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The impact of rare protein coding genetic 
variation on adult cognitive function

Chia-Yen Chen    1 , Ruoyu Tian1,39, Tian Ge2,3,4, Max Lam    4,5,6, 
Gabriela Sanchez-Andrade7, Tarjinder Singh    4,8, Lea Urpa9, Jimmy Z. Liu    1,40, 
Mark Sanderson7, Christine Rowley7, Holly Ironfield7, Terry Fang1, Biogen 
Biobank Team*, The SUPER-Finland study*, The Northern Finland Intellectual 
Disability study, Mark Daly4,8,9,10, Aarno Palotie    4,8,9,10, Ellen A. Tsai    1, 
Hailiang Huang    4,8,11, Matthew E. Hurles    7, Sebastian S. Gerety    7, 
Todd Lencz    5,6,12,13 & Heiko Runz    1 

Compelling evidence suggests that human cognitive function is strongly 
influenced by genetics. Here, we conduct a large-scale exome study to 
examine whether rare protein-coding variants impact cognitive function 
in the adult population (n = 485,930). We identify eight genes (ADGRB2, 
KDM5B, GIGYF1, ANKRD12, SLC8A1, RC3H2, CACNA1A and BCAS3) that are 
associated with adult cognitive function through rare coding variants with 
large effects. Rare genetic architecture for cognitive function partially 
overlaps with that of neurodevelopmental disorders. In the case of KDM5B 
we show how the genetic dosage of one of these genes may determine the 
variability of cognitive, behavioral and molecular traits in mice and humans. 
We further provide evidence that rare and common variants overlap in 
association signals and contribute additively to cognitive function. Our 
study introduces the relevance of rare coding variants for cognitive function 
and unveils high-impact monogenic contributions to how cognitive 
function is distributed in the normal adult population.

Cognitive function is a complex trait consisting of mental processes 
that include attention, memory, processing speed, spatial ability, 
language and problem-solving1–4. General cognitive function and 
specific cognitive domains can be reliably measured across individu-
als in the human population and throughout the life span2. Cognitive 
function in adults, as ascertained either directly via cognitive tests 

or using proxy measures such as educational attainment (EDU), is 
strongly influenced by genetics and shows substantial genetic correla-
tion with physical and mental health outcomes as well as mortality1. 
Nearly 4,000 cognitive function loci of individually small effect sizes 
have been identified through common variant-based genome-wide 
association studies (GWAS)2–6. GWAS have also demonstrated shared 
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Rare variants influence adult cognitive function
We first examined the impact of rare coding variant burden on EDU, 
RT and VNR in unrelated UKB participants of European (EUR) ancestry 
(n = 321,843; Fig. 1a and Supplementary Tables 1 and 2). We showed 
that exome-wide PTV and missense burden have significant delete-
rious effects on cognitive function, which is reflected in lower EDU, 
longer RT and lower VNR scores per variant count (exome-wide PTV 
burden: P = 1.95 × 10−21 for EDU, 8.79 × 10−19 for RT and 6.99 × 10−22 for 
VNR; missense burden: P = 5.95 × 10−24 for EDU, 5.95 × 10−4 for RT and 
4.87 × 10−12 for VNR). Consistent with previous exome studies12–15,30, the 
most pronounced signals were driven by PTVs and damaging missense 
variants (missense badness, PolyPhen-2, and constraint (MPC) > 3 and 
3 ≥ MPC > 2) in LoF-intolerant genes (pLI ≥ 0.9) (refs. 32,33). The effect 
sizes of PTV and the MPC > 3 missense burden in LoF-intolerant genes 
were not significantly different (Fig. 1), suggesting that both classes of 
variants may impact cognitive function similarly. The synonymous vari-
ant burden showed an inverse, albeit small, effect on EDU (exome-wide 
β = 0.0087, P = 8.59 × 10−75), but not on RT and VNR.

After the exome-wide burden analyses, we performed gene-based 
PTV burden tests to identify genes associated with EDU, RT and VNR 
using two-step whole-genome regression implemented in regenie34. By 
analyzing 397,434 EUR samples in the UKB, we identified eight genes 
associated with one or more cognitive phenotypes at exome-wide 
significance after Bonferroni correction (Table 1 and Fig. 1b–g). These 
cognitive function genes included KDM5B (for all three phenotypes), 
ADGRB2, GIGYF1, SLC8A1, BCAS3 (for EDU), ANKRD12 (for VNR and for 
EDU with false discovery rate (FDR) significance), RC3H2 and CACNA1A 
(for VNR). As expected, PTV burden in these eight genes showed del-
eterious effects on cognitive function14,15. We also identified five puta-
tive cognitive function genes at an FDR of Q < 5% (NDUFA6, ARHGEF7, 
C11orf94, KIF26A and MAP1A; Supplementary Tables 3–5). In addition to 
the EUR samples, we also examined the impact of rare coding variants 
in UKB participants of South Asian (SAS) (n = 9,224) and African (AFR) 
(n = 8,406) ancestries; Supplementary Tables 4–7 and Supplementary 
Figs. 1 and 2). However, analyses in non-EUR samples were underpow-
ered to replicate our findings in UKB EUR samples.

We next aimed to replicate our findings in three independent 
EUR cohorts: the SUPER-Finland study (9,883 cases with psychosis); 
Northern Finland Intellectual Disability (NFID) study (1,097 cases 
with intellectual disability (ID), 11,774 controls)35; and Mass General 
Brigham Biobank (MGBB) (8,389 population cohort), for which exome 
sequencing and cognitive function phenotypes were available. We 
performed association analyses on an aggregated gene set of all eight 
cognitive function genes identified in the UKB against developmen-
tal disorders (DDs)/ID (SUPER-Finland and NFID studies), academic 

genetic contributions between cognitive function and neurodevel-
opmental disorders7–10, for which large-scale exome studies have 
identified hundreds of underlying genes7,11–13. However, beyond a 
proposed deleterious effect of exome-wide rare protein-truncating 
variant (PTV) burden14,15, no studies have yet systematically interro-
gated the impact of rare coding variants on cognitive phenotypes in 
the adult general population.

To advance gene discovery for cognitive phenotypes beyond 
GWAS and gain deeper insights into the shared genetic components 
between adult cognitive function and neurodevelopmental disor-
ders, we analyzed exome sequencing and genome-wide genotyping 
data from 454,787 UK Biobank (UKB) participants with measures of 
cognitive function. We show that adult cognitive function is strongly 
influenced by the exome-wide burden of rare protein-coding vari-
ants and identify and replicate eight genes that are associated with 
adult cognitive phenotypes. For one of these cognitive function genes, 
KDM5B, we demonstrate in mice and humans that reduced cognitive 
function at the population level can be part of a phenotypic spectrum 
in which cognitive performance depends on the genetic dose of a sin-
gle gene. Finally, our study bridges a gap between common complex 
trait and rare disease genetics by demonstrating that adult cognitive 
function is influenced by additive effects between rare and common 
variant-based polygenic risk that can be traced to overlapping genomic 
loci and biological pathways.

Results
The UKB is a prospective cohort study of over 500,000 participants with 
extensive health and lifestyle data and genome-wide genotyping and 
sequencing16–22. We chose to study the genetic basis of three distinct, 
yet interrelated phenotypes that previous studies used to approximate 
adult cognitive function: educational attainment (EDU); reaction time 
(RT); and verbal-numerical reasoning (VNR)23. EDU is derived from a 
survey regarding years of schooling, which is genetically correlated 
with both adult (rg = 0.66) and childhood cognitive function (rg = 0.72) 
(refs. 5,24,25). RT is based on a digital test that measures processing 
speed, a component of general cognitive function26,27. VNR is a measure 
of general cognitive function based on questionnaires. We annotated 
exome sequencing data from 454,787 UKB participants18,19 for PTVs, 
missense variants and synonymous variants28,29 and identified rare 
coding variants with a minor allele frequency (MAF) < 10−5 in the UKB, 
following previous exome studies on cognition-related traits12,14,15,21,30. 
We further annotated all variants according to gene intolerance to 
loss-of-function (LoF) and missense variants for deleteriousness31. In 
total, we analyzed 649,321 protein-truncating, 5,431,793 missense and 
3,060,387 synonymous rare variants.

Fig. 1 | Impact of exome-wide burden of rare protein-coding variants and 
gene discovery based on the PTV burden for EDU, RT and VNR in EUR samples 
in the UKB. a, The effects of protein-truncating, missense (stratified by MPC)  
and synonymous variant burden on EDU, RT and VNR across the exome and 
stratified by genes intolerant (pLI ≥ 0.9) or tolerant (pLI < 0.9) to PTVs. Unrelated 
UKB EUR samples were included in this analysis (n = 318,844 for EDU, n = 319,536 
for RT and n = 128,812 for VNR). pLI is the probability of being LOF-intolerant as 
recorded in the gnomAD database. Missense variants were classified according  
to deleteriousness (MPC) into three tiers: MPC > 3; 3 ≥ MPC > 2; and other  
missense variants not in the previous two tiers. The number of genes included  
in each burden was labeled. Data are presented as effect size estimates (β) 
with 95% confidence intervals (CIs). b, Exome-wide, gene-based PTV burden 
association for EDU (related UKB EUR sample n = 393,758). The −log10 P values 
(two-sided t-test) for each gene were plotted against the genomic position 
(Manhattan plot). The orange dashed line indicates the Bonferroni-corrected 
exome-wide significance level per phenotype (P < 0.05/15,782 = 3.17 × 10−6 for 
EDU). The purple triangles indicate Bonferroni-significant genes. The orange 
triangles indicate FDR-significant genes (FDR Q < 0.05). c, Observed −log10  
P value (two-sided t-test) plotted against expected values (Q–Q plot) for exome-
wide, gene-based PTV burden association for EDU. The orange dashed line 

indicates the Bonferroni-corrected exome-wide significance level per phenotype 
(P < 0.05/15,782 = 3.17 × 10−6 for EDU). d, Exome-wide, gene-based PTV burden 
association for RT (related UKB EUR sample n = 394,600). The −log10 P values 
(two-sided t-test) for each gene were plotted against the genomic position 
(Manhattan plot). The orange dashed line indicates the Bonferroni-corrected 
exome-wide significance level per phenotype (P < 0.05/15,798 = 3.16 × 10−6 for 
RT). e, Observed −log10 P value (two-sided t-test) plotted against the expected 
values (Q–Q plot) for exome-wide, gene-based PTV burden association for 
RT. The orange dashed line indicates the Bonferroni-corrected exome-wide 
significance level per phenotype (P < 0.05/15,798 = 3.16 × 10−6 for RT).  
f, Exome-wide, gene-based PTV burden association for VNR (related UKB EUR 
sample n = 159,026). The −log10 P values (two-sided t-test) for each gene were 
plotted against the genomic position (Manhattan plot). The orange dashed 
line indicates the Bonferroni-corrected exome-wide significance level per 
phenotype (P < 0.05/11,905 = 4.20 × 10−6 for VNR). g, Observed −log10 P value 
(two-sided t-test) plotted against the expected values (Q–Q plot) for exome-
wide, gene-based PTV burden association for VNR. The orange dashed line 
indicates the Bonferroni-corrected exome-wide significance level per phenotype 
(P < 0.05/11,905 = 4.20 × 10−6 for VNR).
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performance (SUPER-Finland study) and EDU (SUPER-Finland study 
and MGBB). Consistent with our findings in the UKB, PTV burden 
was associated with lower EDU (β = −0.424, P = 0.0021), lower aca-
demic performance (β = −0.338, P = 0.0125) and higher risk for DD/ID  
(odds ratio (OR) = 4.812, P = 8.30 × 10−4) in the SUPER-Finland study 
(Supplementary Table 8). The association between the cognitive func-
tion gene set and cognitive function in the SUPER-Finland study was 
conditioned on all samples from this cohort being cases with psychosis, 
which suggests that the observed effects on cognitive function were 
independent from and in addition to the potential effects of psychosis. 
In the NFID study, PTV burden in the cognitive function gene set was 
also associated with higher risk for DD/ID (OR = 4.973, P = 3.63 × 10−5). 
The MGBB data showed concordant results in the general popula-
tion (β = −0.731, P = 0.5013 for EDU). Meta-analyses across replication 

cohorts for DD/ID (SUPER-Finland and NFID studies) showed lower 
association P values (P = 1.57 × 10−8; Supplementary Table 8) than the 
individual studies. Replication analyses for individual genes yielded 
supportive results but did not reach statistical significance due to the 
much smaller replication sample sizes than those in the UKB. Overall, 
our replication analyses validated that LoF in the cognitive function 
genes identified in the UKB reduces adult cognitive function.

To systematically assess whether the LoF of the eight cognitive 
genes also impacted phenotypes beyond cognitive function, we con-
ducted PTV burden-based phenome-wide association studies (PheWAS) 
with 3,150 phenotypes in unrelated UKB EUR samples. Indeed, PheWAS 
suggested pleiotropy for six of the eight cognitive function genes. For 
instance, a rare PTV burden in KDM5B was not only strongly associ-
ated with all three cognitive function phenotypes studied (β = −0.307, 
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P = 8.68 × 10−8 for EDU; β = 0.447, P = 9.60 × 10−11 for RT; β = −0.547, 
P = 1.24 × 10−7 for VNR), but also showed 16 additional phenome-wide 
significant associations related to muscle function (for example, hand 
grip strength (right), P = 1.02 × 10−7), skeletal phenotypes (for example, 
heel bone mineral density T-score, automated (right), P = 2.93 × 10−7), 
bipolar disorder (BD) (P = 3.04 × 10−7) and pain medication use (pre-
gabalin, P = 2.27 × 10−10), among others (Extended Data Fig. 1 and Sup-
plementary Table 9). Similarly, the PheWAS for ANKRD12 identified 
11 phenome-wide significant associations including dysarthria and 
anarthria (motor disorders with speech deficit; International Classi-
fication of Diseases 10th Revision (ICD-10) code R47.1; P = 2.28 × 10−9), 
which suggests a potential mechanism of how ANKRD12 might affect 
VNR and EDU. Other notable phenome-wide-significant associations 
include type 2 diabetes and related phenotypes for GIGYF1 (refs. 36,37), 
chlorpromazine (antipsychotic) use and impaired cognitive function 
and awareness (ICD-10 code R41.8) for ADGRB2 (Supplementary Fig. 3 
and Supplementary Table 9). The substantial pleiotropy indicates that 
these genes do not impact cognitive function in isolation. To provide 
insights into the potential mechanisms, we curated known and pro-
posed medical and biological roles for all genes identified in our study 
(Table 1, Supplementary Table 7 and Supplementary Information).

Cognition and neurodevelopmental genes overlap
Sequencing has identified hundreds of genes underlying DDs and 
autism spectrum disorder (ASD) that both diseases partially share12,13. 
As some of the genes we identified are known to cause Mendelian DDs 
(Table 1), we aimed to elucidate the overall rare genetic variation overlap 
between adult cognitive function, DDs and ASD. We tested whether 
the rare coding variant burdens in 285 DD-associated genes and 102 
ASD-associated genes are associated with adult cognitive function. 

We observed significant deleterious effects of PTV burden in DD and 
ASD genes on all three cognitive phenotypes analyzed (Fig. 2a and 
Supplementary Table 10), while damaging missense variants (MPC > 3 
or 3 ≥ MPC > 2) also showed similar deleterious effects.

To identify individual genes linking DD, ASD and adult cogni-
tive function, we next extracted PTV de novo mutation enrichment 
and de novo weighted enrichment simulation test (DeNovoWEST)  
P values12,13 and compared the relative impact of rare coding variants 
in a combined DD, ASD, EDU and VNR gene set (Fig. 2b and Supple-
mentary Table 11). KDM5B and GIGYF1 stood out from these analyses 
because, interestingly, both genes are LoF-tolerant despite being a 
cause of DD. CACNA1A was also notable because its association with 
DD was primarily driven by missense variants, whereas PTV burden 
was primarily associated with VNR. This is consistent with earlier find-
ings for CACNA1A, in which both LoF and gain of function mutations 
may cause neurological diseases with a spectrum of partially overlap-
ping clinical phenotypes38–43. We repeated these analyses with 2,020 
confirmed or probable rare disease genes from the Developmental 
Disorder Genotype-Phenotype Database (DDG2P) and observed similar 
results (Extended Data Fig. 2 and Supplementary Tables 10 and 11). Our 
analyses support that PTVs and missense variants in KDM5B, GIGYF1 and 
CACNA1A underlie a continuum of conditions with various degrees of 
cognitive impairment.

KDM5B gene dosage determines clinical phenotype
Homozygous (HOM) and compound heterozygous (HET) mutations 
in the histone lysine demethylase encoded by KDM5B cause an autoso-
mal recessive intellectual developmental disorder (IDD) with dysmor-
phic features (MIM 618109) (refs. 44,45). In a HET state, KDM5B PTVs 
were overrepresented in the cases of the Deciphering Developmental 

Table 1 | Exome-wide, gene-based, PTV burden association-identified genes for EDU, RT and VNR in EUR samples in the UKB

Gene 
symbol

Associated 
phenotype(s)

EDU RT VNR Known gene–phenotype 
relationships

β (95% CI) P n PTV 
carrier

β (95% CI) P n PTV 
carrier

β (95% CI) P n PTV 
carrier

ADGRB2 EDUa −0.664  
(−0.854 to −0.473)

8.55 × 10−12 71 0.159  
(−0.070 to 0.388)

0.174 70 −0.615  
(−0.976 to −0.255)

8.28 × 10−4 25

KDM5B EDUa/RTa/VNRa −0.307  
(−0.419 to −0.195)

8.68 × 10−8 204 0.447  
(0.311 to 0.582)

9.60 × 10−11 201 −0.547  
(−0.750 to −0.344)

1.24 × 10−7 79 MIM: autosomal 
recessive intellectual 
developmental 
disorder-65

Exome study: DD, ASD

GIGYF1 EDUa −0.492  
(−0.660 to −0.324)

9.80 × 10−9 91 0.275  
(0.076 to 0.473)

6.78 × 10−3 93 −0.490  
(−0.771 to −0.209)

6.43 × 10−4 41 Exome study: DD, ASD

ANKRD12 VNRa/EDUb −0.310  
(−0.445 to −0.176)

6.26 × 10−6 142 0.101  
(−0.057 to 0.260)

0.210 146 −0.694  
(−0.941 to −0.447)

3.77 × 10−8 53 Exome study: SCZ

SLC8A1 EDUa −0.992  
(−1.371 to −0.613)

2.84 × 10−7 18 0.202  
(−0.250 to 0.654)

0.381 18 NA NA 4

RC3H2 VNRa −0.337  
(−0.612 to −0.062)

0.016 34 0.132  
(−0.196 to 0.461)

0.430 34 −1.126  
(−1.576 to −0.676)

9.32 × 10−7 16

CACNA1A VNRa −0.210  
(−0.391 to −0.029)

0.023 78 0.352  
(0.129 to 0.575)

1.95 × 10−3 74 −0.824  
(−1.159 to −0.490)

1.33 × 10−6 29 MIM: spinocerebellar 
ataxia-6; type 2 
episodic ataxia; familial 
hemiplegic migraine-1; 
developmental 
and epileptic 
encephalopathy-42. 
Exome study: DD

BCAS3 EDU −0.419  
(−0.592 to −0.246)

1.99 × 10−6 86 0.207  
(−0.003 to 0.417)

0.054 83 −0.361  
(−0.670 to −0.053)

0.022 34 MIM: Hengel–
Maroofian–Schols 
syndrome

The sample sizes, number of genes tested and λGC for each phenotype are as follows: nsample = 393,758, ntest = 15,782 and λGC = 0.967 for EDU; nsample = 394,600, ntest = 15,798 and λGC = 0.961 for RT; 
and nsample = 159,026, ntest = 11,905 and λGC = 0.959 for VNR. We excluded genes with fewer than ten PTV carriers from the analysis. The ‘associated phenotype(s)’ column indicates the phenotype 
for each gene with Bonferroni significance (adjusted by ntest for each phenotype). aIndicates genes that showed exome-wide significant association (bold) after Bonferroni correction across all 
tests (two-sided t-test: P < 0.05/43,485 = 1.15 × 10−6). bFDR was significant for EDU. β values represent rank-based inverse-normal transformed phenotypes and correspond to s.d. change in the 
phenotype. The table was sorted according to the lowest P value across three phenotypes.
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Disorders study7. To better understand the phenotypic spectrum of 
KDM5B LoF, we examined the phenotypes documented for KDM5B 
PTV carriers in UKB EUR samples (Fig. 3). As expected, EDU and VNR 
were on average lower in KDM5B PTV carriers (n = 204 for EDU and 
n = 79 for VNR) than in noncarriers (standardized, residualized phe-
notype mean = −0.3669 for EDU and −0.5387 for VNR). We identified 
35 KDM5B PTV carriers who had been diagnosed with psychiatric 

disorders, epilepsy or Parkinson disease based on hospital diagnostic 
codes (enriched for disease cases compared with EUR non-KDM5B PTV 
carriers; P = 0.0005). EDU was impaired to a similar extent in KDM5B 
PTV carriers with and without such comorbidities (Supplementary 
Table 12). Notably, all individuals carrying HET PTVs annotated as 
pathogenic or likely pathogenic in ClinVar showed reduced EDU and 
VNR to a similar degree as carriers of novel KDM5B PTVs, and none 
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of the three UKB participants HET for the pathogenic p.Arg299Ter 
variant (rs1558498928) had diagnostic records of IDD. We also found 
similar evidence for low cognitive function irrespective of comorbidi-
ties among CACNA1A PTV carriers (Extended Data Fig. 3 and Supple-
mentary Table 13).

Based on our findings in the UKB and KDM5B’s role in disease, we 
hypothesized that lower EDU and VNR in HET KDM5B PTV carriers may 
be explained by a gene dosage effect where HET PTV carriers show an 
attenuated phenotype relative to individuals with HOM KDM5B LoF 
mutations. To test this hypothesis, we conducted a series of cognitive 
and behavioral tests in a previously reported Kdm5b mouse model45. 
Relative to wild-type (WT) siblings, both HET and HOM Kdm5b mutant 
mice showed cognitive, behavioral and skeletal phenotypes consistent 
with an additive effect of Kdm5b LoF (Fig. 4a). Specifically, mutant mice 
showed deficits in spatial memory (Barnes maze), reduced new object 
recognition and behavioral abnormalities, such as increased anxiety 
(light–dark box). Furthermore, skeletal abnormalities observed in 
HOM knockout mice, such as changes in craniofacial dimensions or 
transitional vertebrae, were also present in HET Kdm5b mice with an 
intermediate severity or frequency (Extended Data Fig. 4). An additive 
effect of Kdm5b LoF was further supported by Kdm5b mRNA levels in 
the whole-brain tissue of embryonic HET mice and the frontal cortex 
(FC), hippocampus (HIP) and cerebellum (CB) tissues of adult HET 
mice being at an intermediate level between WT and HOM mutant 
mice (Fig. 4b). Consistently, 92% of the 723 differentially expressed 
genes (DEGs) identified by RNA sequencing (RNA-seq) (FDR Q < 0.1) 
in the Kdm5b mutant mouse brain showed the same directionality of 
change in both HOM and HET mice, with a globally smaller effect size 
in HET mice than HOM mice (Fig. 4c and Extended Data Fig. 5). We also 
found that Kdm5b brain expression is higher during the embryonic 
stages than in adult murine tissues (Fig. 4b) and followed a pattern 
very similar to KDM5B brain mRNA levels across the human life span46 
(Supplementary Fig. 4 and Supplementary Tables 14 and 15). Consist-
ent with the biological function of Kdm5b, more genes were differ-
entially expressed in embryonic Kdm5b mutant mice than in adults, 
with a strong enrichment of genes with roles in brain development, 

synapse function and brain structure (Fig. 4c, Supplementary Fig. 5 
and Supplementary Tables 16 and 17). In summary, our data from both 
mice and humans provide strong evidence that KDM5B LoF modulates 
cognition, behavior, skeletal phenotypes and brain mRNA expression 
in a dose-dependent manner.

Rare and common variant signals intersect
We further tested whether the genes identified through our PTV burden 
analysis in the UKB overlap with the genetic loci identified in previous 
common variant-based EDU5 and cognitive function GWAS4. Indeed, we 
identified overlapping signals between an EDU GWAS locus on chromo-
some 1 and ADGRB2, which showed PTV burden association with EDU. 
Notably, the PTVs for which carriers showed lower than average EDU 
and VNR and the GWAS top associated SNPs were in close genomic 
proximity, prioritizing ADGRB2 as the most likely causal gene of the 
GWAS association signal (Extended Data Fig. 6). We also identified 
overlapping signals with the FDR-significant EDU gene NDUFA6, thus 
prioritizing NDUFA6 over other genes at this GWAS locus (Extended 
Data Fig. 7). To further characterize the overlap between rare coding 
and common variant associations with cognitive function, we used UKB 
exomes to calculate rare coding variant burdens for genes identified 
in cognitive function-related GWAS. PTV burden in EDU GWAS genes 
showed significant effects on all three cognitive phenotypes (β = −0.023 
and P = 3.69 × 10−7 for EDU; β = 0.017 and P = 6.38 × 10−5 for RT; β = −0.033 
and P = 4.05 × 10−6 for VNR), while PTV burden in cognitive function and 
schizophrenia (SCZ) GWAS genes showed significant effects on EDU. 
Significant effects were also observed for missense variants (Supple-
mentary Figs. 6–8 and Supplementary Table 18).

GWAS have identified biological pathways of potential relevance 
to cognitive function2,3. To further explore the biological mechanisms 
through which rare variants might impact cognitive function, we per-
formed PTV burden analysis of 13,011 gene sets from the Molecular 
Signatures Database in the UKB (Supplementary Fig. 9 and Supple-
mentary Table 19). We identified 182, 66 and 56 Bonferroni-corrected 
significant gene sets for EDU, RT and VNR, respectively. The most 
significant gene sets were involved in synaptic function, neurogenesis, 
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neuronal differentiation and neuronal development. These signatures 
highly overlapped with those from cognitive function GWAS2, sug-
gesting that rare and common variants modulate cognitive function 
through similar mechanisms. Further analyses showed that the burden 
of PTV and damaging missense variants in genes with brain-specific 
expression impacted cognitive function more strongly than when 
genes were primarily expressed in other tissues (Extended Data Fig. 8 
and Supplementary Table 20), which is also consistent with previous 
GWAS findings2,3,5.

Finally, we explored the relationship between rare coding variants 
and common variant-based polygenic risk on cognitive function. We 
calculated polygenic risk scores (PRS) in unrelated EUR samples in 
the UKB using imputed genome-wide genotype data and SNP weights 
based on cognitive function GWAS (excluding the UKB samples)4 using 
PRS-CS47, where a higher PRS reflects the genetic liability of increased 
cognitive function. We tested the joint effects of PRS and carrier status 
for PTVs or MPC > 2 damaging missense variants in LOF-intolerant 
genes (pLI ≥ 0.9) on EDU and VNR. These analyses showed that the 
effects of PRS and rare coding variants are additive (PRS interaction test 
P = 0.27 for PTV and P = 0.21 for damaging missense for EDU, P = 0.72 for 
PTV and P = 0.59 for damaging missense for VNR; Fig. 5, Extended Data 
Fig. 9 and Supplementary Tables 21 and 22). For EDU, the conditional 
effects of PRS, PTV carrier status and damaging missense carrier status 
were 0.116, −0.095 and −0.053, respectively while the adjusted partial 
R2 values were 0.013, 0.0015 and 0.0005, respectively (P = 8.96 × 10−949 
for PRS, 7.33 × 10−109 for PTV and 6.76 × 10−38 for missense variants). 
Similar results were observed for VNR. Our results suggest that the 
genetic prediction of cognitive function through PRS can be further 
refined by integrating rare coding alleles.

Discussion
In this study, we present a large-scale exome sequencing study on cogni-
tive function phenotypes in the adult general population. Our findings 
support previous evidence that an increased exome-wide burden of 
rare PTVs is associated with lower cognitive function14,15 and extend 
this observation to deleterious missense variants. The large number 
of exome-sequenced participants in the UKB allowed us to identify 
eight distinct cognitive function genes, with additional evidence from 
three independent EUR cohorts. Notably, several of these cognitive 
function genes have established roles in neurodevelopmental disor-
ders. Our results suggest that a fraction of adults in the normal general 
population have lower cognitive abilities as a consequence of defects 
in single disease genes.

Our study is a natural extension of previous GWAS on cognitive 
function and EDU2–6. While highly successful in identifying associ-
ated loci through common variants, applying the GWAS approach to 

cognitive function has received substantial criticism, especially on 
potential biases due to ancestry, geography and environmental or 
cultural differences between subpopulations25,48. Cognitive function 
is difficult to assess in isolation for its substantial genetic and nonge-
netic overlap with other traits25. For instance, EDU is not only reflec-
tive of childhood and adult IQ, but also strongly correlates with other 
traits including income, parental age at birth, alcohol dependence or 
neuroticism25. Furthermore, as suggested by recent studies, EDU is a 
combination of multiple factors at both phenotypic and genetic lev-
els24,49,50. Using GWAS of EDU and general cognitive function, common 
genetic associations of EDU have been shown to contain components 
of both general cognitive ability and noncognitive skills and overlap 
with psychiatric disorders24,49,50. Nevertheless, we are confident that 
the results of our exome study are less susceptible to such biases than 
GWAS. First, we analyzed three distinct phenotypes (EDU, RT and VNR) 
that each capture different aspects of general cognitive function49. 
The consistency of exome-wide, gene set-level and gene-level asso-
ciations across EDU, RT and VNR, which also translate to independent 
exome-sequenced cohorts, increases the confidence that our gene 
findings are indeed biologically relevant. Second, five of the eight 
cognitive function genes (KDM5B (ref. 12,13) (MIM 618109), ANKRD12 
(ref. 30), CACNA1A (MIM 183086, MIM 108500 and MIM 617106), GIGYF1  
(refs. 12,13) and BCAS3 (MIM 619641)) are either established Mendelian 
DD genes or have also been identified in previous exome studies on 
SCZ30,51, DD13 or ASD12. The biological relevance of the genes discov-
ered in this study is consistent with the well-established tight genetic 
relationships between cognitive traits and diseases. Third, multiple 
lines of evidence from our analyses yielded clues to a gene’s biologi-
cal mechanisms and relevance to cognitive function. For instance, 
ANKRD12 was associated with both EDU and VNR in our exome-wide 
PTV burden association tests; it is also associated with dysarthria and 
anarthria, myasthenia gravis and disorders of calcium metabolism in 
our PTV burden PheWAS. This suggests that cognitive dysfunction in 
individuals with ANKRD12 LoF is accompanied by imbalances in motor 
coordination or muscle function and might be part of a yet undescribed 
genetic syndrome. Likewise, ADGRB2, on top of its association with 
EDU exome-wide PTV burden analyses, was associated with impair-
ment of cognitive function (ICD-10 code R41.8) in our PTV burden- 
based PheWAS.

A particularly intriguing example for how diseases with cognitive 
impairment and adult cognitive function intersect is KDM5B, a gene that 
encodes a histone lysine demethylase with roles in neuronal differentia-
tion45,52–54, which we interrogated further in humans and mice. Biallelic 
mutations in KDM5B cause an autosomal recessive IDD44,45,53, while 
HET PTVs have been linked to severe DD7,13,45 and ASD12 with presumed 
incomplete penetrance45,55. However, because previous studies focused 

Fig. 4 | Kdm5b LoF alleles display a gene dosage effect on behavioral, 
cognitive and molecular phenotypes in mice. a, Mice carrying Kdm5b LoF 
alleles showed a dose-dependent decrease in spatial memory performance 
(Barnes maze; two-sided Wald test based on an additive genetic effect with 
P = 0.012; Kdm5b+/− n = 34 (P = 0.031) and Kdm5b−/− n = 15 (P = 0.005) mice 
spent less time around the goalbox than WT controls, n = 24); showed a 
dose-dependent decrease in object recognition memory performance (new 
object recognition; two-sided Wald test based on an additive genetic effect 
with P = 0.042; Kdm5b+/− n = 32 (P = 0.038) and Kdm5b−/− n = 15 (P = 0.011) mice 
had reduced discrimination compared to WT controls, n = 26); and showed a 
dose-dependent increase in anxiety-related behavior (light–dark box; two-sided 
Wald test based on an additive genetic effect with P = 0.008; Kdm5b+/− n = 15 
(P = 0.025) and Kdm5b−/− n = 34 (P = 0.004) mice spent less time in the light 
compared to WT controls). P values are based on two-sided Wald tests from a 
double generalized linear model (dglm v.1.8.5). For the box plot, the center line 
represents the median, the box limits represent the interquartile range (IQR) 
and the whiskers indicate the minimum and maximum values. The heatmaps 
show the relative time spent around various arenas during the trial period of 

each assay, as a composite of all mice of the same genotype (Barnes maze and 
light–dark box) or the trace for a single representative animal (new object 
recognition). Kdm5b+/− (HET) and Kdm5b−/− (HOM) mice spent less time around 
the goalbox (Barnes maze), showed reduced discrimination of the new object 
(new object recognition) and spent more time in the dark zone (light–dark box) 
compared with WT controls. b, Normalized RNA-seq read counts of Kdm5b 
gene expression in WT, Kdm5b+/− and Kdm5b−/− mice across embryonic and adult 
tissues as indicated (n = 7 for WT, n = 7 for Kdm5b+/− HET and n = 8 for Kdm5b−/− 
HOM embryonic mice whole brain; n = 6, 5 and 6 for the FC of WT, HET and HOM 
adult mice; n = 6, 6 and 6 for the HIP of WT, HET and HOM adult mice; n = 6, 6 and 
6 for the CB of WT, HET and HOM adult mice). For the box plot, the center line 
represents the median, the box limits represent the IQR and the whiskers indicate 
the minimum and maximum values. c, Heatmap of expression changes (log2 fold 
change) in DEGs in Kdm5b+/− (HET) and Kdm5b−/− (HOM) mice across embryonic 
and adult tissues as indicated. There is a strong correlation between direction 
of change in expression in both mutant genotypes. The Venn diagrams show the 
overlap of DEGs in both Kdm5b+/− and Kdm5b−/− mice across tissues and stages. 
Created with BioRender.com.
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on patients, the relevance of KDM5B LoF in adult cognitive function 
in the general population has not yet been appreciated. Unlike most 
other DD genes13, KDM5B is LoF-tolerant, leading to a relatively high PTV 
carrier rate of approximately 1:1,900 participants in the UKB. As UKB 
participants tend to be healthier and more educated than the general 
UK population56,57, it can be expected that KDM5B PTV carrier rates in 
the general EUR population are even higher. Our results strongly sug-
gest a gene dosage effect for KDM5B, where biallelic, near-complete 
LoF for KDM5B will lead to more severely impaired cognitive function as 
observed in patient cohorts, whereas HET KDM5B LoF will present with 
only moderate cognitive impairment that overlaps with the spectrum of 
cognitive function in the normal population. Notably, KDM5B showed 
pleiotropic effects on muscle strength, bone density, growth hormone 

levels and BD, among others, in our PheWAS. This pleiotropy partially 
overlaps with the dose-dependent cognitive, behavioral and skeletal 
symptoms in our Kdm5b mouse model45 as well as KDM5B patients44. It 
will be interesting to investigate the phenotypic spectrum of KDM5B 
LoF in humans more comprehensively, for instance, through PheWAS 
in additional biobanks or targeted follow-up of PTV carriers in recall 
studies. Genes with a dosage sensitivity like the one described in this 
study for KDM5B are ideal drug targets because the degree of genetic 
impairment may guide the development of gene-directed therapeutic 
interventions58,59. KDM5B is already an established drug target with 
molecules inhibiting its enzymatic activity in preclinical development 
for cancer60. It could be interesting to explore whether activators exist 
that might improve cognitive phenotypes61,62.
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A particular strength of exome studies is that genes and variants 
identified through rare variant tests tend to exhibit much larger effect 
sizes than common variants identified in GWAS. For example, HET car-
riers of KDM5B PTVs show on average fewer than 1.51 years of school-
ing than noncarriers. In contrast, lead SNPs in the most recent EDU 
GWAS based on three million individuals only show a median 1.4 week 
increase in schooling per allele (with the 5th and 95th percentiles of the 
estimated effect being 0.9 and 3.5 weeks, respectively)6. This demon-
strates that exome studies may uncover substantially stronger genetic 
effects and complement GWAS to describe the genetic architecture of 
cognitive function more comprehensively. This is further supported 
in the case of ADGRB2 and NDUFA6, which our results suggest as the 

most probable causal genes in loci identified in EDU and cognitive 
function GWAS5.

With both exome sequencing and genome-wide genotype data in 
the UKB, we were able to explore the relative contribution of common 
variant-based polygenic risk and rare coding variant burden to cogni-
tive function. Our results provide evidence that rare coding variants 
affect EDU and VNR additively to PRS and thus suggest that genetic 
prediction can be further improved by combining PRS and the rare 
coding variant burden. Similar findings were reported previously for 
other common complex phenotypes51,63–65. Although the phenotypic 
variance explained by rare coding variants is much smaller than that 
explained by PRS because of allele frequency constraints, rare coding 
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variants provide orthogonal predictive power that is not relying on 
external training GWAS (like PRS) and is thus less susceptible to biases66.

Future studies are needed to better understand the biological 
basis of how the genes and variants reported in this study impact 
cognitive function and related diseases. Moreover, our findings do 
not imply direct applications in clinical practice, such as for prenatal 
genetic screening67,68, and should be interpreted with similar caution 
as reported in GWAS6. Further work is also needed to assess how well 
the results from our study can be extrapolated to ancestries other than 
EUR populations. Nevertheless, our results provide a starting point 
toward expanding our knowledge on how rare genetic variants impact 
cognitive function at the population level and support a convergence 
of rare and common genetic variations that jointly contribute to the 
spectrum of cognitive traits and diseases.
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Methods
The UKB is approved by the North West Multi-centre Research Eth-
ics Committee (https://www.ukbiobank.ac.uk/learn-more-about- 
uk-biobank/about-us/ethics). The current study was conducted 
under UKB application no. 26041. The data in the UKB were collected 
after written informed consent was obtained from all participants. 
The Human Research Committee of the MGB approved the Biobank 
research protocol (no. 2009P002312) (ref. 69). The data in the MGBB 
were collected after broad-based written consent was obtained from 
all participants. The Coordinating Ethical Committee of the Helsinki 
and Uusimaa Hospital Region approved the SUPER-Finland study on 
16 July 2015 (pilot) and 9 February 2016 (full study). All participants 
of the SUPER-Finland study signed an informed consent that permits 
research use of collected samples and data. The ethical committees of 
the Northern Ostrobothnia Hospital District and the Hospital District 
of Helsinki and Uusimaa approved the NFID study. All participants or 
their legal guardians provided written informed consent to participate 
in the study. The breeding and housing of mice, and all procedures 
for the Kdm5b LOF mouse experiments were assessed by the Animal 
Welfare and Ethical Review Body of the Wellcome Sanger Institute 
and conducted under a UK Home Office license (no. P6320B89B) in 
accordance with institutional guidelines.

Cognitive function phenotypes in UKB
The UKB is a prospective cohort study of the UK population with over 
500,000 participants16. Participants were aged between 40 and 69 
years at recruitment in 2006–2010 and provided extensive phenotypic 
data17. We extracted three cognitive function phenotypes for our analy-
sis: EDU; RT; and VNR23. EDU is based on a survey of years of schooling 
that reflects both cognitive function and noncognitive components24. 
We extracted the UKB data field 6138 ‘Qualifications’ collected at base-
line as a measure of EDU and converted multiple-choice categories to 
years of schooling as outlined by Lee et al.5. RT is a measure of process-
ing speed, which is a component of general cognitive function2,4,26,27, 
implemented as a digital assessment at baseline (UKB data field no. 
20023) (ref. 2). VNR is a score measured using a structured question-
naire, which contains 13 questions that focus on assessing crystalized 
and fluid intelligence in both verbal and numerical aspects (UKB data 
field no. 20016). Note that only a subset of 165,453 UKB participants 
completed the VNR assessment at baseline, while EDU (n = 497,844 at 
baseline collection) and RT (n = 496,660 at baseline collection) data 
were collected for almost the entire UKB. For the association analyses 
in the UKB samples, we rank-based inverse-normal transformed the 
phenotypes. While higher EDU and VNR scores indicate better cognitive 
function, longer RT represents worse cognitive function.

The UKB whole-exome sequencing data
Whole-exome sequencing (WES) data from UKB participants was gen-
erated by the Regeneron Genetics Center on behalf of the UKB Exome 
Sequencing Consortium, which is a collaboration between AbbVie, 
Alnylam Pharmaceuticals, AstraZeneca, Biogen, Bristol Myers Squibb, 
Pfizer, Regeneron and Takeda18. Briefly, WES was done on an Illumina 
NovaSeq 6000 platform using xGen Exome capture kits. Sequenc-
ing reads were aligned to the GRCh38 reference genome using the  
Burrows–Wheeler Aligner-MEM (v.0.7.17) (refs. 18,70). Single- 
nucleotide variants and indels were called by first generating gVCF 
files using the WeCall variant caller v.1.1.2 (Genomics PLC) and then 
joint-called using the GLnexus joint genotyping tool (v.0.4.0) (refs. 
18,21,71). The joint-called, project-level VCF was then filtered by the 
Regeneron Genetics Center quality control (QC) pipeline (the ‘Goldi-
locks’ set). As of November 2020, we obtained QC-passed WES data 
from 454,787 UKB participants. The UKB can release these data publicly 
to approved researchers via their Research Analysis Platform.

We annotated variants using Variant Effect Predictor (VEP) v.96 
(ref. 28) with genome build GRCh38. Stop-gain, splice site-disruptive 

and frameshift variants were further assessed by Loss-Of-Function Tran-
script Effect Estimator (LOFTEE) (a VEP plugin)29 and high-confidence 
predicted LOF variants were retained for analysis. Missense variants 
were further annotated for deleteriousness using the MPC score31. We 
also annotated variants based on gene intolerance to LOF using pLI 
(probability of being LOF-intolerant) v.2.1.1 (refs. 29,32). All predicted 
variants were mapped to GENCODE72 (release 30) canonical transcripts.

For the association analysis, we filtered variants to include only 
those with a MAF < 1.0 × 10−5 in the UKB (649,321 PTVs, 5,431,793 mis-
sense variants and 3,060,387 synonymous variants) to enrich for 
pathogenic variants. In previous exome studies, the impact of an 
exome-wide ultrarare variant burden was associated with EDU, ID 
and psychiatric disorders. In these studies, ultrarare variants were 
defined as variants observed in fewer than 1 in 74,839 individuals 
(allele frequency < 1.34 × 10−5) or 1 in 201,176 individuals (allele fre-
quency < 2.49 × 10−6) (refs. 14,15) in external reference samples. A recent 
large-scale exome study for SCZ also adopted a minor allele count 
cutoff of fewer than 5 alleles in 24,248 cases and 97,322 population 
controls, which corresponds to a MAF cutoff of 2.06 × 10−5 (ref. 30). 
Our choice of variant filtering for MAF < 1.0 × 10−5 is in line with these 
previous studies.

The UKB genome-wide genotype data
We used imputed genotype data provided by the UKB with additional 
QC filtering. Genome-wide genotyping was performed for all UKB 
participants and imputed with the Haplotype Reference Consortium73 
and UK10K74 plus 1000 Genomes Project reference panels75, resulting 
in a total of more than 90 million variants. We performed QC on the 
genotyping data by filtering out variants with an imputation quality 
INFO score < 0.8 and variants with a MAF < 0.01 using PLINK v.2.00  
(ref. 76). We filtered out 1,804 individuals whose reported gender dif-
fered from their genetic gender, individuals showing sex chromosome 
aneuploidies, as well as 133 individuals who had withdrawn from the 
UKB (as of 24 August 2020).

To identify UKB samples from different genetic ancestries, we 
performed population assignment based on population structure 
using principal component analysis (PCA) with the 1000 Genomes Pro-
ject reference samples (n sample = 2,504) from five major population 
groups: AFR; American (AMR); East Asian (EAS); EUR; and SAS. Details 
of the genetic PCA-based population assignment can be found in the 
Supplementary Information. We identified 8,406 AFR samples, 1,085 
AMR samples, 1,609 EAS samples, 458,197 EUR samples, 9,224 SAS 
samples and 8,874 samples without explicit population assignment. 
Due to the small sample sizes, we did not analyze further the samples 
in the EAS and AMR groups. We also did not analyze further samples 
without an explicit population assignment. Within-population PCA 
was performed for the AFR, EUR and SAS samples for subsequent 
association analyses.

Gene set-based rare coding variant burden test
Analysis overview. To estimate the association between cognitive 
function phenotypes (EDU, RT and VNR) and gene set-based rare cod-
ing variant burdens, we rank-based inverse-normal transformed the 
phenotypes and fitted a linear regression in unrelated UKB samples 
in samples from the same population group (as described in the sec-
tion on population assignment). To minimize potential population 
stratification and confounding, we adjusted for sex, age, age2, sex by 
age interaction, sex by age2 interaction, top 20 principal components 
(PCs) and recruitment centers (as categorical variables) in all associa-
tion analyses. We ran additional sensitivity analyses accounting for 40 
PCs to assess the potential residual population stratification and found 
that the exome-wide burden results were consistent (Supplementary 
Table 2). The effect size (β), 95% CIs and P values were calculated for 
each burden association. The significance level of the burden asso-
ciation was determined using Bonferroni correction for the number 
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of association tests in the defined set of analysis and is provided in 
Supplementary Tables 1, 2, 6, 7, 10 and 18–20.

Exome-wide burden. To characterize the effects of exome-wide rare 
coding variant burden on cognitive function, we calculated the cumu-
lative minor allele counts of rare coding variants (MAF < 1.0 × 10−5) 
for each variant functional class as defined by the VEP28, LOFTEE32, 
MPC31 and pLI scores32. We defined the following variant classes: PTVs; 
high-confidence LOF variants; missense variants classified according 
to deleteriousness (MPC) into tier 1 for MPC > 3, tier 2 for 3 ≥ MPC > 2 
and tier 3 for other missense variants not in the previous two tiers; and 
synonymous variants (identified by VEP). We further classified variants 
according to the LOF intolerance of the gene (pLI ≥ 0.9 or pLI < 0.9) in 
which the variant resides. The exome-wide rare coding variant burdens 
for each variant class were calculated and burden association tests were 
performed in the EUR, SAS and AFR samples in the UKB.

Gene set burden. We also calculated the rare coding variant burdens 
for several gene sets, including genes identified in: (1) exome studies 
for ASD (n gene = 102)11, DD (n gene = 285)13 and the DDG2P (https://
www.deciphergenomics.org/ddd/ddgenes; n gene = 2,020); (2) GWAS 
for EDU (n gene = 1,140) (ref. 5), cognitive function (n gene = 807)  
(ref. 4), SCZ (n gene = 3,542) (ref. 77), BD (n gene = 218) (ref. 78) and 
depression (n gene = 269) (ref. 79); (3) gene sets annotated in the 
Molecular Signatures Database (v.7.2; n gene set annotated = 13,011); 
(4) gene sets with brain tissue expression specificity annotated in the 
Human Brain Atlas80 (n gene annotated = 16,270). Details on the cal-
culation of gene set burdens and association analyses can be found in 
Supplementary Information.

Exome-wide, gene-based PTV burden test
To identify genes associated with adult cognitive function, we cal-
culated the rare PTV burden for each gene and performed burden 
association analyses. We used two-step whole-genome regression 
implemented in regenie for association testing34. Regenie accounts 
for population stratification and sample relatedness, which 
allowed us to leverage a larger sample size by including related sam-
ples. Regenie first fits a stacked block ridge regression to obtain 
leave-one-chromosome-out (LOCO) genetic prediction of the pheno-
type of interest; in the second step, the association test is carried out 
by fitting regression models conditioning on the LOCO predictions 
derived in the first step.

For the regenie step 1 regression, we first performed sample QC 
and then genotype QC by excluding variants with a genotyping call rate 
less than 90%, Hardy–Weinberg equilibrium test P < 10−15 and MAF < 1%. 
This retained 565,124 genotyped variants for the step 1 regression. We 
fitted a regenie first-step regression for rank-based inverse-normal 
transformed EDU, RT and VNR separately, adjusting for sex, age, age2, 
sex by age interaction, sex by age2 interaction, top 20 PCs and recruit-
ment centers with tenfold cross-validation (regenie v.1.0.6.7) (ref. 34). 
For the regenie step 2 association test, we implemented an in-house 
pipeline (R v.3.6.1) for rare PTV burden association tests conditioned 
on the first-step LOCO prediction, following the linear regression 
model for association testing described in the regenie publication34. 
We treated the LOCO prediction as an offset in the linear regression 
model where rank-based inverse-normal transformed EDU, RT and VNR 
were regressed on gene-based rare PTV burden, adjusting for the same 
covariates used in the step 1 regression. We excluded genes with fewer 
than ten PTV carriers from the gene-based PTV burden analysis, which 
leads to a variable number of tests performed for each phenotype, 
especially for VNR, which has a much smaller sample size. We repeated 
the two-step regenie regression in the UKB EUR, SAS and AFR samples.

For the EUR samples, the sample sizes and number of genes 
tested for each cognitive function phenotype were as follows: n sam-
ple = 393,758 and test n = 15,782 for EDU; n sample = 394,600 and test 

n = 15,798 for RT; and n sample = 159,026 and test n = 11,905 for VNR. 
The Bonferroni correction for multiple testing was based on the actual 
number of tests performed per phenotype and across the three phe-
notypes. The significance levels for the gene-based rare PTV burden 
association tests were Bonferroni-corrected for the number of tests 
for each phenotype separately, which are 0.05/15,782 = 3.17 × 10−6 for 
EDU, 0.05/15,798 = 3.16 × 10−6 for RT and 0.05/11,905 = 4.20 × 10−6 for 
VNR. Note that seven of the eight cognitive function genes (that is, all 
except BCAS3) identified in our PTV burden association analysis in the 
UKB EUR samples were also exome-wide-significant after Bonferroni 
correction across all tests (P < 0.05/43,485 = 1.15 × 10−6). Additionally, 
we identified five genes with an FDR Q < 0.05 for EDU and VNR in the 
UKB EUR samples. For the SAS samples, the sample sizes and number 
of genes tested were as follows: n sample = 8,181 and test n = 1,247 for 
EDU; n sample = 8,018 and test n = 1,187 for RT; n sample = 4,430 and 
test n = 331 for VNR. For the AFR samples, the sample sizes and number 
of genes tested were as follows: n sample = 7,504 and test n = 887 for 
EDU; n sample = 7,331 and test n = 844 for RT; n sample = 3,890 and 
test n = 179 for VNR.

Replication cohorts
To replicate our gene findings from the exome-wide, gene-based PTV 
burden tests in the UKB, we performed gene set-based and gene-based 
PTV burden association tests in three independent cohorts with sam-
ples of EUR ancestry: the SUPER-Finland study; the NFID study; and the 
MGBB. Details of phenotype, genotype and exome sequencing data 
processing and QC can be found in the Supplementary Information. In 
each replication cohort, we calculated PTV burdens for two cognitive 
function gene sets, including the eight genes with Bonferroni-corrected 
significance and the 13 genes with FDR significance identified in the 
UKB EUR samples. We also calculated the PTV burdens of individual 
cognitive genes with at least five rare PTV carriers (ADGRB2, KDM5B, 
GIGYF1, ANKRD12 and KIF26A) in the NFID study. PTV burden associa-
tion tests were then performed between the PTV burdens and cognitive 
traits in the replication cohorts. For the SUPER-Finland study, associa-
tion tests were performed between PTV burdens and DD/ID, academic 
performance compared with schoolmates and EDU using either linear 
or logistic regression, adjusted for ten PCs, imputed sex, sequence 
assay and total number of coding variants in the genome. For the NFID 
study, we tested associations between PTV burdens and DD/ID using a 
logistic regression, adjusted for sex and the top ten PCs. In addition, we 
performed a meta-analysis of the DD/ID association with PTV burdens 
between the SUPER-Finland and NFID studies using an inverse-variance 
weighted random-effects meta-analysis. For the MGBB, we tested the 
association between PTV burdens and EDU using a linear regression, 
which was adjusted for sex, age, age2, sex by age interaction, sex by 
age2 interaction and the top 20 PCs. ORs, 95% CIs and P values were 
calculated for all association tests and meta-analyses.

Phenome-wide association analysis
To explore the cognitive function genes identified for potential pleio-
tropic effects, we performed a PTV burden phenome-wide association 
analysis across 3,150 UKB phenotypes derived semiautomatically. 
Binary phenotypes included ICD-10 codes from inpatient records (con-
genital malformations; deformations and chromosomal abnormalities; 
diseases of the circulatory system; diseases of the digestive system; 
diseases of the eye and adnexa; diseases of the genitourinary system; 
diseases of the musculoskeletal system and connective tissue; diseases 
of the nervous system; diseases of the respiratory system; diseases of 
the skin and subcutaneous tissue; endocrine, nutritional and metabolic 
diseases; mental, behavioral and neurodevelopmental disorders; neo-
plasms; pregnancy; childbirth and the puerperium; symptoms, signs 
and abnormal clinical and laboratory findings; not elsewhere classified) 
and death records (ICD-10 cause of death), self-reported illness (cancer, 
non-cancer), self-reported medication, surgery and operation codes, 
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and family history (father’s, mother’s and siblings’ illnesses were com-
bined into a single phenotype for each of the 12 family history illnesses 
ascertained in the UKB questionnaires). Quantitative phenotypes 
included biomarkers such as blood cell count, blood biochemistry, 
infectious disease antigen assays and physical measurements. A list 
of all phenotypes with phenotype categories, UKB field numbers and 
phenotype full names can be found in Supplementary Table 9.

We restricted the phenome-wide association analysis to 321,843 
unrelated UKB EUR samples and excluded binary phenotypes with 
fewer than 100 cases in our analysis. PTV burden testing for binary 
phenotypes was performed in all individuals using logistic regres-
sion, controlling for sex, age, age2, sex by age interaction, sex by age2 
interaction, top 20 PCs and assessment centers. For binary pheno-
types with a PTV burden association P < 0.01, we repeated the analysis 
using Firth’s logistic regression to account for situations where the 
logistic regression outputs may be biased due to separation81. For 
quantitative phenotypes, we excluded phenotypes with fewer than 
100 observations. For each quantitative phenotype, individuals with 
outlier phenotype values (>5 s.d. from the mean) were excluded. The 
PTV burden test for quantitative traits was performed using linear 
regression on rank-based inverse-normal transformed phenotypes 
in all individuals, controlling for sex, age, age2, sex by age, sex by age2, 
top 20 PCs and assessment centers. We defined a Bonferroni-corrected 
phenome-wide significance threshold (using the number of tests per 
gene) of 1.59 × 10−5 (0.05/3,150).

Characterization of cognitive phenotypes in KDM5B and 
CACNA1A PTV carriers
KDM5B is an established Mendelian disease gene, with HOM or com-
pound HET mutations causing autosomal recessive ID (MIM 618109) 
(refs. 44,45). Similarly, CACNA1A is also an established disease gene with 
HET mutations causing developmental and epileptic encephalopathy 
(MIM 617106) (refs. 41,42), type 2 episodic ataxia (MIM 108500) (ref. 40)  
or spinocerebellar ataxia (MIM 183086) (refs. 38,39). To better under-
stand the relationship between PTVs in KDM5B and CACNA1A and cog-
nitive function phenotypes, we first processed EDU and VNR in the 
UKB EUR samples by residualizing EDU and VNR with sex, age, age2, 
sex by age interaction, sex by age2 interaction, top 20 PCs and recruit-
ment centers and then standardized the residuals using rank-based 
inverse-normal transformation. Then, we plotted the standardized, 
residualized EDU and VNR for each PTV carrier against the genomic 
position of the PTV to characterize the phenotypic distribution of 
KDM5B and CACNA1A PTV carriers. We further compared the standard-
ized, residualized EDU and VNR between three groups of PTV carriers 
for KDM5B and CACNA1A: (1) PTV carriers who do not have any inpatient 
ICD-10 diagnostic codes for neurological, psychiatric or neurodegen-
erative disorders or carry ClinVar pathogenic or likely pathogenic 
variants; (2) PTV carriers with inpatient ICD-10 diagnostic codes for 
neurological, psychiatric or neurodegenerative disorders; (3) PTV 
carriers of ClinVar pathogenic or likely pathogenic variants.

Kdm5b mouse model
To experimentally investigate the potential additive dosage effect of 
Kdm5b LoF, we performed behavioral tests, morphological measure-
ments and brain differential gene expression analysis in WT, HET and 
HOM Kdm5b LoF mice. A mouse Kdm5b LoF allele (Mouse Genome 
Informatics ID: 6153378) was generated previously45 using CRISPR/
CAS9 mediated deletion of coding exon 7 (ENSMUSE00001331577), 
leading to premature translational termination due to a downstream 
frameshift. Breeding of testing cohorts was performed on a C57BL/6NJ 
background. Mice were housed in specific pathogen‐free mouse facili-
ties with a 12-hour light–dark cycle (lights on at 7:30), an ambient 
room temperature of 21 °C and 55% humidity at the Research Support 
Facility of the Wellcome Sanger Institute. They were in mixed genotype 
cages (2–5 mice), and housed in individually ventilated cages (GM500, 

Tecniplast) containing Aspen chip bedding and environmental enrich-
ment (Nestlets nesting material and cardboard play tunnels, Datesand). 
Food and water were provided ad libitum.

We applied a battery of behavioral tests commonly used to study 
mice for signs of perturbed neurodevelopment, including light–dark 
box (adapted from Gapp et al.82), Barnes maze probe trial and new 
object recognition (Supplementary Information). We assessed a cohort 
of 25 WT, 34 HET and 15 HOM Kdm5b mutant male mice at 10 weeks of 
age. Behavioral tests were carried out between 9:00 and 17:00, after 
1 hour of habituation to the testing room. Experimenters were blind to 
genotype; mouse movements were recorded with an overhead infrared 
video camera for later tracking using automated video tracking (Etho-
Vision XT 11.5, Noldus Information Technology). We also measured 
mouse cranial length and width, skull height and transitional verte-
brae phenotype with X-ray whole-body radiography for 15 Kdm5b+/+,  
12 Kdm5b+/− and 9 Kdm5b−/− mice (Supplementary Information).

All statistical analyses of mouse data were performed using R 
(v.4.1.3). Data were first transformed to achieve normality, using 
Box–Cox transformation (MASS package v.7.3–55) for behavioral data  
(λ limit = −2, 2) or quantile normalization (qnorm function) for X-ray 
data. Testing for genotype effect was performed using a double gen-
eralized linear model (dglm package v.1.8.5). The type of object used 
for new object recognition had a small (6%) and significant (P = 0.036) 
effect; therefore, it was used as a covariate for Box–Cox transformation 
and dglm. For visualization purposes, residual values were calculated 
from the linear model and z-scores were calculated relative to WT.

We also performed differential gene expression analysis for the 
Kdm5b mouse to assess the impact of the Kdm5b HET and HOM muta-
tions on brain gene expression. RNA-seq was done for whole-brain 
embryonic tissue, and for the FC, HIP and CB of adult WT, HET and 
HOM Kdm5b mice. Differential gene expression and log2 fold changes 
were obtained, and P values for differences in gene expression were 
calculated. A P threshold of 0.10 was used to identify significant dif-
ferences between WT and mutant samples. In addition, Gene Ontol-
ogy (GO) enrichment analysis was performed to identify functionally 
enriched terms in the DEGs (with a 5% FDR threshold). In all analyses, 
the background consisted of only genes expressed in the tissue studied. 
GO terms with more than 1,000 genes were excluded from the analysis. 
The European Nucleotide Archive (ENA) accession numbers for the 
RNA-seq sequences reported are listed in Supplementary Table 17. 
Further details on Kdm5b mouse RNA extraction, sequencing, data pro-
cessing and analyses can be found in the Supplementary Information.

Overlapping rare and common variant association signals
To compare and contrast the genetic loci identified through the com-
mon variant association tests in GWAS to the genes identified in our rare 
PTV burden analysis, we cross-checked all independent genome-wide 
significant variants in the most recent, largest EDU GWAS5 and cogni-
tive function GWAS4 with the 13 cognitive function-associated genes 
identified in the current study. For the EDU GWAS, we assessed the 
independent genome-wide significant variants listed in Lee et al.5 
(See Supplementary Table 2 for any nearby genes with significant PTV 
burden association with cognitive function phenotypes.) We identified 
one SNP, rs10798888 (chr1:31733498 (GRCh38); MAF = 0.1725; EDU 
association P = 5.15 × 10−14), where ADGRB2 (PTV burden P = 8.55 × 10−12 
for EDU in the UKB EUR samples) is located in a nearby region. We 
then extracted the region surrounding SNP rs10798888 from the full 
summary statistics of the EDU GWAS (excluding the 23andMe data) 
obtained from the Social Science Genetic Association Consortium 
(SSGAC), generated regional plots (https://my.locuszoom.org/)83 of 
the GWAS results and compared these with the cognitive function phe-
notypes (EDU and VNR) among PTV carriers in the UKB EUR samples. 
Variants in the GWAS regional plots were further annotated for previous 
GWAS associations registered in the GWAS catalog using LocusZoom’s 
automated annotation feature.
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For the cognitive function GWAS, we processed the GWAS 
summary statistics from Lam et al.4 with a GWAS summary sta-
tistics QC pipeline50 and used FUMA84 to identify independent 
genome-wide-significant loci for cognitive function from the GWAS. 
We identified one genome-wide-significant locus with the top inde-
pendent genome-wide-significant SNP rs5751191 (chr22:41974987 
(GRCh38), association P = 2.02 × 10−12) that overlapped with NDUFA6 
(PTV burden P = 6.98 × 10−6, FDR Q = 0.016 for EDU in the UKB EUR 
samples). We extracted variants in the region that covered the vari-
ants in linkage disequilibrium with the top SNP rs5751191 (R2 > 0.6) to 
generate a regional plot and identified genes in the region to extract 
the corresponding PTV burden association P values and the number 
of PTV carriers in the UKB EUR samples.

Contributions of common variants and rare damaging coding 
variants to EDU and VNR
We examined the relative contribution of common variants and rare 
damaging coding variants to cognitive function. To do so, we first calcu-
lated the PRS to capture the impact of genome-wide common variants 
on cognitive function, using imputed genome-wide genotypes and vari-
ant weights derived using PRS-CS47 based on a cognitive function GWAS 
meta-analysis4 and a precomputed linkage disequilibrium reference 
panel based on the 1000 Genomes Project phase 3 EUR superpopula-
tion samples. The cognitive function GWAS meta-analysis included 
only samples of EUR ancestry from the latest cognitive genomics con-
sortium (COGENT) data freeze, excluding samples from the UKB4. The 
PRS-CS global shrinkage parameter ϕ was set to 0.01 because cognitive 
function is highly polygenic4. Using PRS-CS-derived variant weights 
and QC-imputed genotypes, we calculated PRS as a weighted sum of 
counted alleles across the genome using PLINK v.2.00. Then, after 
the exome-wide burden analysis, we identified rare damaging coding 
variant carriers as carriers of rare PTV or damaging missense variants 
with an MPC > 2 in LOF-intolerant genes (pLI > 0.9) across the exome.

To demonstrate the relative impact of PRS and rare damaging cod-
ing variant carrier status, we plotted standardized, residualized EDU 
and VNR against PRS, stratified according to rare damaging coding 
variant carrier status in unrelated UKB EUR samples. The phenotypes 
were residualized by sex, age, age2, sex by age interaction, sex by age2 
interaction, top 20 PCs and recruitment centers and then rank-based 
inverse-normal transformed. The samples were grouped by PRS in 20% 
or 2% quantiles and are shown in Fig. 5 and Extended Data Fig. 9. The 
median of standardized, residualized EDU and VNR was calculated and 
plotted for each PRS group. We further assessed the prediction perfor-
mance of cognitive function PRS and rare damaging coding variant 
carrier status for EDU and VNR. We fitted linear regression models by 
regressing rank-based inverse-normal transformed EDU and VNR on 
PRS and rare damaging coding variant carrier status jointly, adjusted 
for covariates, in unrelated UKB EUR samples. The regression coeffi-
cients, association P values and partial R2 were estimated85. We further 
examined the interaction between PRS and rare damaging coding vari-
ant carrier status by adding an interaction term to the linear regression 
model and tested for significant interaction effects. We also modeled 
PRS as both a continuous and a binary variable by dividing samples in 
the top 10% PRS group versus the remaining 90%.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Full summary of the PTV burden association results derived from the 
UKB in this study can be found in Supplementary Table 4. For instruc-
tions on how to access the UKB exome sequencing data, see https://www.
ukbiobank.ac.uk/enable-your-research/research-analysis-platform. 
For the SUPER-Finland study, individual-level genotype and diagnosis 

data are available through the THL biobank (https://thl.fi/en/web/
thl-biobank/for-researchers/sample-collections/super-study). For the 
NFID study, due to consent and EU privacy regulations (General Data 
Protection Regulation), individual-level data can be used for research 
defined in the consent. Upon reasonable requests, aggregate-level data 
can be requested from the Institute of Molecular Medicine, University 
of Helsinki (FIMM) data access committee (fimm-dac@helsinki.fi); 
individual-level data can be used for collaborative research given that 
it is within the scope of the consent. Individual-level data are han-
dled in a dedicated computational environment designated by FIMM. 
MGBB data are not publicly available due to privacy and ethical restric-
tions. Please contact the MGBB for further information on data access 
(https://www.massgeneralbrigham.org/en/research-and-innovation/
participate-in-research/biobank/for-researchers). All Kdm5b mouse 
RNA-seq sequences (GRCm38) can be found at the ENA archive (https://
www.ebi.ac.uk/ena/browser/home) using the accession numbers 
listed in Supplementary Table 17. The pLI score is available at https://
storage.googleapis.com/gcp-public-data–gnomad/release/2.1.1/con-
straint/gnomad.v2.1.1.lof_metrics.by_gene.txt.bgz. The MPC score is 
available at ftp://ftp.broadinstitute.org/pub/ExAC_release/release1/
regional_missense_constraint/ (open access ftp site, no registration 
required). The Brainspan RNA-seq data are available at https://www.
brainspan.org/static/download.html. The Human Protein Atlas data 
are available at https://www.proteinatlas.org/humanproteome/brain/
human+brain. The DDG2P gene list is available at https://www.deci-
phergenomics.org/ddd/ddgenes. The SSGAC EDU GWAS summary 
statistics are available at https://thessgac.com/ (registration required); 
the EDU GWAS summary statistics file used in this study can be accessed 
at https://thessgac.com/papers/3/12 (accessible after registration). 
Source data are provided with this paper.

Code availability
The code used in this study can be found at Zenodo (https://doi.
org/10.5281/zenodo.7822074) (ref. 86). The software and soft-
ware packages used include: R v.3.6.1 and v.4.1.3 (packages gpro-
filer2 v.0.2.1, MASS v.7.3-55, dglm v.1.8.5, data.table v.1.12.8, dplyr 
v.1.0.0, ggplot2 v.3.3.l, GSA v.1.03.l); PRS-CS v.1.0.0 (https://github.
com/getian107/PRScs); PLINK v.2.00 (https://www.cog-genomics.
org/plink/2.0); PLINK v.1.90 beta (https://www.cog-genomics.org/
plink/); VEP v.96 (https://useast.ensembl.org/info/docs/tools/vep/
index.html); LOFTEE (https://github.com/konradjk/loftee); regenie 
v.1.0.6.7 (https://rgcgithub.github.io/regenie/); Hail v.0.2 (https://
github.com/hail-is/hail); LocusZoom v.0.14.0 (https://my.locuszoom.
org/); FUMA v.1.3.7 (https://fuma.ctglab.nl/); FastQC v.0.11.8 (https://
github.com/s-andrews/FastQC); STAR v.2.7.3a (https://code.google.
com/archive/p/rna-star/); featureCounts v.2.0.0 (https://subread.
sourceforge.net/); and DESeq2 v.1.34.0 (http://www.bioconductor.
org/packages/release/bioc/html/DESeq2.html).
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Extended Data Fig. 1 | PTV burden-based phenome-wide association analysis 
(3,150 phenotypes) for KDM5B in the UK Biobank unrelated European 
samples (N = 321,843). FEV1 Z-score is Inverted GLI 2012 z-score for FEV1. 
Phenotypes were grouped and color-coded from left to right in the following 
categories: biomarker; composite phenotypes; family history; ICD-10 cause 
of death, ICD-10 congenital malformations; deformations and chromosomal 
abnormalities; ICD-10 diseases of the circulatory system; ICD-10 diseases of 
the digestive system; ICD-10 diseases of the eye and adnexa; ICD-10 diseases of 
the genitourinary system; ICD-10 diseases of the musculoskeletal system and 

connective tissue; ICD-10 diseases of the nervous system; ICD-10 diseases of 
the respiratory system; ICD-10 diseases of the skin and subcutaneous tissue; 
ICD-10 endocrine, nutritional and metabolic diseases; ICD-10 mental, behavioral 
and neurodevelopmental disorders; ICD-10 neoplasms; ICD-10 pregnancy, 
childbirth and the puerperium; ICD-10 symptoms, signs and abnormal clinical 
and laboratory findings, not elsewhere classified; operation code; self-reported 
illness: cancer; self-reported illness: non−cancer; self-reported medication. 
Bonferroni corrected p-value (two-sided t-test) significance threshold was 
0.05/3150 = 1.59×10−5.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Impact of rare coding variants in genes identified in 
the Developmental Disorder Genotype - Phenotype Database (DDG2P) on 
cognitive function. a. The effects of protein-truncating, missense (stratified 
by MPC) and synonymous variant burden in exome sequencing study identified 
DDG2P on EDU, RT and VNR. Unrelated UKB EUR samples were included for 
this analysis (N = 318,844 for EDU, 319,536 for RT, and 128,812 for VNR). DDG2P 
database (https://www.deciphergenomics.org/ddd/ddgenes) was accessed 
on December 23, 2020. Missense variants were classified by deleteriousness 
(MPC) into 3 tiers: tier 1 with MPC > 3; tier 2 with 3 ≥ MPC > 2; tier 3 includes all 
missense variants not in tier 1 or 2. We note that the effect of damaging missense 
variants out scaled that of PTV burden for DDG2P genes. This is most likely 

explained by UKB participants being depleted for highly penetrant PTVs in this 
gene set that cause disease onset in childhood13. Data are presented in effect 
size estimates (β) with 95% confidence intervals. b. Comparison between gene-
based associations for genes from DDG2P database, EDU and VNR (PTV DNM 
enrichment [simulation-based test] and DeNovoWEST [simulation-based test] 
for DD; rare PTV burden associations [two-sided t-test] for EDU and VNR). Each 
dot represents a gene that is identified for DD in Kaplanis et al. 2020 and for 
EDU or VNR in the current exome analysis. The dots are color-coded according 
to the phenotypes (DD, ASD, or EDU) that the gene is exome-wide significantly 
associated with. The size and shade of the dots are representing the pLI for the 
gene. EDU and VNR genes are labeled with gene names.
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Extended Data Fig. 3 | Distribution of cognitive phenotypes (educational 
attainment and verbal-numerical reasoning) for CACNA1A PTV carriers. 
ClinVar pathogenic/likely pathogenic variants for epileptic encephalopathy 
(MIM 617106) and/or type 2 episodic ataxia (MIM 108500) was annotated. 
Samples with inpatient ICD-10 (International Classification of Diseases 
version-10) records of psychiatric (schizophrenia, bipolar disorder, depression, 
substance use disorder and/or anxiety and stress disorders), neurodegenerative 

and neurodevelopmental disorders were annotated. Phenotypes were 
residualized by sex, age, age2, sex by age interaction, sex by age2 interaction, top 
20 PCs, and recruitment center and inverse rank-based normal transformed. 
The blue line (for EDU) and red line (for VNR) represent fitted loess regression 
on standardized, residualized phenotypes. The gray bands represent 95% 
confidence intervals for the fitted loess regression.
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Extended Data Fig. 4 | Kdm5b loss-of-function impacts craniofacial and 
skeletal features in mice in a dose-dependent manner. An intermediate effect 
on cranial length (additive genotype effect two-sided P = 0.0268) and height 
(additive genotype effect two-sided P = 0.0056) is detected in Kdm5b+/− mice, 
but not in cranial width (additive genotype effect two-sided P = 0.3090). For the 

boxplot, the center line represents the median, the box limits represent the IQR, 
and the whiskers indicate the minimum and maximum values. A fully penetrant 
transitional vertebrae phenotype seen in Kdm5b−/− mice (N = 21) is observed at 
a lower frequency in Kdm5b+/− mice (N = 40, Fisher’s exact test vs Kdm5b+/+ two-
sided P = 0.0189).
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Extended Data Fig. 5 | Correlation in differential gene expression between 
heterozygous and homozygous Kdm5b mutant mice. Log2-fold change of 
differentially expressed genes plotted for Kdm5b+/− (y-axis) and Kdm5b−/− (x-axis) 

mice across embryonic and adult brain tissues as indicated. There is a strong 
correlation between direction of change in expression in both mutant genotypes 
(robust linear regression line and slope shown in red).
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Extended Data Fig. 6 | Overlap between educational attainment GWAS 
(Lee et al.5) locus on chromosome 1 and ADGBR2 identified in PTV burden 
analysis in UKB. Regional plot of educational attainment GWAS association test 
results were generated around top independent SNP rs10798888. Additional 
associations from GWAS catalog were annotated with the associated phenotypes 
in the regional plot. EDU and VNR score for ADGRB2 PTV carriers in UKB were 
plotted (both phenotypes were residualized by sex, age, age2, sex by age, sex by 

age2, top 20 PCs and recruitment centers and were inverse rank-based normal 
transformed). Samples with inpatient ICD-10 (International Classification 
of Diseases version-10) records of psychiatric, neurodegenerative, and 
neurodevelopmental disorders were annotated. The blue line (for EDU) and red 
line (for VNR) represent fitted loess regression on standardized, residualized 
phenotypes. The gray bands represent 95% confidence intervals for the fitted 
loess regression.
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Extended Data Fig. 7 | Overlap between cognitive function GWAS (Lam et 
al.48) locus on chromosome 22 and NDUFA6 identified in PTV burden analysis 
in UKB (FDR significant for EDU). Regional plot of cognitive function GWAS 
association test results were generated for top independent SNP rs5751191 

and the extended LD region. Additional associations from GWAS catalog were 
annotated with the associated phenotypes in the regional plot. Number of PTV 
carriers and gene-based PTV burden association p-value were extracted for genes 
in the region.

http://www.nature.com/naturegenetics
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Extended Data Fig. 8 | The effects of protein-truncating, missense (stratified 
by MPC) and synonymous variant burden in genes stratified by brain-
specific expression. Unrelated UKB EUR samples were included for this analysis 
(N = 318,844 for EDU, 319,536 for RT, and 128,812 for VNR). Genes were stratified 

by elevated expression in brain tissue (2,587 genes), elevated expression in other 
tissues but also expressed in brain (5,298 genes) and no tissue specific expression 
(8,342 genes). Number of genes included in the burden is annotated for each set. 
Data are presented in effect size estimates (β) with 95% confidence intervals.
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Extended Data Fig. 9 | The impact of cognitive function polygenic score and 
carrier status of PTV and/or damaging missense variants (MPC > 2) in LoF 
intolerant genes (pLI > 0.9) on a) educational attainment and b) verbal-
numerical reasoning. The impact of cognitive function polygenic score (PRS) 
and carrier status of PTV and/or damaging missense variants (MPC > 2) in LoF 
intolerant genes (pLI > 0.9) on a) EDU and b) VNR. EDU and VNR were residualized 
by sex, age, age2, sex by age, sex by age2, top 20 PCs and recruitment centers and 

inverse rank-based normal transformed. Median of educational attainment was 
calculated for individuals stratified by PRS quantiles (in 2% groups) and PTV and/
or damaging missense variant carrier status. The blue and red lines represent 
fitted linear regressions for standardized, residualized phenotypes by PRS 
percentile groups, stratified by rare coding variant carrier status. The gray bands 
represent 95% confidence intervals for each of the fitted linear regression.
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