.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | Sensitivity and specificity of genome-wide association 
using imputed call sets. (a-b) Sensitivity (a, y-axis) and specificity (b, y-axis) 
of GWAS by comparing with the validation GWAS across the 22 phenotypes 
examined. The x-axis shows the imputed call sets (0.1–4.0x, different shades of 
blue, GLIMPSE2 imputation; UKB Axiom array, red, imputed). Gray dotted lines 

represent the medians for GWAS using the Axiom array call set. The lower and 
upper limits of the box plots represent the lower and upper quartiles (Q1 and 
Q3); the median is marked at the centre of the box. Lower and upper whiskers are 
defined as Q1 − 1.5 (Q3–Q1) and Q3 + 1.5 (Q3–Q1), respectively.

http://www.nature.com/naturegenetics
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Extended Data Fig. 5 | Performance at genomic annotations compared to 
high-coverage data. (a-b) Imputation performance of 10,000 British samples 
imputed using the UKB reference panel across coverages (0.1–4.0x, different 
shades of blue, GLIMPSE2 imputation) and the UKB Axiom array data (red).  
(a) Imputation accuracy at INDEL sites. (b) Gene-level imputation accuracy 
(Pearson r2, y-axis) at rare Genebass functionally annotated variants  
(LoF, loss of function; missense, synonymous variants; MAC < 200).  
Each data point represents a gene with at least one genetic variant across  

the 10,000 samples (defined r2 measure, N = 11185 Lof genes, N = 17003 missense 
genes, N = 17830 synonymous genes). P values between the imputed Axiom 
array and 1.0x data were computed with the two-sided Wilcoxon non-parametric  
rank sum test (LoF p-value = 1.9 × 10−37; Missense p-value < 5 × 10−324;  
Synonymous p-value < 5 × 10−324). The lower and upper limits of the box plots 
represent the first and third quartiles (Q1 and Q3); the median is marked at the 
centre of the box. Lower and upper whiskers are defined as Q1 − 1.5 (Q3–Q1) and 
Q3 + 1.5 (Q3–Q1), respectively.
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