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Rare coding variants in CHRNB2 reduce the 
likelihood of smoking
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Human genetic studies of smoking behavior have been thus far largely 
limited to common variants. Studying rare coding variants has the potential 
to identify drug targets. We performed an exome-wide association study 
of smoking phenotypes in up to 749,459 individuals and discovered a 
protective association in CHRNB2, encoding the β2 subunit of the α4β2 
nicotine acetylcholine receptor. Rare predicted loss-of-function and likely 
deleterious missense variants in CHRNB2 in aggregate were associated with a 
35% decreased odds for smoking heavily (odds ratio (OR) = 0.65, confidence 
interval (CI) = 0.56–0.76, P = 1.9 × 10−8). An independent common variant 
association in the protective direction (rs2072659; OR = 0.96; CI = 0.94–0.98; 
P = 5.3 × 10−6) was also evident, suggesting an allelic series. Our findings in 
humans align with decades-old experimental observations in mice that β2 
loss abolishes nicotine-mediated neuronal responses and attenuates nicotine 
self-administration. Our genetic discovery will inspire future drug designs 
targeting CHRNB2 in the brain for the treatment of nicotine addiction.

Tobacco smoking is one of the greatest hazards to human health, 
accounting for over 200 million disability-adjusted life years and 7 
million deaths each year globally1. The currently available first-line 
smoking-cessation drugs (varenicline and bupropion) were introduced 
more than 2 decades ago, even before the Human Genome Project was 
completed and the genomic revolution started2–4. Despite their proven 

efficacy and wide usage5, smoking remains a global health hazard, war-
ranting advancements in smoking-related drug-discovery efforts that 
make use of recent innovations in therapeutic design and delivery6.

Large-scale rare variant association studies have the potential 
to advance drug discovery7–10. Drug designs inspired by naturally 
occurring genetic variants that protect humans against diseases have 
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phenotypes including smoking-related diseases. We also selectively 
explored the rare variant associations at the known GWAS loci and 
conducted ancestry-specific and cross-ancestry GWAS meta-analyses 
for the six smoking phenotypes to validate known loci and identify new 
loci. Finally, we studied the combined influences of both common and 
rare variants on smoking behavior.

Results
Exome-wide significant associations
The overall study design is shown in Fig. 1. We performed ExWAS 
meta-analyses for six primary phenotypes (ever smoker, heavy 
smoker, former smoker, nicotine dependence, cigarettes smoked 
per day (cig per day) and age started smoking) in sample sizes rang-
ing from 112,670 (cig per day) to 749,459 (ever smoker). The study 
cohorts and phenotype definitions are described in the Methods, 
and the cohort-specific sample sizes and participant demographics 
are summarized in Supplementary Tables 1 and 2, respectively. We 
focused on coding variants of two functional categories: missense 
variants and predicted loss-of-function (pLOF) variants (frameshift, 
splice donor, splice acceptor, stop lost, stop gain and start lost) with 
MAF < 0.01. In addition to variant-level associations, we also stud-
ied gene-level associations, using burden tests in which either pLOF 
variants only or pLOF and likely deleterious missense variants (that 
is, predicted to be deleterious by five different algorithms) in a gene 
are aggregated to create burden masks (or variant sets), which are 
then tested for association with the phenotypes (Methods)21. The 
burden masks were created using variants at five MAF thresholds 
(<0.01, <0.001, <0.0001, <0.00001 and singletons) (Supplementary 
Table 3). Altogether, we performed 8,417,987 association tests across 

been successful in the past, for example, inhibitors of the enzyme 
PCSK9 for the treatment of hypercholesterolemia11–13. Smoking 
behavior is strongly influenced by genetics, with twin-based her-
itability estimates ranging between 45% (for smoking initiation) 
and 75% (for nicotine dependence)14. Genetic variants across the 
entire minor allele-frequency (MAF) spectrum (common (MAF > 1%), 
low-frequency (MAF, 0.1–1%) and rare (MAF < 0.1%) variants) con-
tribute to this high heritability15. However, human genetic studies 
of smoking behavior have thus far focused mainly on common and 
low-frequency variants (that can be imputed with at least moderate 
accuracy)16–19. Such genome-wide association studies (GWASs) were 
successful in identifying genomic regions associated with smoking. 
In contrast to GWASs, only a very few rare variant studies of smoking 
exist to date15,20. Although such studies have demonstrated that rare 
variants contribute substantially to smoking heritability, very few 
genes have been confidently linked to smoking based on rare variant 
associations15,20.

Unlike common variant associations, rare coding variant associa-
tions often pinpoint causal genes21, inform effect direction21,22, guide 
follow-up experiments23 and provide an estimate of the therapeutic 
efficacy11,24 and safety25 of targeting a gene or its product. Even for 
known drug targets, discovering human genetic evidence is valuable, 
as it can improve our understanding of the drug mechanisms and 
help develop new therapeutic modalities to treat diseases26. Hence, 
with the goal of discovering drug targets for smoking, we undertook a 
large-scale exome-wide association study (ExWAS) of smoking behavior 
involving up to 749,459 individuals. We studied the associations of rare 
coding variants in the human genome, captured via exome sequenc-
ing, with six major smoking phenotypes and a range of secondary 
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Fig. 1 | Study design. The flow chart summarizes the overall study design in terms of cohorts, phenotypes and types of genetic analyses performed. ICD, International 
Classification of Diseases.
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six smoking phenotypes. Applying a false detection rate (FDR) of 1% 
(corresponding P value = 4.5 × 10−8), we identified 35 significant asso-
ciations implicating three genes: ASXL1, DNMT3A and CHRNB2 (Fig. 2,  
Supplementary Fig. 1 and Supplementary Table 4). Although these 
results were based on analyses in which individuals of all ancestries 
were pooled together, we found that the results were highly similar to 
those from a cross-ancestry meta-analysis or a meta-analysis involving 
only individuals of European ancestry, suggesting that the results were 
not influenced by population stratification (Supplementary Fig. 2).

Associations of rare variants in CHRNB2
The primary phenotype that discovered the CHRNB2 association was 
heavy smoker, where cases were individuals who smoked at least ten cig-
arettes per day either currently or formerly (n = 110,494), and controls 
were individuals who have never smoked in their lifetime (n = 374,842). 
The strongest association was observed for pLOF-plus-missense bur-
den (an aggregate of pLOF and likely deleterious missense variants in 
CHRNB2 with MAF < 0.001), for which the odds of being a heavy smoker 
were significantly lower in carriers than in non-carriers (OR = 0.65; 
CI = 0.56–0.76; P = 1.9 × 10−8). The rare variant burden association was 
independent of any nearby common variant associations with P < 0.01 
(Supplementary Fig. 3 and Methods), and the effect estimates were 
consistently in the protective direction across the three cohorts that 
contributed to the meta-analysis (Fig. 3). The protective association of 
CHRNB2 pLOF-plus-missense burden with heavy smoking was observed 
irrespective of how we defined heavy smoking (Supplementary  
Fig. 4). Furthermore, the protective association was also seen for the 
ever smoker phenotype (where individuals who ever smoked regularly 
in their lifetime were defined as cases, n = 345,805) but was less signifi-
cant than for the heavy smoker phenotype, despite a relatively larger 
sample size, highlighting the importance of phenotype specificity 
in gene discovery (Extended Data Fig. 1). However, when consider-
ing pLOF-only burden (an aggregate of pLOF variants in CHRNB2 with 
MAF < 0.001), which provides the strongest evidence on the direction 
of the association, the association reached at least a nominal level of 
significance (P < 0.05) only for the ever smoker phenotype but not for 
the heavy smoker phenotype, likely because the ever smoker pheno-
type captured more pLOF carriers (281 carriers) than the heavy smoker 
phenotype (174 carriers), suggesting that a larger sample size at the 
expense of phenotype specificity is also valuable, particularly at the 
rarer end of the allele-frequency spectrum.

We next studied the association of CHRNB2 pLOF-plus-missense 
burden with a range of secondary smoking phenotypes, mainly derived 
from UK Biobank (UKB)27 participants’ responses to a lifestyle question-
naire related to smoking (Methods). The overall association pattern 
was in line with our main finding that rare pLOF and likely deleterious 
missense variants in CHRNB2 in aggregate confer protection against 
smoking addiction (Extended Data Fig. 2 and Supplementary Table 5). 
We also studied the burden associations with a curated list of binary 
and quantitative health phenotypes related to smoking and observed 
suggestive associations, all in the protective direction, for example, 
emphysema (OR = 0.45; CI = 0.28–0.71; P = 6.9 × 10−4), chronic obstruc-
tive pulmonary disease (COPD; OR = 0.80; CI = 0.62–1.03; P = 0.08) 
and family history of lung cancer (OR = 0.84; CI = 0.69–1.01; P = 0.06) 
(Extended Data Fig. 2).

No individual pLOF or missense variants in CHRNB2 surpassed 
the study-wide significance threshold, suggesting that our sample 
sizes were still underpowered to capture single-variant associations. 
Using a leave-one-variant-out (LOVO) burden analysis28 (Methods), 
we identified a missense variant (rs202079239, Arg460Gly) that 
contributed the most to the pLOF-plus-missense burden associa-
tion in the UKB (Fig. 4a and Supplementary Table 6). Importantly, 
even after excluding Arg460Gly, the burden association was still 
nominally significant with a protective OR (OR = 0.71; CI = 0.57–0.88; 
P = 0.001), suggesting that other variants in the burden mask also 
contributed to the association (Supplementary Table 6). Addition-
ally, the Arg460Gly variant independently showed a moderately 
significant protective association with the heavy smoker phenotype 
(OR = 0.56; CI = 0.43–0.72; P = 1.1 × 10−5). We found that this variant 
has drifted to a higher frequency in Finns (gnomAD29 MAF = 0.0018) 
compared to non-Finnish Europeans (gnomAD MAF = 0.00038;  
Fig. 4b). Statistical power increases with MAF; hence we expected that 
the protective association of Arg460Gly with smoking or related phe-
notypes might be detectable in FinnGen30, a population-based cohort 
in Finland, despite its sample size being smaller than that of the UKB. 
A selective exploration of Arg460Gly with smoking, substance use and 
smoking-related lung disease phenotypes in the publicly available 
data from the FinnGen research project (freeze version 7) revealed 
significant enrichment for protective associations (hypergeometric 
test for enrichment, P = 0.03; Fig. 4c,d and Supplementary Table 7). 
At least two phenotypes showed nominally significant (P < 0.05) 
protective associations: substance-use disorder (excluding alcohol) 
(OR = 0.39; CI = 0.21–0.73; P = 0.003) and COPD (OR = 0.69; CI = 0.49–
0.96; P = 0.03). Therefore, by exploiting the natural phenomenon of 
genetic drift in an isolated population30, we were able to validate the 
protective association of CHRNB2 with smoking-related phenotypes 
in an independent cohort.

Associations of common variants near CHRNB2
Common variant associations by themselves often do not pinpoint the 
causal gene(s); when they do, they mostly bring limited insights into the 
druggability of the gene. However, when interpreted along with rare 
coding variant associations, they can offer valuable insights. To this 
end, we searched for any known common variant GWAS signals near 
CHRNB2 that were reported previously for smoking-related traits. Liu 
et al.16 have reported a GWAS association with cig per day near CHRNB2 
where the fine-mapped 95% credible set contained a single variant, 
rs2072659, located within the 3′ untranslated region (UTR) of CHRNB2. 
This variant showed significant (P < 0.05) associations in our dataset 
with multiple smoking phenotypes including heavy smoker (OR = 0.96; 
CI = 0.94–0.98; P = 5.3 × 10−6), all in the protective direction (Fig. 5a). 
In a phenome-wide association study (PheWAS) of this variant across 
7,469 phenotypes in two of the large cohorts (UKB and Geisinger Health 
System (GHS)), the strongest association was with smoking (Fig. 5b). In 
addition, seven of the top ten associations were with smoking-related 
phenotypes, all in the protective direction.
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Fig. 2 | Discovery of rare variants associated with smoking phenotypes. 
Quantile–quantile (QQ) plot of the rare variant associations (both variant and 
burden associations) with six smoking phenotypes (ever smoker, heavy smoker, 
former smoker, nicotine dependence, cig per day and age started smoking).  
The dashed line corresponds to the exome-wide significant threshold, 4.5 × 10−8, 
determined based on a 1% FDR correction applied across all the associations  
(n tests = 8,417,987).
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Associations of clonal hematopoiesis of indeterminate 
potential mutations in ASXL1 and DNMT3A
Among the three exome-wide significant genes, ASXL1 and DNMT3A 
showed the strongest associations with most of the smoking pheno-
types (Figs. 2 and 3, Extended Data Figs. 3 and 4 and Supplementary 
Tables 4 and 5). However, both ASXL1 and DNMT3A are known to accu-
mulate somatic mutations in circulating blood cells with increasing 
age in the general population, a phenomenon described as clonal 
hematopoiesis of indeterminate potential (CHIP)31. When the DNA 
source for exome sequencing is peripheral blood, standard exome 
variant-calling workflows capture CHIP mutations along with ger-
mline variants32,33. We have previously reported a comprehensive 
genetic analysis of CHIP, in which we systematically called somatic 
variants in participants of the UKB and the GHS cohorts and stud-
ied their germline associations33. It is well known that smoking is 
strongly associated with CHIP34,35, and the association of ASXL1 CHIP 
mutations with smoking in the UKB has been previously reported35. 
Hence, we were not surprised to learn that the ASXL1 and DNMT3A 
associations were driven by CHIP mutations, which we confirmed 
through burden analyses based on burden masks with and without 
CHIP mutations and association analyses of the variant allele fraction 
(VAF) of CHIP mutations with smoking phenotypes (Fig. 6, Extended 
Data Fig. 5 and Supplementary Note). As was previously proposed, 
the association of CHIP mutations with smoking phenotypes suggests 
that smoking offers a clonal advantage to certain CHIP mutations, 
although the underlying mechanisms have yet to be understood. 
Also, our findings echo the caution previously raised by many in 
relation to using exome-sequencing data based on blood samples 
to establish genetic diagnoses for Mendelian diseases in adults36,37  
(Supplementary Note).

Association of rare variants at known GWAS loci
Two of the strongest genetic risk loci for smoking that were identi-
fied early in the GWAS timeline were locus 15q25.1, containing three 
nicotine acetylcholine receptor (nAChR) genes (CHRNA5, CHRNA3 and 
CHRNB4)38,39, and locus 19q13.2, containing a cluster of cytochrome 
P450 enzyme-coding genes (CYP2A, CYP2B and CYP2F subfamilies); 
both strongly influence the number of cigarettes smoked per day40,41. 
Although none of the genes were significant at the exome-wide level in 
our analysis, given their strong biological links to smoking, we explored 
these loci for evidence of any subthreshold rare variant associations. 
At the cytochrome P450 locus, we found little evidence for rare variant 
associations beyond the known common variant signals (Extended 
Data Fig. 6a and Supplementary Table 11). However, we observed 
nominal rare variant gene burden associations with cig per day at 
locus 15q25.1, implicating all three nAChRs (CHRNA5, CHRNA3 and 
CHRNB4) with effect sizes larger than those observed for common 
variants (Extended Data Fig. 6b). Notably, the largest effect size was 
observed for the CHRNB4 pLOF-only rare variant burden, where the 
13 pLOF carriers smoked on average ~6.8 cigarettes per day more than 
non-carriers (β = 0.68 s.d.; CI = 0.17–1.18; P = 0.008; Extended Data  
Fig. 6c). This effect size is approximately three to four times larger than 
the largest effect sizes observed for CHRNA5 (β = 0.23; CI = 0.05–0.40; 
P = 0.01) and CHRNA3 (β = 0.16; CI = 0.02–0.31; P = 0.03) pLOF-only rare 
variant burden and ~7.5 times larger than that for rs16969968 (approxi-
mately one cigarette more; β = 0.09; CI = 0.09–0.10; P = 3.8 × 10−125), a 
well-characterized common risk variant at this locus (Supplementary 
Table 11). Power calculations based on observed effect sizes suggest that 
these associations will likely emerge as significant at the genome-wide 
level when the sample size for ExWAS of the cig per day phenotype 
reaches between 300,000 and 500,000 (Extended Data Fig. 7).
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Fig. 3 | Forest plots of the top burden–trait associations of the significant 
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are summarized using forest plots. The ORs and 95% CIs are plotted. The 
columns ‘case counts’ and ‘control counts’ show the case and control sample 

sizes, respectively, broken down to the number of carriers of the homozygous 
reference, heterozygous and homozygous alternative genotypes. For burden 
definitions, refer to Supplementary Table 2. ALL, all ancestries; AAF, alternative 
allele frequency (combined frequency of all the variants aggregated in the 
burden mask).
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Previous exome studies have shown that rare variant associations 
are enriched near GWAS loci for many human diseases and traits21,42. 
Hence, we analyzed the burden associations, focusing only on genes 
mapped to GWAS loci19 (Methods). We observed no significant rare 
variant burden associations other than the association of CHRNB2 
pLOF-plus-missense burden with the heavy smoker phenotype 
(Extended Data Fig. 8). The results suggested that our current sample 
sizes are underpowered to capture the convergence between common 
and rare variant associations at the known smoking GWAS loci.

Cross-ancestry and ancestry-specific GWAS
We first performed GWAS for the six primary smoking phenotypes in 
individuals of European ancestries and used these results to analyze 
SNP-based heritability (SNP-h2) and genetic correlations using a Euro-
pean ancestry-based linkage disequilibrium (LD) reference panel43. Our 
SNP-h2 estimates were comparable to previously reported estimates16 
(Supplementary Fig. 5a and Supplementary Table 12). Also, our GWAS 
results showed strong genetic correlations with the previous GWAS 
results16 (Supplementary Fig. 5b and Supplementary Table 13), which 
suggests high reproducibility of the polygenic signals of the studied 
smoking phenotypes. Also, we observed moderate-to-large genetic 
correlations across our six phenotypes, suggesting shared genetic 
architecture across the phenotypes (Supplementary Fig. 5c and Sup-
plementary Table 14).

Next, we performed cross-ancestry GWAS meta-analyses for the 
six primary smoking phenotypes. Across all the phenotypes, in total, 
we identified 328 LD-independent loci, of which a majority (94%) are 
known. This was expected, given that a GWAS with a much larger sam-
ple size has been published before16 (Supplementary Fig. 6a–f and 
Supplementary Table 16). Among the new loci, an X chromosome 
locus that we identified for nicotine dependence deserves special 
mention, as it implicates a nicotinic receptor-related gene. This locus, 
Xq22.1, harbors TMEM35A (the closest gene to the index variant), also 
referred to as NACHO (new acetylcholine receptor chaperone); this 
gene encodes a molecular chaperone protein that is involved in the 
assembly of α7, α6β2 and α6β2β3 nAChRs44. Mice lacking Tmem35a 
develop hyperalgesia44, and we observed that the index variant at this 
locus is also associated with increased intake of oxycodone, an anal-
gesic medication, in the UKB (OR = 1.58; P = 0.0001; data from https://
www.opentargets.org)45, suggesting that this locus might influence 
both smoking and pain phenotypes in humans.

After European ancestries, the second largest proportion (19%) of 
our study participants were of admixed American ancestries (AMR), 
mostly from the Mexico City Prospective Study (MCPS) cohort46. 
Published GWASs of smoking behavior in AMR ancestries are sparse47. 
In the AMR-specific GWAS, we identified 25 independent loci across 
the six phenotypes, of which 15 are known and 10 are new (Supple-
mentary Table 16). The known loci include some of the strongest 
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GWAS loci identified in European-specific GWAS: CHRNA5 (ref. 39), 
CHRNA4 (ref. 48), DBH41, CYP2A6 (refs. 40,41) and NCAM1 (ref. 49) 
(Supplementary Table 16). In AMR ancestries, we also identified an 
X chromosome locus that has been previously linked to smoking in 
those of European ancestries18. Notably, at this locus (with GPR101 in 
the vicinity), we identified a genome-wide significant association with 
the heavy smoker phenotype in the AMR-specific GWAS (rs1190734; 
ORAMR = 0.83 (0.79–0.88); PAMR = 1.2 × 10−11) but only a nominal associa-
tion with the heavy smoker phenotype in the European-specific GWAS 
(OREUR = 0.98 (0.97–0.99); PEUR = 0.001). However, the same variant 
showed genome-wide significant association with the cig per day 
phenotype in European-specific GWAS (βEUR = −0.02; PEUR = 7.6 × 10−16), 
corroborating the GWAS signal at this locus reported previously for 
the cig per day phenotype18. Whether this locus is associated with 
the cig per day phenotype in AMR ancestry with a larger effect size 

than that in European ancestry is not clear, as we did not have this 
phenotype in the MCPS cohort at the time of this analysis. Neverthe-
less, the findings overall suggest that the GPR101 locus influences 
smoking behavior in both European and AMR ancestries. Regarding 
the ten new loci identified in the AMR ancestries, as expected, many 
(seven loci) harbored variants that are relatively more common in 
AMR ancestries than in European ancestries, thereby offering higher 
statistical power for discovery; for example, at 10q21.1, an intergenic 
locus, we identified a genome-wide significant association with the 
heavy smoker phenotype where the index variant is observed in 
~10% of admixed Americans but only in ~0.05% of Europeans; at 8p22 
(closest gene, C8orf48), we identified a genome-wide significant asso-
ciation with the ever smoker phenotype, where the index variant is 
observed in ~30% of admixed Americans but only in ~7% of Europeans 
(Supplementary Table 16).
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Interplay between common and rare variants
Large-scale sequencing projects provide increased power to detect 
additive effects between common and rare variants for many dis-
eases and traits. For example, we have previously demonstrated an 
additive effect between GPR75 obesity-protective rare variants and 
polygenic score (PGS) for obesity based on common variants10. We 
performed a similar analysis to test whether an additive effect is also 
evident for CHRNB2 rare variants and smoking PGS. We calculated 
smoking PGS for UKB participants of European ancestries based on 
a GWAS of the ever smoker phenotype performed in an independ-
ent sample (a meta-analysis of GWAS and Sequencing Consortium of 
Alcohol and Nicotine use (GSCAN) GWAS19 results excluding 23andMe 
and the UKB with the GWAS results of the GHS50, one of our largest 
European cohorts). First, we studied the associations of CHRNB2 
pLOF-plus-missense burden and smoking PGS with heavy smoking 
within a single regression model that included an interaction term 
between the burden mask and the PGS (Methods). Both burden mask 
(OR = 0.66; 95% CI = 0.56–0.79; P = 3.4 × 10−6) and the PGS (β = 0.33; 
standard error (SE) = 0.004; P = 1 × 10−300) were associated with heavy 
smoking without a statistically significant interaction (P = 0.71). The 
results suggest that rare variants and the PGS influence the risk of 
heavy smoking independently. Second, to demonstrate the additive 
effect, we binned UKB individuals into quintiles based on their smok-
ing PGS and quantified the prevalence of heavy smokers in CHRNB2 
pLOF-plus-missense burden mask carriers (the burden mask that 
showed the strongest association with the heavy smoker phenotype) 
and non-carriers. The prevalence of heavy smokers increased in both 
carriers and non-carriers from lower to higher PGS quintiles (Fig. 7 and 
Supplementary Table 17). Importantly, within each of the quintiles, the 
prevalence of heavy smokers was lower in CHRNB2 rare variant carri-
ers than in non-carriers, demonstrating an additive effect between 
PGS and rare variants. The additivity implies that the smoking PGS 
modifies the penetrance of CHRNB2 rare variants and vice versa, that 
is, the protective effect of CHRNB2 rare variant burden is attenuated 
in individuals with higher PGS compared to in individuals with lower 
PGS, and the risk effect of increased PGS is attenuated in rare variant 
carriers compared to in non-carriers.

Discussion
GWASs of smoking behavior16–19 based on common variants have 
made tremendous progress in the field, with the recent GWAS involv-
ing more than 3 million individuals19. Such studies have substantially 
improved our understanding of the polygenic architecture of smok-
ing phenotypes and have highlighted genes and pathways including 
nAChRs, genes involved in nicotine metabolism and dopaminergic 
and glutamatergic signaling16. However, to date, few studies based 
on whole-exome- or whole-genome-sequencing data have been 
reported15,20, and they involved sample sizes insufficient to capture 
associations at variant- and gene-level resolutions. Hence, our under-
standing of the contributions of rare variants to smoking behavior has 
been minimal thus far. In the present study, we performed a large-scale 
rare variant analysis in sample sizes that had enough power to identify 
associations of a rare variant or an aggregate of rare variants with an OR 
of 2.5 and above (or 0.4 and below) when there are at least 100 carriers 
(Extended Data Fig. 9). The fact that our analysis revealed only one 
germline association indicates that there are no ‘low-hanging fruits’ 
for smoking in the rare variant space other than CHRNB2. However, we 
acknowledge that this interpretation applies only to European popula-
tions, and we cannot exclude the possibility that rare variants exist that 
are more frequent in other ancestries and might be discovered in the 
future in similar or even smaller sample sizes than ours. Nevertheless, 
we note that 25% of our samples represent non-European ancestries, 
with the largest proportion (19%) representing admixed Americans46. 
However, the sample sizes, when broken down into individual ancestry 
groups, are still smaller than what would be necessary to make rare 
variant discoveries.

The major finding from our analysis is that individuals with 
rare pLOF and likely deleterious missense variants in CHRNB2 are at 
decreased odds of smoking heavily. Although the top association 
was observed for the gene burden that combined both pLOF and mis-
sense variants, the concordant protective effect sizes observed for 
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the pLOF-only burden strengthened our interpretation that what we 
observe is a loss-of-function association. This knowledge is crucial 
as it informs therapeutic hypotheses for drug design. Moreover, we 
identified a single deleterious missense variant that drifted to a higher 
frequency in the Finnish population, which gave us an opportunity 
to validate the protective associations in the FinnGen study30. The 
finding highlights the value of isolated populations to inform drug  
target discovery51.

Another important finding is the convergence of rare and common 
variant findings of CHRNB2. We highlight a common 3′ UTR variant, 
reported in previous GWASs16,19, that shows protective associations 
with multiple smoking phenotypes, suggesting that this variant likely 
decreases CHRNB2 expression. Importantly, the OR of the common 
variant association with the heavy smoker phenotype was 0.96 as 
opposed to 0.65 for the pLOF-plus-missense rare variant burden. The 
pattern suggests a dose–response relationship between the gene and 
the phenotype in which varying levels of gene perturbations result in 
proportional effects on the phenotype. We particularly highlight the 
fact that this variant, although discovered in the earlier GWAS16, did not 
receive attention, as it was buried underneath the hundreds of GWAS 
associations, reflecting an important limitation of interpreting com-
mon variant findings. However, when interpreted in the light of rare 
variant findings, the common variant association stood out as highly 
valuable, exemplifying the combined value of GWAS and ExWAS in 
drug target discovery. Such observations will become frequent in the 
future with the rapidly growing population-scale ExWAS of human 
diseases and traits52.

CHRNB2 codes for the β2 subunit of the α4β2 nAChR, which is 
the predominant nicotinic receptor expressed in the human brain53. 
The role of α4β2 nAChR in mediating nicotine effects has been well 
characterized by decades of animal studies54,55, thanks to the pioneer-
ing work of Picciotto and colleagues who demonstrated in 1995 that 
deletion of the gene encoding β2 in mice abolished nicotine-mediated 
effects on avoidance learning and reinforcement behavior56,57. However, 
we describe human genetic evidence supporting the hypothesis that 
loss of CHRNB2 protects against nicotine addiction. Importantly, the 
protein encoded by CHRNB2 can be viewed as a known drug target as 
it is a component of the α4β2 nAChR, which, being the major nicotine 
receptor in the brain, has been the target of most nAChR partial agonists 
and antagonists developed thus far, including cytisine (an α4β2 partial 
agonist58) and varenicline (an α4β2 partial agonist and antagonist3). 
Varenicline is the current drug of choice to aid smoking cessation 
and was developed in 1997 by Pfizer based on the molecular structure 
of cytisine2,3. In addition to α4β2, varenicline binds to various other 
nAChRs in the brain including α7, α3β4 and α6β2 (ref. 59). Given the 
established role of α4β2 in mediating rewarding and reinforcement 
actions of nicotine, it is believed that the α4β2-antagonistic action 
of varenicline helps with smoking cessation3. Our finding aligns with 
this hypothesis, emphasizing that human genetics is useful not only 
to discover new drugs but also to better understand the mechanism of 
action of old drugs that have been in use for decades, and such knowl-
edge can pave the way for better drug designs with greater efficacy and 
limited adverse effects.

Limitations of our study include small sample sizes for finer quan-
titative phenotypes such as cig per day, which have limited our power to 
capture rare variant associations of genes mediating aversive effects of 
nicotine (for example, CHRNA5) and those related to nicotine metabo-
lism (for example, CYP2A6)39,40. As is often the case, individuals of 
non-European ancestries were under-represented in our study cohorts, 
which has limited the generalizability of the findings to all ances-
tries60,61. However, we involved a substantial number of individuals of 
AMR ancestries, who belong to one of the most under-represented pop-
ulations in human genetic studies, a step in the right direction46. With 
growing awareness of the importance of diversity in human genetic 
studies, the representation of non-European ancestries is expected 

to improve in future studies60,61. Finally, we have focused only on the 
coding regions of the genome captured via whole-exome sequencing, 
and therefore we may have missed rare variants with large effects on 
smoking behavior residing in noncoding regulatory regions. With the 
recent increase in large-scale whole-genome-sequencing efforts, rare 
large-effect regulatory variants influencing human diseases and traits 
are being discovered, and such discoveries may have the potential to 
lead to drug targets62. However, the question of whether whole-genome 
sequencing is a more cost-effective investment than whole-exome 
sequencing for drug target discovery has yet to be answered.

To conclude, we have performed a large-scale ExWAS of smoking 
behavior and identified a protective association between rare coding 
variants in CHRNB2 and smoking. The results align with the findings 
from published knockout animal models and the mechanism of action 
of varenicline that is currently in use to aid smoking cessation and will 
support future therapeutic developments to treat smoking addiction.
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Methods
Participating cohorts
UK Biobank. The UKB is an open-access, large population cohort of 
500,000 individuals established in the United Kingdom27,63. The partici-
pants were, in general, community-dwelling middle-aged to old-aged 
volunteers who were recruited between 2006 and 2010 through invi-
tations sent by mail63. The age of the participants ranged between 40 
and 69 years at the time of recruitment. A deep set of phenotypes has 
been collected from the participants prospectively, including physical, 
biochemical and multimodal imaging measures, disease history based 
on electronic health records (EHRs) and a wide range of environmental 
measures obtained via touchscreen and web-based questionnaires. 
The smoking phenotypes that we studied in this project were based 
on the information collected through lifestyle and environment touch-
screen questionnaires (data field category 100058). The health-related 
phenotypes that we studied including the history of lung and vascular 
diseases are based on ICD-10 codes from the EHRs or self-reported or 
a combination of both.

Geisinger Health System. The GHS participants come from Geis-
inger’s MyCode Community Health Initiative, which was established 
in 2007 to create a biorepository for research projects investigating 
the molecular and genetic bases of health and disease50,64. The partici-
pants were patients enrolled in the health care system who consented 
to participate in the MyCode initiative and gave access to their EHRs. 
The smoking phenotypes that we studied were based on the clinical 
history of smoking available in the EHR. Finer details on the smoking 
behavior such as the number of cigarettes smoked per day, age started 
smoking, etc. were available for a subset of patients through spirometry 
questionnaires available in the EHR.

Mexico City Prospective Study. The MCPS is a large prospective 
cohort of 150,000 individuals recruited between 1998 and 2004 with 
a major aim to investigate the known and new risk factors for mortality 
in individuals of Mexican descent46,65. The participants were residents 
of the Coyoacan and Iztapalapa districts of Mexico City. Phenotype 
data including information on smoking behavior were collected 
through house-to-house visits through interviewer-administered 
questionnaires.

Sinai. The Sinai participants were from the BioMe Biobank Program 
of the Charles Bronfman Institute for Personalized Medicine at the 
Mount Sinai Medical Center established in 2007 (ref. 66). The BioMe 
participants are patients enrolled in the Mount Sinai health system 
who consented to participate in the BioMe initiative and gave access 
to their EHRs. The smoking phenotypes that we studied were derived 
from the EHR.

Ethical approval and informed consent
All study participants have provided informed consent, and all par-
ticipating cohorts have received ethical approval from their respec-
tive institutional review board. The UKB project has received ethical 
approval from the Northwest Centre for Research Ethics Committee (11/
NW/0382)21,27. The work described here has been approved by the UKB 
(application no. 26041)21. The GHS project has received ethical approval 
from the Geisinger Health System Institutional Review Board under pro-
ject no. 2006-0258 (refs. 50,64). The MCPS has received ethical approval 
from the Mexican Ministry of Health, the Mexican National Council for 
Science and Technology, the UNAM and the University of Oxford46,65. 
The BioMe biobank has received ethical approval from the institutional 
review board at the Icahn School of Medicine at Mount Sinai66.

Phenotype definitions
We defined six phenotypes for the primary analysis: (1) ever smoker: 
cases were those who ever smoked regularly (including both former 

and current smokers), and controls were those who never smoked in 
their lifetime; (2) heavy smoker: cases were those who smoked ten or 
more cigarettes per day (including both former and current smok-
ers), and controls were those who never smoked in their lifetime;  
(3) former smoker: cases were those who smoked in the past but not at 
the present, and controls were current smokers; (4) nicotine depend-
ence: cases were those who had an ICD-10 F17 diagnosis in the EHR, 
and controls were those who did not have an ICD-10 F17 diagnosis; 
(5) cig per day: number of cigarettes smoked per day in both current 
and former smokers; (6) age started smoking: age when the person 
first started smoking.

In addition to the six primary phenotypes, we also studied a set of 
secondary smoking phenotypes primarily derived from the smoking 
lifestyle questionnaire data in the UKB (data field category 100058). 
We also studied a selected list of disease phenotypes related to smok-
ing, namely lung cancer (ICD-10 C34), COPD (ICD-10 J44), emphysema 
(ICD-10 J43), chronic bronchitis (ICD-10 J42), peripheral arterial disease 
(ICD-10 I73), coronary artery disease (ICD-10 I25) and myocardial infarc-
tion (ICD-10 I21).

Exome sequencing and variant calling
The exomes of individuals from all participating cohorts were 
sequenced at the RGC. Exome-sequencing and variant-calling work-
flows followed for each of the participating cohorts are described in 
detail elsewhere10,21,46,64,67. Briefly, the DNA source for exome sequenc-
ing in all the cohorts was peripheral blood. The DNA samples were first 
enzymatically fragmented into 200-bp DNA libraries, to which 10-bp 
barcodes were added to facilitate multiplexed operations. Exome 
regions containing DNA fragments were captured overnight using 
a modified version of the xGen probe from Integrated DNA Tech-
nologies. The captured fragments were then amplified by PCR and 
sequenced in a multiplexed manner using 75-bp paired-end reads 
on the Illumina NovaSeq 6000 platform. On average, 20× coverage 
was achieved for more than 90% of the target sequences in 99% of  
the samples.

Sequenced reads were mapped to the hg38 reference genome 
using BWA-MEM to create BAM files. Duplicated reads were marked 
for exclusion using the Picard tool. Next, variant calling was performed 
at individual sample levels using the WeCall variant caller to create 
per-sample gVCF files to enable a sample-level filter. Data from samples 
with low sequence coverage (<85% of the targeted bases achieving >20× 
coverage), excess heterozygosity, disagreement between genetic and 
reported sex, disagreement between exome and array genotype calls 
and genetic duplicates were removed. The remaining high-quality 
gVCF files were merged into a single project-level VCF (pVCF) file using 
the GLnexus joint genotyping tool. A further variant-level filter was 
applied to the multi-sample pVCF file. SNVs with read depth <7 and 
indels with read depth <10 were removed. Also, variants without either 
at least a single homozygous genotype or a single heterozygous geno-
type with allele balance ratio ≥0.15 (≥0.20 if indel) were removed. The 
quality-controlled pVCF files were then converted to analysis-ready 
PGEN format using PLINK version 2.

Variant annotation
Variants called from exome-sequencing data were annotated using the 
SnpEff tool68. Each variant was assigned the most severe consequence 
across all the protein-coding transcripts for which start and end posi-
tions were defined according to Ensembl release 85. Variants with any 
of the following annotations: stop gain, start lost, splice donor, splice 
acceptor, stop lost and frameshift corresponding to the non-ancestral 
allele were annotated as pLOF variants. Missense deleteriousness was 
predicted using five different algorithms, namely SIFT69, PolyPhen-2 
HDIV and PolyPhen-2 HVAR70, LRT71 and MutationTaster72, and missense 
variants that were predicted to be deleterious by all five algorithms 
were annotated as ‘likely deleterious’ variants.
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Genotyping and imputation
Genotyping was performed using DNA genotyping arrays that varied 
from cohort to cohort and are reported in detail in cohort-specific 
publications27,46,64. Briefly, UKB participants were genotyped using the 
Applied Biosystems UK BiLEVE Axiom Array or the Applied Biosystems 
UKB Axiom Array; GHS participants were genotyped using either the Illu-
mina Infinium OmniExpressExome or the Global Screening Array; and 
MCPS and Sinai participants were genotyped using the Global Screen-
ing Array. Standard quality-control procedures were followed to retain 
only high-quality genotyped variants, which were then used for imput-
ing common variants using the TOPMed LD reference panel73. For all 
cohorts, imputation was performed in the TOPMed Imputation Server 
by uploading the quality-controlled genotypes in randomized batches. 
Following imputation, we retained only variants with MAF > 0.01 and 
imputation INFO score > 0.8 for the analysis reported in the current 
study. After all quality control, the final number of common variants 
included in the cross-ancestry meta-analyses ranged from ~6.7 million 
for the ever smoker phenotype to ~14 million variants for the cig-per-day 
phenotype (the final number of variants decreased as expected with 
increases in the number of cohorts included in the meta-analyses). 
Appropriate variables for the genotyping arrays and the imputation 
batches were used as covariates in all analyses of imputed variants.

Genetic ancestry inference
Genetic ancestries of the individuals from all participating cohorts were 
quantified using a set of common variants that were genotyped directly 
using the genotyping arrays21. We first computed principal components 
(PCs) in HapMap3 individuals using the publicly available genotype 
reference panel74; only high-confidence variants (MAF > 0.10, genotype 
missingness < 5% and Hardy–Weinberg equilibrium test P > 1 × 10−5) 
that were common between our dataset and HapMap3 were used for 
PC calculations. PCs were first computed in the HapMap3 samples on 
which the rest of the samples were projected. Individuals were assigned 
to one of five ancestral groups, namely, Europeans, Africans, AMR, East 
Asians and South Asians, if their likelihood of belonging to a particular 
ancestry was >0.3; the likelihood estimate was calculated using a kernel 
density estimator trained on the HapMap3 PCs21.

Genetic association analysis
Genetic association analyses were performed within each of the 
cohorts separately using REGENIE software28, and the results were then 
meta-analyzed together using an inverse-variance-weighted approach 
using METAL software75. REGENIE uses a two-step whole-genome 
regression framework that controls for population stratification and 
sample relatedness in a cost-effective and computationally efficient 
manner. Briefly, in step 1, REGENIE computes trait-prediction values (also 
called local PGS) using a sparse set of genotypes, which are typically the 
array genotypes. In step 2, REGENIE computes the variant associations 
with phenotypes using either logistic or linear regression, where the 
trait-prediction values computed in step 1 are included as covariates 
along with other covariates, namely the first 20 genetic PCs computed 
using common variants, the first 20 genetic PCs computed using rare 
variants, age, age squared, sex, an interaction term between age and sex 
and genotyping batches. Specifically, for binary traits with imbalanced 
case–control ratios, REGENIE uses a fast Firth regression, which has been 
shown to perform better than saddlepoint-approximation correction 
used in the logistic mixed-model approach implemented in software such 
as SAIGE76. For burden analysis, REGENIE first creates a pseudo-genotype, 
described as a burden mask, by collapsing a set of variants (see Supple-
mentary Table 2 for the different burden definitions used) into a single 
categorical variable and then treats this burden mask in the same manner 
as a variant genotype to compute association statistics.

For the top burden associations, we performed a sensitivity analy-
sis called LOVO implemented in REGENIE. To perform LOVO, REGENIE 
creates a series of burden masks iteratively for a given set of variants, 

where, during each iteration, one variant is left out of the burden mask. 
The created burden masks are then tested for association with the 
phenotype of interest. Variants that contribute substantially to the 
burden association will cause a large drop in the statistical significance 
when left out. Therefore, such an approach can isolate variants that are 
mainly driving the association and can help evaluate whether a burden 
association is driven by multiple variants or only a single variant; this 
is important, as, in the latter, the inferred effect direction cannot be 
attributed to all variants that were included in the burden mask.

For the top burden associations, we also tested whether the asso-
ciations were driven by any nearby common variant signals. For this, 
we iteratively included the most significant common variant observed 
within 1 Mb on either side of the gene start as a covariate in the REGENIE 
regression analysis until no nearby common variants with P < 0.01 were 
observed. The burden results from the conditional analysis in each of 
the cohorts were then meta-analyzed together.

FinnGen analysis
We downloaded the associations of variant rs202079239 with 3,095 
disease endpoints in the FinnGen database using their web browser 
(https://r7.finngen.fi/variant/1-154575801-C-G)30. Through a string 
search, we extracted associations related to smoking, substance abuse, 
addiction, COPD and other lung diseases. To test for enrichment of 
protective associations (OR < 1) in the extracted phenotypes, we did 
a hypergeometric test using the ‘phyper’ function implemented in 
the R base package by passing the following values: q = 36 (number 
of associations with OR < 1 among the smoking-related phenotypes), 
m = 2,018 (number of associations with OR < 1 among all phenotypes), 
n = 1,077 (number of associations with OR > 1 among all phenotypes) 
and k = 47 (total number of smoking-related phenotypes extracted).

Association of rare variant burden at known GWAS loci
The most recent GWAS by Saunders et al. has identified 1,647 loci asso-
ciated with one or more smoking traits, and, furthermore, the authors 
have mapped a set of ‘high-priority genes’ through statistical fine 
mapping19. Leveraging these results, we analyzed rare variant burden 
associations with our six primary smoking phenotypes focused on 
two gene sets: high-priority genes (n genes = 788) and a broader list of 
genes that are located close to any of the 1,647 GWAS loci reported by 
Saunders et al. (n genes = 1,177)19. Similar to our primary analysis, we 
studied pLOF-only and pLOF-plus-deleterious missense variant burden 
at five allele frequency thresholds for each of the genes. We applied an 
FDR of 1% to correct the P values for multiple testing.

CHIP mutation analysis
We identified CHIP mutations in the exome-sequencing data of UKB and 
GHS participants using a somatic mutation-calling pipeline, which we 
have described in detail in a previous publication focused on CHIP33. 
Briefly, we used the somatic mutation caller Mutect2, which uses vari-
ant mapping and allele-frequency measures to call somatic mutations 
against a background of germline variants and sequencing errors. CHIP 
mutation calls were then refined using exome data of a set of reference 
individuals without somatic mutations (sampled from the lower tail of 
the age distribution). This was followed by a series of quality-control 
filtering to identify a final set of highly confident CHIP mutations. In 
the current work, we studied only the CHIP mutations identified in the 
eight most recurrent CHIP genes (DNMT3A, TET2, ASXL1, PPM1D, TP53, 
JAK2, SRSF2 and SF3B1)33.

To test whether the ExWAS associations of ASXL1 and DNMT3A are 
driven by CHIP mutations, we constructed gene burden masks that 
excluded CHIP mutations and performed burden association tests 
using REGENIE and compared with the results based on burden masks 
that included all rare variants. Furthermore, we constructed burden 
masks for all eight recurrent CHIP genes using only the CHIP muta-
tions and performed burden analysis using REGENIE. We also tested 
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the associations of VAF of the CHIP mutations with the six smoking 
phenotypes in a merged genetic dataset of CHIP mutation carriers in 
the UKB (n = 28,348) and the GHS (n = 11,063) cohorts. We aggregated 
the VAF estimates for CHIP mutations within each (and across all) of 
the eight genes and tested their associations with smoking phenotypes 
through regression analysis adjusted for age, sex, the first ten genetic 
PCs and a dummy variable for the cohort of origin.

Identification of independent known and new GWAS loci
To define approximate LD-independent GWAS signals, we used condi-
tional and joint analysis (COJO) implemented in the GCTA software77. 
For the LD reference, we used individual-level genotype data of 10,000 
randomly sampled unrelated individuals of either European ancestry 
(for cross-ancestry and European-specific GWAS) or AMR ancestry 
(for AMR-specific GWAS). The standard errors of the GWAS summary 
statistics were adjusted for the LD score regression intercept (LD score 
regression analysis) before GCTA-COJO analysis. We defined GWAS 
loci as ‘known’ if the index variant in the loci was in LD (R2 > 0.1) with 
genome-wide significant variants reported previously16. LD calcula-
tions were carried out using PLINK version 2 (ref. 78). Our list of known 
GWAS loci came primarily from Liu et al.16. However, before declaring 
a variant as ‘new’, we also manually queried the variants in the GWAS 
Catalog to ensure that the variants were not in LD with variants reported 
in other smoking GWAS publications.

LD score regression analysis
We calculated SNP-h2, that is, the proportion of phenotypic variance 
explained by the common variants, using LD score regression soft-
ware43. We used a European LD reference panel built in house using a 
random set of 10,000 unrelated European individuals from the UKB 
following the instructions provided by the authors of the LD score 
regression software. Genetic correlations were also computed using LD 
score regression software using the European LD reference panel. We 
used LD score regression also to quantify the population stratification 
that is known to inflate GWAS association statistics43. We computed 
LD score intercepts for all GWAS runs including the cross-ancestry 
and AMR-specific GWAS and then compared the values to the corre-
sponding genomic control (GC) λ values. A GC λ > 1 but an intercept = 1 
suggests that the observed inflation in the test statistics is fully due to 
polygenicity. For phenotypes such as smoking that are substantially 
influenced by environmental factors, it is common to have intercept 
values slightly above 1 (but still lower than GC λ), indicating that there 
is inflation in test statistics due to factors other than polygenicity, 
for example, population stratification, cryptic relatedness, etc.43. 
To remove such inflation, we applied a correction factor79 to the test 
statistics to constrain the LD score intercept close to 1. We scaled the 
standard errors of the variant associations by a factor of the square 
root of the LD score intercept. This is a better alternative to GC cor-
rection (commonly practiced in large-scale consortium GWAS), as GC 
correction tends to overcorrect the statistics, removing true polygenic 
signals79. The LD score statistics before and after intercept correc-
tion are reported in Supplementary Table 15. We used the European 
LD reference panel even for cross-ancestry as well as AMR-specific 
GWAS, as there are no well-established guidelines on how to handle 
cross-ancestry or admixed ancestry-based GWAS results. We acknowl-
edge that this has likely biased the results toward variants that are 
shared between European and other ancestries.

Polygenic score analysis
We calculated smoking PGS for the UKB participants using SNP weights 
based on a GWAS of the ever smoker phenotype conducted in an inde-
pendent sample. We obtained the summary statistics of the most recent 
GWAS of the ever smoker phenotype from the GSCAN consortium 
based on an analysis of all the participating GSCAN cohorts except 
the UKB and 23andMe19. To improve the statistical power of the PGS, 

we meta-analyzed the GSCAN results with the GWAS results of the GHS 
cohort, which together yielded a total sample size of 482,096 individu-
als. We then refined the SNP effect sizes in the GWAS summary statistics 
using PRS-CS software80, which uses a Bayesian approach to calculate 
SNP posterior effect sizes under continuous shrinkage priors based on 
an external LD reference panel. The refined SNP weights are then used 
to compute PGS using PLINK version 2 software78.

We performed two types of analysis. First, we studied the asso-
ciations of PGS and CHRNB2 pLOF-plus-missense burden with heavy 
smoking using logistic regression analysis, in which the heavy smoker 
phenotype was coded as the dependent variable (that is, outcome), 
and PGS, burden mask, an interaction term between PGS and burden 
mask and relevant covariates (the same as the ones used in the GWAS) 
were coded as independent variables (regression formula: heavy 
smoker ≈ PGS + burden mask + PGS × burden mask + covariate1 + …
covariaten). Second, we binned UKB individuals into quintiles (five 
equally sized groups) based on their smoking PGS. Individuals within 
each quintile were further divided into carriers and non-carriers of 
CHRNB2 pLOF or likely deleterious missense variants at MAF < 0.001. 
The prevalence of heavy smokers was then compared between carriers 
and non-carriers within each quintile; the standard error was calculated 
using the formula √(pq/n), where n is the number of individuals in the 
group, p is the prevalence of heavy smokers in the group and q is 1 − p. 
We also tested the statistical difference in the prevalence of heavy 
smokers between carriers and non-carriers of rare variant burden using 
logistic regression analysis adjusted for relevant covariates (the same 
as the ones used in the GWAS). The OR, 95% CI and the P value for each 
quintile are reported in Fig. 7.

Power calculations
All power calculations were carried out in R using the package ‘gen-
pwr’ available from CRAN81. In all cases, we computed effect sizes 
(β values) using the function ‘genpwr.calc’ with the following input 
parameters: power = 0.80, calc = ‘es’, model = ‘logistic’ for binary phe-
notypes and ‘linear’ for quantitative phenotypes, α = ‘5 × 10−8’ for GWAS 
and ‘4.5 × 10−8’ for ExWAS, MAF = values ranging from 0 to 0.5, True.
model = ‘additive’ and Test.model = ‘additive’, n = total sample size, 
case_rate = n cases(n total)−1 (for binary phenotypes) and sd_y = 1 (for 
quantitative phenotypes).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are reported in the main 
text, figures and Supplementary Tables 1–17. UKB individual-level geno-
typic and phenotypic data are available to approved investigators via 
the UKB study (https://www.ukbiobank.ac.uk/). Additional information 
about registration for access to the data is available at https://www.
ukbiobank.ac.uk/register-apply/. Data access for approved applica-
tions requires a data-transfer agreement between the researcher’s insti-
tution and the UKB, the terms of which are available on the UKB website 
(https://www.ukbiobank.ac.uk/media/ezrderzw/applicant-mta.pdf). 
GHS individual-level data are available to qualified academic noncom-
mercial researchers through the portal at https://regeneron.envi-
sionpharma.com/vt_regeneron/ under a data-access agreement. The 
MCPS represents a long-standing collaboration between researchers 
at the UNAM and the University of Oxford. The investigators welcome 
requests from researchers in Mexico and elsewhere who wish to access 
MCPS data. If you are interested in obtaining data from the study for 
research purposes or in collaborating with MCPS investigators on a 
specific research proposal, please visit https://www.ctsu.ox.ac.uk/
research/mcps, where you can download the study’s Data and Sample 
Access Policy in English or Spanish. The policy lists the data available 
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for sharing with researchers in Mexico and in other parts of the world. 
Full details of the available data may also be viewed at https://data-
share.ndph.ox.ac.uk/. FinnGen release 7 genetic association results, 
which were used in the current study, are publicly available at https://
r7.finngen.fi/.

Code availability
All genetic association analyses were performed using REGENIE soft-
ware version 2.0.1, developed in house. REGENIE software is freely avail-
able on GitHub (https://github.com/rgcgithub/regenie) and Zenodo 
(https://doi.org/10.5281/zenodo.6789126)82.
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Extended Data Fig. 1 | Forest plots of CHRNB2 burden associations with 
heavy-smoker and ever-smoker. The forest plot displays the cohort-level and 
meta-analysis associations of the CHRNB2 pLOF-only (AAF<0.001) and pLOF 
plus missense (AAF<0.001) burden masks with heavy-smoker and ever-smoker 

tested using REGENIE (Methods). The odds ratios and 95% confidence intervals 
are plotted. The columns ‘case counts’ and ‘control counts’ show the case and 
control sample sizes, respectively, broken down to the number of carriers of the 
homozygous reference, heterozygous and homozygous alternative genotypes.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01417-8

Phenotype

Why reduced smoking:health precaution

Not smoking for 1 day:fairly easy

First cig after waking in 30−60 mins

Stopped smoking for 6 months

Former smoker − once or twice

Ever smoker

Former smoker on most or all days

Heavy smoker

Current smoking compared to 10 yrs back:same

Not smoking for 1 day:very difficult

Why reduced smoking: illness

Case counts

6,788|22|0

6,696|25|0

8,588|28|0

47,134|108|0

66,328|216|0

344,166|923|0

108,812|204|0

110,276|218|0

13,552|22|0

11,529|18|0

1,970|2|0

Control counts

3,334|5|0

24,230|46|0

22,242|43|0

60,122|94|0

329,768|777|0

373,666|1,176|0

287,284|789|0

373,666|1,176|0

19,811|54|0

19,397|53|0

8,152|25|0

OR

  2.60

  2.00

  1.70

  1.50

  1.40

  0.82

  0.67

  0.65

  0.63

  0.57

  0.42

CI

1.00,6.70

1.20,3.40

1.00,2.70

1.10,1.90

1.20,1.60

0.75,0.90

0.57,0.78

0.56,0.76

0.40,1.00

0.34,0.95

0.16,1.10

P value

0.046

0.007

0.039

0.006

7.08e−05

2.87e−05

1.96e−07

1.95e−08

0.057

0.032

0.079

MAF

0.001

0.001

0.001

9.4e−04

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.0 1.0 2.0 3.0

Phenotype Case counts Beta CI P value MAF

Age started smoking

N unsuccessful smoking quit attempts

FEV1

FVC

Age stopped smoking

Age started smoking (former smokers)

Age started smoking

FEV1_FVC

Former smokers−n cig/day

Smoking pack years

Pack years − adult smoking UKB

Cig−per−day

Current smokers−cig/day

33,069|73|0

99,411|187|0

441,463|1,127|0

415,708|1,042|0

108,243|204|0

108,261|204|0

214,433|489|0

368,797|944|0

103,129|194|0

172,837|374|0

133,893|263|0

112,452|218|0

30,741|71|0

   0.15

   0.11

   0.05

   0.05

   0.04

   0.03

   0.01

   0.00

  −0.01

  −0.02

  −0.03

  −0.05

  −0.23

−0.07,0.37

−0.02,0.24

 0.01,0.09

 0.01,0.09

−0.09,0.17

−0.10,0.16

−0.07,0.10

−0.06,0.06

−0.15,0.12

−0.11,0.07

−0.15,0.09

−0.17,0.07

−0.45,0.00

0.183

0.105

0.012

0.015

0.541

0.628

0.769

0.923

0.817

0.739

0.603

0.437

0.045

0.001

9.4e−04

0.001

0.001

9.4e−04

9.4e−04

0.001

0.001

9.4e−04

0.001

9.8e−04

9.7e−04

0.001

−0.4 −0.2 0.0 0.2

Phenotype

Myocardial Infarction

Coronary artery disease

Peripheral arterial disease

Lung cancer

Family h/o lung cancer

COPD

Chronic bronchitis

Emphysema

Case counts

44,008|120|0

90,234|208|0

18,816|40|0

5,142|11|0

50,968|108|0

34,133|62|0

1,413|2|0

9,695|13|0

Control counts

378,748|1,135|0

536,156|1,336|0

325,666|799|0

488,834|1,297|0

337,676|877|0

315,490|774|0

315,490|774|0

571,428|1,637|0

OR

  0.99

  0.92

  0.88

  0.85

  0.84

  0.80

  0.77

  0.45

CI

0.81,1.21

0.79,1.08

0.63,1.22

0.48,1.50

0.69,1.01

0.62,1.03

0.27,2.20

0.28,0.71

P value

0.914

0.311

0.430

0.575

0.066

0.082

0.622

6.92e−04

MAF

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

1.0 1.5 2.0

Smoking binary phenotypes 

Smoking quantitative phenotypes 

Smoking-related disease phenotypes

OR (95% CI)

Beta (95% CI)

OR (95% CI)

Extended Data Fig. 2 | Forest plots of CHRNB2 burden associations with 
secondary smoking phenotypes. The forest plots display the cohort-level or 
meta-analysis associations of CHRNB2 pLOF plus missense (AAF<0.001) burden 
mask with binary (P<0.1) and quantitative smoking phenotypes (major smoking 
phenotypes and phenotypes derived based on UKB lifestyle questionnaire) and 
smoking-related diseases tested using REGENIE (Methods). The odds ratios (or 

Beta estimates) and 95% confidence intervals are plotted. The columns ‘case 
counts’ and ‘control counts’ show the case and control sample sizes, respectively, 
broken down to the number of carriers of the homozygous reference, 
heterozygous and homozygous alternative genotypes. FEV1 – Forced expiratory 
volume in 1 sec; FVC – Forced vital capacity; FEV1_FVC – FEV1:FVC ratio; COPD – 
Chronic obstructive pulmonary disease.
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Extended Data Fig. 3 | Forest plots of ASXL1 burden associations with 
secondary smoking phenotypes. The forest plots display the cohort-level or 
meta-analysis associations of ASXL1 pLOF only burden mask (AAF<0.01) with 
binary and quantitative smoking phenotypes (major smoking phenotypes 
and phenotypes derived based on UKB lifestyle questionnaire with P<0.1) and 

smoking-related diseases tested using REGENIE (Methods). The odds ratios (or 
beta estimates) and 95% confidence intervals are plotted. The columns ‘case 
counts’ and ‘control counts’ show the case and control sample sizes, respectively, 
broken down to the number of carriers of the homozygous reference, 
heterozygous and homozygous alternative genotypes.
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Extended Data Fig. 4 | Forest plots of DNMT3A burden associations with 
secondary smoking phenotypes. The forest plots display the cohort-level 
or meta-analysis associations of DNMT3A pLOF plus missense burden mask 
(AAF<0.01) with binary and quantitative smoking phenotypes (major smoking 
phenotypes and phenotypes derived based on the UKB lifestyle questionnaire) 

and smoking-related diseases tested using REGENIE (Methods). The odds ratios 
(or beta estimates) and 95% confidence intervals are plotted. The columns ‘case 
counts’ and ‘control counts’ show the case and control sample sizes, respectively, 
broken down to the number of carriers of the homozygous reference, 
heterozygous and homozygous alternative genotypes.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Associations of CHIP mutations with smoking. a. pLOF 
only and pLOF plus missense burden masks for eight recurrent CHIP genes were 
created in the UKB and GHS cohorts by aggregating only high-confident CHIP 
mutations (Methods) and tested for their associations with the six smoking 
phenotypes. The results were meta-analyzed between the GHS and UKB cohorts 
and the resulting P values are plotted. The dotted red line corresponds to FDR 
1% P value threshold and the black dotted line corresponds to P = 0.05. b. The 
alternative allele frequencies (AAF) of the burden masks (combined AAF of all 

the variants aggregated in a mask) are plotted. c. Variant allele fractions (VAF) of 
CHIP mutations in the eight most recurrent CHIP genes were aggregated gene-
wise and all together in the CHIP carriers in the UKB and GHS cohorts (when the 
same individual carried more than one CHIP mutation, we took the average of the 
VAF) and tested for associations with the six smoking phenotypes. The UKB and 
GHS combined association P values are plotted. The red dotted line corresponds 
to FDR 1% P value and the black dotted line corresponds to P = 0.05.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Rare variant associations at the classic CYP2A6 and 
CHRNA5 GWAS loci. a. P values of the pLOF only and pLOF plus missense burden 
associations of cytochrome gene cluster at the CYP2A6 GWAS locus with the six 
smoking phenotypes are plotted. The red dotted line corresponds to FDR 1%  
P value and the black dotted line corresponds to P = 0.05. b. P values of the pLOF 
only and pLOF plus missense burden associations of nicotine acetylcholine 

receptor (nAChR) genes at the CHRNA5 GWAS locus with the six smoking 
phenotypes are plotted. The red dotted line corresponds to FDR 1% P value and 
the black dotted line corresponds to P = 0.05. c. The beta estimates (in SD units) 
and 95% confidence intervals of the nAChR burden associations with cig-per-day 
(N = 112,670) are plotted. The sample sizes of the associations shown in panels a, 
b, and c are provided in Supplementary Table 11.
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Extended Data Fig. 7 | Power calculations for rare variant discovery at the 
CHRNA5 GWAS locus. Assuming an 80% power and P value of 5e-8, detectable 
effect sizes at various minor allele frequency values were calculated for the 
current sample size of cig-per-day (the smoking trait most associated with 
CHRNA5 locus) as well for a series of sample sizes up to 1 million. The observed 
effect sizes for pLOF only burden and pLOF and missense burden associations of 

CHRNA5, CHRNA3 and CHRNB4 are plotted; all the points lay below the red line, 
which marks the detection limit of our current sample size, suggesting that we 
are underpowered. Based on the intersections of the grey lines with the points 
marking the observed effect sizes, we can approximately guess what sample size 
will be required to detect these burden signals at P value 5e-8.
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Extended Data Fig. 8 | Association of rare variant burden in genes at the 
GWAS loci associated with smoking behavior. Rare pLOF only and pLOF and 
missense burden associations were tested focusing only on the genes located at 
the known GWAS loci identified by the recent largest GWAS of smoking to date. 
We studied two gene lists prioritized by Saunders et al.19: a list of genes mapped 

to all the identified GWAS loci and a list of ‘high-priority genes’ mapped to GWAS 
loci with less than five fine-mapped variants. QQ plots of the meta-analysis  
P values of burden associations are shown. The dashed line corresponds to  
FDR 1% P value threshold.
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Extended Data Fig. 9 | Power calculations for gene discovery using the 
current sample size. Assuming an 80% power, P value threshold of 4e-8 (exome-
wide significant threshold of the current study based on FDR 1%), effect sizes 
(that is, beta values) were computed for a range of minor allele frequencies 
(combined allele frequency in case of burden masks) for a given sample size 
(varies across phenotypes). The computed effect sizes (absolute values of beta 
estimates) are plotted against minor allele frequencies (carrier frequency) for 
six smoking phenotypes. The carrier frequency corresponding to 100 carriers, 
calculated for each of the phenotype based on the corresponding sample size, in 
the X axis and the corresponding effect size in the Y axis are marked with straight 
lines. The top association of the three genes identified as exome-wide significant 
are plotted with the color corresponding to the associated phenotype. Based 

on these power curves, we had 80% power to detect any variant or burden 
associations with ever-smoker, heavy-smoker and /former-smoker/ with odds 
ratio ~2.5 or higher (0.4 or lower) when there are at least 100 carriers. And we had 
80% power to detect any variant or burden associations with cig-per-day and age 
started smoking with beta 0.45 (equivalent to 4.7 extra cigarettes for cig-per-day 
and 1.9 yr earlier age for age started smoking) when there are at least 100 carriers. 
These calculations assume that there is no heterogeneity in the effect sizes across 
the cohorts, which is never the case for complex traits such as smoking. Hence, 
these estimates should be considered arbitrary. Importantly, the effect sizes for 
protective associations with binary phenotypes are likely overestimated due to 
imbalances in the case-control ratios.
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