
Nature Genetics | Volume 55 | May 2023 | 753–767 753

nature genetics

https://doi.org/10.1038/s41588-023-01375-1Article

Single-cell analyses and host genetics 
highlight the role of innate immune  
cells in COVID-19 severity

Ryuya Edahiro1,2,163, Yuya Shirai    1,2,3,163, Yusuke Takeshima    4, 
Shuhei Sakakibara    5, Yuta Yamaguchi    2,6, Teruaki Murakami2,6, 
Takayoshi Morita2,6, Yasuhiro Kato2,6, Yu-Chen Liu7, Daisuke Motooka7,8,9, 
Yoko Naito8, Ayako Takuwa7, Fuminori Sugihara10, Kentaro Tanaka8, 
James B. Wing    11,12, Kyuto Sonehara1,9,13,14, Yoshihiko Tomofuji1,9,13, Japan 
COVID-19 Task Force*, Ho Namkoong15, Hiromu Tanaka16, Ho Lee16, 
Koichi Fukunaga16, Haruhiko Hirata2, Yoshito Takeda2, Daisuke Okuzaki    7,8,9,12,17, 
Atsushi Kumanogoh    2,6,9,12,17,164   & Yukinori Okada    1,3,9,12,13,14,164 

Mechanisms underpinning the dysfunctional immune response in 
severe acute respiratory syndrome coronavirus 2 infection are elusive. 
We analyzed single-cell transcriptomes and T and B cell receptors (BCR) 
of >895,000 peripheral blood mononuclear cells from 73 coronavirus 
disease 2019 (COVID-19) patients and 75 healthy controls of Japanese 
ancestry with host genetic data. COVID-19 patients showed a low fraction 
of nonclassical monocytes (ncMono). We report downregulated cell 
transitions from classical monocytes to ncMono in COVID-19 with reduced 
CXCL10 expression in ncMono in severe disease. Cell–cell communication 
analysis inferred decreased cellular interactions involving ncMono in severe 
COVID-19. Clonal expansions of BCR were evident in the plasmablasts of 
patients. Putative disease genes identified by COVID-19 genome-wide 
association study showed cell type-specific expressions in monocytes 
and dendritic cells. A COVID-19-associated risk variant at the IFNAR2 locus 
(rs13050728) had context-specific and monocyte-specific expression 
quantitative trait loci effects. Our study highlights biological and host 
genetic involvement of innate immune cells in COVID-19 severity.

Coronavirus disease 2019 (COVID-19) caused by severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) represents a serious global 
public health issue1. The clinical presentation of COVID-19 is highly 
variable, ranging from asymptomatic infection to fatal respiratory/
multi-organ failure2. Although effective vaccines have successfully 
reduced both viral transmission and disease burden3,4, there exists an 
urgent need to elucidate the mechanism of severe COVID-19 to predict 
its severity and develop new treatments.

Multiple studies have highlighted dysregulation of complex 
networks of peripheral blood immune responses in COVID-19, using 
single-cell RNA-sequencing (scRNA-seq) analysis5–14. Monocytes5–9, 
antigen-presenting cells10, natural killer (NK) cells5,6,11, T cells5–7,12 
and B cells5–7 are all reported to be related to the severity of COVID-
19, while a dysregulated interferon (IFN) response8,14,15, which has 
a key role on innate immune response16, is closely associated with 
the pathogenesis of COVID-19 severity. Although these studies give 
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plasmablasts (PB) and decreased DC in severe COVID-19 (Extended 
Data Fig. 1e).

The dysregulated IFN response has been suggested in COVID-19 
(refs. 8,14,15,29), leading us to evaluate IFN response across PBMCs. 
We first defined a score of response to Type I IFN and that of response 
to IFN-γ for each cell based on the expression of a published gene list. 
We observed high expressions of Type I IFN response genes in NK and 
CD16+ monocytes and higher response for moderate COVID-19 com-
pared to the other conditions, especially in monocytes and DC (Fig. 1e,  
Extended Data Fig. 1f and Supplementary Table 3). We also found high 
expressions of IFN-γ response genes in CD16+ monocytes and conven-
tional dendritic cells (cDC), and higher response for moderate COVID-
19, especially in CD16+ monocytes and pDC (Fig. 1f, Extended Data Fig. 
1g and Supplementary Table 3). These data are consistent with the 
previous reports that systemic IFN response is higher for nonsevere 
disease14,29, suggesting the potential importance of innate immune 
cells in immunopathology of COVID-19.

Monocytes and DC in COVID-19
To characterize transcriptome dynamics in 116,944 cells annotated as 
monocytes and DC across disease conditions, we subclustered mono-
cytes into five subsets and DC into two subsets according to the expres-
sion of canonical gene markers as follows: cMono_S100A, cMono_IL1B, 
cMono_CCL3, intermediate monocytes (intMono), ncMono, cDC and 
pDC (Fig. 2a and Extended Data Fig. 2a).

To reveal the compositional changes between COVID-19 and 
healthy controls in this subset, we performed differential abundance 
analysis using Milo27, identifying 6,721 neighborhoods, of which 1,265 
showed evidence of differential abundance (Fig. 2b). The proportion 
of ncMono, cDC and pDC declined prominently in COVID-19 patients 
compared to healthy controls (Fig. 2c and Extended Data Fig. 2b). Next, 
we evaluated differential abundance with disease severity, identifying 
3,003 neighborhoods, of which 19 showed significant differential abun-
dance (Extended Data Fig. 2c). While few neighborhoods showed sig-
nificant differential abundance, there was a trend toward a decrease in 
pDC and ncMono in severe compared to moderate COVID-19 (Extended 
Data Fig. 2d), implying that ncMono might contribute to immunopa-
thology of COVID-19 severity because decreased cell proportion of 
ncMono is one of the COVID-19-specific features13,30,31.

To gain insight into functions of different cell subsets according 
to COVID-19 severity, we performed differential expression analyses 
and a set of Gene Ontology (GO) analyses across the groups (that is, 
all COVID-19 patients versus healthy, moderate disease versus healthy 
and severe disease versus healthy) in the five subsets (cMono, intMono, 
ncMono, cDC and pDC). The top 20 enriched pathways upregulated 
in COVID-19 versus healthy group were related to innate immunity or 
antiviral response, and almost all were shared among the five subsets 
(Extended Data Fig. 2e). We next compared the enriched pathways 
upregulated in moderate severity versus healthy group and those in 
severe versus healthy group. The top ten enriched pathways were also 
almost the same in each subset, while there existed several pathways 
with different enrichment patterns between the moderate disease 
and severe group (Fig. 2d). Although ‘response to IFN-γ’ pathway was 
enriched in moderate COVID-19 of each subset, it was not evident in 
three monocyte subsets in severe COVID-19, suggesting that decreased 
IFN-γ response in monocyte subsets might contribute to the severity of 
COVID-19. Enrichment of ‘response to Type I IFN’ pathway was specifi-
cally depleted in ncMono of severe COVID-19.

To further elucidate the mechanism of COVID-19 severity, we 
conducted differential expression analysis between moderate disease 
versus severe disease group in ncMono. PLD4, which digests ssRNA and 
ssDNA32, was the most downregulated in severe compared to moderate 
disease group (Fig. 2e). In addition, the expression of CXCL10, which 
belongs to IFN-γ-induced gene and critical in response to various infec-
tious pathogens33 and has been reported to be involved in COVID-19 

us important aspects of the immunopathology of COVID-19, the 
immune response of the host to SARS-CoV-2 still remains unclear.

In addition, genome-wide association studies (GWASs) 
of COVID-19, highlighted as an achievement by the COVID-19 
host genetics initiative (HGI), have demonstrated that the host 
genetic backgrounds influence susceptibility to and/or severity of 
COVID-19 (refs. 17–19). Multiple genetic variants associated with 
the COVID-19 risk are shared across different populations, while 
population-specific risk variants also have been reported20,21. Con-
sidering the different prognoses by ancestry22, integrated analysis of 
transcriptome and genetic data at single-cell resolution by ancestry 
should provide new insights.

Here we performed a detailed scRNA-seq analysis of over 
895,000 peripheral blood mononuclear cells (PBMCs) of 73 patients 
with COVID-19 as well as 75 healthy controls of Japanese ancestry, 
and then context-specific and cell type-specific expression quan-
titative trait loci (eQTL) analysis by integrating scRNA-seq and host 
genetics data.

The proportion of nonclassical monocytes (ncMono) decreased 
in COVID-19 patients and RNA velocity analysis revealed the downreg-
ulation of the cellular transitions from classical monocytes (cMono) 
to ncMono in COVID-19 patients. We found that CXCL10 expression 
was downregulated in ncMono during severe COVID-19, and cell–cell 
communication analysis inferred that the cellular interactions involv-
ing ncMono and plasmacytoid dendritic cells (pDC) were reduced 
in severe COVID-19. The putative disease genes identified by the 
GWAS of severe COVID-19 were enriched in monocytes and dendritic 
cells (DC), and COVID-19-associated variants had context and cell 
type-specific eQTL effects, with the IFNAR2 variant (rs13050728) in 
particular having COVID-19-specific and monocytes-specific eQTL 
effect. In summary, our data linked innate immune cell dysfunction, 
especially ncMono, with severe COVID-19 and demonstrated the 
enrichment of host genetic risk in innate immune cells, indicating 
biological and host genetic critical involvement of innate immune 
cells in COVID-19 severity.

Results
Single-cell transcriptional profiling of COVID-19 PBMC
To investigate the immunopathogenesis and host genetics mechanism 
of SARS-CoV-2 infections in COVID-19 patients, PBMCs were collected 
from 73 COVID-19 patients and 75 healthy controls of Japanese ancestry 
at Osaka University. The 73 patients with COVID-19 were classified into 
two conditions as follows: moderate (n = 9) and severe (n = 64) disease 
according to the WHO classification23 (Fig. 1a and Supplementary Table 1).  
No significant difference was noted in age distribution and sex com-
position between moderate and severe disease groups. The clinical 
characteristics are summarized in Supplementary Table 1.

After the unified single-cell analysis pipeline (Methods), we 
obtained 895,460 high-quality cells from PBMCs of all the samples. 
Cells were manually annotated based on the RNA expression of known 
marker genes to discriminate subpopulations6,7,24,25. We defined 13 cell 
subsets (Fig. 1b and Extended Data Fig. 1a) and further identified 25 cell 
states by following subclustering (Figs. 2a, 3a and 4a, Extended Data 
Figs. 2a, 3a and 4a and Supplementary Table 2). Cell annotation was 
validated using Azimuth26 (Extended Data Fig. 1b).

To reveal the compositional changes between COVID-19 and 
healthy controls, we applied Milo27, identifying 39,170 neighborhoods, 
of which 21,279 showed evidence of differential abundance (FDR < 0.1, 
Fig. 1c). We found a prominent decrease in T cells, NK cells and DC for 
COVID-19 patients compared to healthy controls, consistent with the 
previous reports13,28 (Fig. 1d and Extended Data Fig. 1c). Next, we evalu-
ated differential abundance with disease severity, identifying 14,350 
neighborhoods, of which 76 showed significant differential abundance 
(Extended Data Fig. 1d). While few neighborhoods showed significant 
differential abundance, there was a trend toward increased B cells and 
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Fig. 1 | Study design and single-cell transcriptional analysis of PBMCs 
from COVID-19 patients and healthy controls. a, Overview of the study 
design. The image was created using BioRender.com. b, UMAP embedding of 
scRNA-seq data for all 895,460 cells. Thirteen cell types were defined by RNA 
expression of marker genes (Extended Data Fig. 1a). c, Graph representation of 
Nhoods identified by Milo. Nodes are Nhoods, colored by their log2 FC between 
COVID-19 patients (n = 72) and healthy controls (n = 75) adjusted by age and 
sex. Nondifferential abundance Nhoods (FDR ≥ 0.1) are colored white, and 
sizes correspond to the number of cells in a Nhood. Graph edges depict the 
number of cells shared between adjacent Nhoods. d, Beeswarm plot showing the 
distribution of adjusted log2 FC in abundance between COVID-19 patients and 
healthy controls in Nhoods according to 13 cell types. Colors are represented 
in the same way as in c. e,f, The module score of Type I IFN response and IFN-γ 

response in PBMCs. The score was calculated using a gene set termed ‘GOBP_
RESPONSE_TO_TYPE_I_INTERFERON’ (GO:0034340) and ‘GOBP_RESPONSE_TO_
INTERFERON_GAMMA’ (GO:0034341), respectively. Upper heatmaps depicting 
the difference between average scores of 13 cell types and that of all single cells. 
The module scores of cells in each cell type were compared with the average score 
of all PBMCs using a two-sided one-sample t-test. Lower heatmaps depicting 
the difference between average scores of moderate or severe disease group and 
those of the healthy group in each of 13 cell types (n = 75 healthy, n = 9 moderate, 
n = 64 severe). The module scores of cells of moderate or severe disease group 
were compared to those of healthy group in each cell type using a two-sided 
Welch’s t-test. *Puncorrected < 1.0 × 10−50, **Puncorrected < 1.0 × 10−300. Mono, monocytes; 
Pro, proliferative; Nhood, neighborhood.
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Fig. 2 | Defective IFN-γ response and reduced transition potential to ncMono 
in monocytes of severe COVID-19. a, UMAP embedding of 116,944 monocytes 
and DC. Seven cell types were defined by RNA expression of marker genes 
(Extended Data Fig. 2a). b, Graph representation of Nhoods identified by Milo. 
Nodes are Nhoods, colored by their log2 FC between COVID-19 (n = 72) and 
healthy controls (n = 75) adjusted by age and sex. Nondifferential abundance 
Nhoods (FDR ≥ 0.1) are colored white. c, Beeswarm plot showing the distribution 
of adjusted log2 FC in abundance between COVID-19 and healthy controls in 
Nhoods according to seven cell types. Colors are represented in the same way as 
in b. d, The top ten enriched biological processes by GO analysis of upregulated 
DEGs of moderate and severe disease compared to healthy group in five cell 
types. Dot color indicates the statistical significance of the enrichment  

(adjusted P values via the Benjamini–Hochberg method), and dot size represents 
gene ratio annotated to each term. e, The differential gene expression analysis 
between moderate (n = 8) and severe (n = 64) COVID-19 in ncMono. DEGs 
(FDR < 0.05 and FC > 2) are colored in light blue and labeled by gene symbols if 
log2 FC > 1.5. f, Velocities derived from the dynamical model for monocytes and 
DC cluster from COVID-19 and healthy group are projected into a UMAP-based 
embedding. Colors indicate the same clusters as in a. g, Average unspliced ratio 
of each sample stratified by three monocytes clusters, colored by COVID-19 
(n = 73) and healthy (n = 75) groups. Condition-specific regression lines are 
shown. P value for the interaction effect between three monocyte clusters and 
two clinical conditions is uncorrected and reflects two-sided test.
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Fig. 3 | Differential abundance analysis of T cells and NK cells and TCR 
analysis. a, UMAP embedding of 628,715 T and NK cells. Thirteen cell types 
were defined by RNA expression of marker genes (Extended Data Fig. 3a). 
b, Graph representation of Nhoods identified by Milo. Nodes are Nhoods, 
colored by their log2 FC between COVID-19 (n = 72) and healthy controls (n = 75) 
adjusted by age and sex. Nondifferential abundance Nhoods (FDR ≥ 0.1) are 
colored white. c, Beeswarm plot showing the distribution of adjusted log2 FC in 
abundance between COVID-19 and healthy controls in Nhoods according to 13 
cell types. Colors are represented in the same way as in b. d, The distribution of 
the clone state of T cells in each cluster according to disease status. Differences 
of average clonal expansion rate of each sample between clinical conditions 

were evaluated in each cluster using two-sided Welch’s t-test (*Puncorrected < 0.05, 
**Puncorrected < 0.005), where only cells mapped with TCRs were included in the 
analysis (n = 75 healthy, n = 9 moderate, n = 64 severe). e, UMAP embedding 
of T cells (nine cell types) colored by clonal expansion size. Left panel shows 
clonal expansion divided into three categories, and right panel shows clonal 
expansion sizes ranging from 0 to 500. f, Network plots showing similarity of 
TCRα and TCRβ CDR3 amino acid sequence for each sample, disease status and 
cell types. Clonotype clusters with clonal size ≥50 are selected. g, T cells that were 
suspected to be specific to SARS-CoV-2 based on CDR3 amino acid sequence were 
projected on UMAP. Ef, effector.
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Fig. 4 | Differential abundance, gene expression and clonal analysis of B cells. 
a, UMAP embedding of four cell types of 123,728 B cells (Extended Data Fig. 4a).  
b, Graph representation of Nhoods identified by Milo. Nodes are Nhoods, colored 
by their log2 FC between COVID-19 (n = 72) and healthy controls (n = 75) adjusted 
by age and sex. Nondifferential abundance Nhoods (FDR ≥ 0.1) are colored white. 
c, Beeswarm plot showing the distribution of adjusted log2 FC in abundance 
between COVID-19 and healthy controls in Nhoods according to four cell types. 
d, The differential gene expression analysis between moderate (n = 8) and severe 
(n = 64) COVID-19 in B_naive, B_memory and B_activated. DEGs (FDR < 0.05 and 
FC > 2) are colored in light blue and labeled by gene symbols. e, UMAP embedding 

of B cells colored by clonal expansion size. Left panel shows clonal expansion 
divided into three categories, and right panel shows clonal expansion size from 
0 to 50. f, The distribution of the clone state of B cells in each cluster according 
to disease status. Differences of average clonal expansion rate of each sample 
between disease status were evaluated in each cluster using two-sided Welch’s 
t-test (*Puncorrected = 0.012, **Puncorrected = 1.3 × 10−7), where only cells mapped with 
BCRs were included in the analysis (n = 75 healthy, n = 9 moderate, n = 64 severe). 
g, Network plots showing similarity of CDR3 amino acid sequence in BCR heavy 
and light chain for each sample, disease status and cell types. Clonotype clusters 
with clonal size ≥10 are selected.
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severity with proteomics analysis5,13, was also prominently decreased 
in severe group.

To analyze how the dynamics of transcriptional activation and cell 
transition differ in disease status, we performed RNA velocity analy-
sis34. The transition potential from intMono to ncMono was observed 
in healthy controls, while such transition was not observed in COVID-
19 (Fig. 2f). To quantitatively compare the differences of estimated 
cell transition from cMono to ncMono through intMono35 between 
COVID-19 and healthy controls, we analyzed the increase of unspliced 
fractions from cMono to ncMono. We found that condition-specific 
regression slope was lower in COVID-19 patients with significant 
interaction between three monocytes and two clinical conditions  
(PInteraction = 2.0 × 10−4; Fig. 2g and Extended Data Fig. 2f). These data 
suggest that the decreased proportion of ncMono in COVID-19 patients 
is a consequence of the downregulation of the cellular transition from 
cMono to ncMono.

T cells and NK cells and T cell repertoires in COVID-19
We subclustered 628,715 cells manually annotated as T cells and NK cells 
from PBMCs and obtained 13 subsets according to RNA expression of 
canonical markers (Fig. 3a and Extended Data Fig. 3a).

To reveal the compositional changes between COVID-19 and 
healthy controls, we performed differential abundance analysis using 
Milo27, identifying 27,182 neighborhoods, of which 10,035 showed evi-
dence of differential abundance (Fig. 3b). The proportion of almost all 
clusters declined in COVID-19 patients (Fig. 3c and Extended Data Fig. 
3b). We next evaluated differential abundance with disease severity, 
identifying 7,981 neighborhoods, of which nine showed significant 
differential abundance (Extended Data Fig. 3c). Although there were 
few neighborhoods showing significant differential abundance, the 
proportions of CD4T cells, regulatory T (Treg) cells and CD56bright NK 
(NK_CD56bright) cells tended to be lower in severe COVID-19 compared 
to moderate COVID-19, while those of natural killer T (NKT) cells and 
NK tended to be higher (Extended Data Fig. 3d).

To gain insight into the clonal relationship among individual 
T cells across three disease conditions, we performed T cell recep-
tor (TCR) analysis for nine subsets except for γδ T (gdT) cells, 
NKT, NK and NK_CD56bright. The detection percentage of TCRs was 
73.1% (Fig. 3d and Extended Data Fig. 3e). Similar to the previous 
report6,36, the large clonal expansions were observed particularly 
in CD4+ effector T (CD4_Ef) cells, CD8+ effector T (CD8_Ef) cells and 
mucosal-associated invariant T (MAIT) cells (Fig. 3e,f). The propor-
tion of clonally expanded CD4_Ef increased in moderate disease 
compared to healthy and severe group (Fig. 3d and Supplementary 
Table 4), suggesting that efficient clonal expansion of CD4_Ef might 
contribute to the prevention of serious COVID-19. We next examined 
whether expanded clonotypes were shared among each sample, 
between COVID-19 and healthy controls, and among cell types. The 
large expanded clonotypes exhibited parallel expansion in several 
cell types, particularly in CD4_Ef, CD8+ memory T (CD8_memory) 
cells and CD8_Ef, whereas a vast majority of these expanded clono-
types were unique for individual patients (Fig. 3f and Extended Data  
Fig. 3f,g). In contrast, the large expanded clonotypes in MAIT were 
shared among individuals.

We compared each clonotype from our data against the cur-
rently known CDR3 sequences of SARS-CoV-2-specific TCR in VDJdb37.  
A small number of our TCRs (n = 4,143; 0.8%) shared their CDR3 with 
reported SARS-CoV-2-specific TCRs (Fig. 3g). The distribution of 
TCR specific to SARS-CoV-2 was relatively uniform across cell types, 
and the clonal expansions of such TCRs were observed in memory or 
activated T cells (Fig. 3g and Extended Data Fig. 3h). Considering the 
low percentage of SARS-CoV-2-specific TCRs and the low sharing of 
expanded TCRs among individuals, further accumulation of data on 
SARS-CoV-2-specific TCRs would be warranted.

B cells and B cell repertoires in COVID-19
We subclustered 123,728 cells manually annotated as B cells and PB 
from PBMCs and obtained four subsets according to RNA expression 
of canonical markers (Fig. 4a and Extended Data Fig. 4a).

To reveal the compositional changes between COVID-19 and 
healthy controls, we performed differential abundance analysis 
using Milo27, identifying 8,169 neighborhoods, of which 2,120 showed 
evidence of differential abundance (Fig. 4b). The proportion of 
B_naive and B_plasma increased in COVID-19 patients, whereas that 
of B_memory and B_activated decreased (Fig. 4c and Extended Data  
Fig. 4b). We also evaluated differential abundance with disease sever-
ity, identifying 4,006 neighborhoods, of which none showed sig-
nificant differential abundance. However, there was a trend toward 
a higher proportion of B_plasma in severe compared to the moderate 
disease group, while that of B_activated tended to be lower (Extended  
Data Fig. 4c,d).

We next performed differential expression and pathway enrich-
ment analysis in four subsets. Pathway enrichment analysis showed 
that pathways related to antiviral response and immune response 
were enriched in COVID-19 patients compared to healthy controls 
(Extended Data Fig. 4e), and that the biological pathways related 
to IFN response were enriched in three subsets (B_naive, B_memory 
and B_activated) in the moderate disease group, while those pathways 
were not in severe group (Extended Data Fig. 4f), consistent with a 
previous report5. Conversely, pathways related to Type I IFN were 
enriched in B_plasma in severe group, but not in the moderate severity 
group (Extended Data Fig. 4f). We also conducted DE analysis between 
moderate versus severe COVID-19. HERC5, which has direct antiviral 
function by catalyzing ISGylation38, was significantly downregulated 
in B_naive and B_memory of severe compared to moderate COVID-19 
(Fig. 4d). IFN-related genes, such as ISG15, IFITM1 and GBP4, were 
also downregulated in B_naive and B_activated of severe compared 
to moderate COVID-19 (Fig. 4d).

Finally, we performed B cell receptor (BCR) analysis. The detec-
tion percentage of BCRs was more than 80% in B cell subset (Fig. 4e,f). 
Clonal expansions were most evident in B_plasma, which showed the 
larger expansion in COVID-19 (Fig. 4e,f and Supplementary Table 5). We 
next examined whether expanded clonotypes were shared among each 
sample, between COVID-19 and healthy controls, and among cell types 
(Fig. 4g and Extended Data Fig. 4g,h). In contrast to TCR analysis, very 
few clonotypes were shared between COVID-19 and healthy controls 
(Fig. 4g and Extended Data Fig. 4g). In addition, while the expanded 
clonotypes in B_plasma were not shared with the other B cell subsets, 
the expanded clonotypes exhibited parallel expansion among B_naive, 
B_memory and B_activated (Fig. 4g). Together, our results suggest 
that in COVID-19 disease, a robust antibody response characterized 
by clonally expanded circulating PB occurs against a background of 
augmented IFN responses.

Changes of intercellular interactions in PBMC across clinical 
status
To map the cellular interaction differences between COVID-19 and 
healthy controls, we inferred all possible intercellular communications 
by the expression of ligand–receptor pairs in both cell populations 
using CellPhoneDB39 and NATMI40. CellPhoneDB and NATMI revealed 
strong interactions particularly among monocytes and DC in both 
COVID-19 and healthy groups (Fig. 5a and Extended Data Fig. 5a).

In addition to simple edge count analysis, we examined the dif-
ferences in the cell-connectivity-summary networks based on mean 
expression weight between COVID-19 and healthy controls using 
NATMI40. The cellular interactions involving pDC as the sender in 
COVID-19 patients were lower than in healthy controls, and those 
involving B_plasma as a receiver in COVID-19 patients were lower than 
in healthy controls (Fig. 5b).
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Fig. 5 | Differential cell–cell interactions between COVID-19 patients and 
healthy controls and within COVID-19 severity. a, Heatmaps depicting number 
of ligand–receptor pairs connecting cell–cell pairs for COVID-19 (n = 73) and 
healthy controls (n = 75), respectively. Rows indicate cells expressing the ligands 
and columns indicate cells expressing the receptors. An asterisk indicates cell–
cell interactions with a number of ligand–receptor of more than 100, and cell 
types that share such interactions with at least one cell type are highlighted in 
red. b, Heatmap depicting the cell-connectivity-summary networks based on 
mean expression weight between COVID-19 (n = 73) and healthy controls (n = 75). 
An asterisk indicates the cell–cell interactions with FC of mean expression ≥1.5, 

and cell types that share cell–cell interactions with FC of mean expression ≥1.5 
with five or more cell types are highlighted in red. c, Heatmap depicting the 
cell-connectivity-summary networks based on mean expression weight between 
moderate (n = 9) and severe (n = 64) COVID-19. An asterisk and red highlight 
mean the same as in b. d, Cell–cell interaction of IFNG/IFNGR and CXCL10/CXCR3 
around nonclassical monocytes. Heatmaps depicting the cell-connectivity-
summary networks based on mean expression weight of IFNG/IFNGR (left) and 
CXCL10/CXCR3 (right) according to three conditions, respectively (n = 75 healthy, 
n = 9 moderate, n = 64 severe). The image was created using BioRender.com.  
Ef, effector.
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We next investigated the differences in the cell-connectivity- 
summary networks based on mean expression weight between mod-
erate and severe COVID-19. Almost all intercellular interactions were 
reduced in severe compared to moderate disease group (Fig. 5c and 
Extended Data Fig. 5b). Notably, the intercellular interactions signal-
ing from pDC and those signaling to ncMono and pDC were reduced 
in severe COVID-19, implying that the dysfunction of the intercellular 
interactions involving these two subsets might be related to the sever-
ity of COVID-19.

Finally, we explored the intercellular interactions centered on 
CXCL10 in ncMono, which was significantly downregulated in severe 
COVID-19 (Fig. 2e). CXCL10 is an IFN-γ-induced gene and exerts its bio-
logical effects by binding to CXCR3 (ref. 33). Therefore, we investigated 
IFNG/IFNGR interactions of ncMono as receiver and CXCL10/CXCR3 
interaction of ncMono as sender using NATMI (Fig. 5d). Activated 
T cells and NK cells showed the strong interactions of IFNG/IFNGR with 
ncMono, which were enhanced as the severity of COVID-19 increased. On 
the other hand, pDC and to a lesser extent activated T cells showed the 
CXCL10/CXCR3 interaction with ncMono in moderate COVID-19, which 
was not observed in healthy controls and severe COVID-19 (Fig. 5d).  
These intercellular interaction analyses computationally infer the 
possibility that dysfunction of ncMono and the consequently reduced 
interaction of CXCL10/CXCR3 might be one of the factors responsible 
for driving COVID-19 severity.

Host genetics risks of the severity of COVID-19 in PBMC
Elucidating interaction between host genetics and transcriptional 
dynamics resolves causal biological mechanism of infection. To evalu-
ate genome-wide host genetics risk of COVID-19 and identify subpopu-
lations of disease-associated cells in PBMCs, we integrated information 
from our scRNA-seq data with polygenic signals from COVID-19 GWAS 
using scDRS41.

First, we computed a disease score for each cell observed 
at our COVID-19 scRNA-seq datasets according to the COVID-19 
case-control GWAS summary statistics of COVID-19 HGI (round 6; 
ref. 18), and projected the scores on Uniform manifold approxima-
tion and projection (UMAP; Extended Data Fig. 6a). The disease 
scores at the COVID-19 scRNA-seq dataset were similar across any 
cell types when using the GWAS summary statistics of self-reported 
COVID-19 (C2, nCase = 112,612), while the cells annotated as mono-
cytes and DC showed the higher disease scores than the other cell 
types when GWAS cases were restricted to severe ones (that is, 
hospitalized COVID-19 (B2, nCase = 24,274) and very severe COVID-
19 (A2, nCase = 8,779); Fig. 6a). When comparing disease score for 
each phenotype, disease scores from severe GWASs were higher 
than those from self-reported GWAS, particularly at cells annotated 
as monocytes and DC, which was more prominent in very severe 
GWAS (Fig. 6b, Extended Data Fig. 6b and Supplementary Table 6).  
Next, we assessed associations between the six major cell types (Meth-
ods) and three COVID-19 GWAS phenotypes, and also within-cell type 
association heterogeneity using scDRS41. No cell type was enriched in 
the self-reported infection GWAS, whereas monocytes were associated 
with very severe GWAS, and DC was associated with hospitalization and 
very severe GWASs (Fig. 6c and Supplementary Table 7), demonstrating 
that polygenic risks involved in the severity of COVID-19 were enriched 
in the cells responsible for innate immunity. In addition, three cell 
types showed heterogeneity in association with hospitalization and 
critical illness (Fig. 6c). To investigate the host genetics association of 
monocytes and DC with severe COVID-19 in more detail, we examined 
cell type-disease association and its heterogeneity of the five innate 
immune subsets (cMono, intMono, ncMono, cDC and pDC). All of these 
subsets were associated with GWAS for severe disease, with stronger 
associations in very severe cases (Fig. 6c and Supplementary Table 7).  
Some of them showed significant heterogeneity within the subset 
(Fig. 6c and Supplementary Table 7). The subset analysis of manually 

annotated 25 clusters revealed the significant association of MAIT 
with GWAS for severe disease in addition to monocytes and DC subsets 
(Extended Data Fig. 6c and Supplementary Table 7). MAIT functions as 
innate sensors of viral infection42, again implicating the involvement 
of host genetic risk of severe COVID-19 with innate immunity.

Context and cell-type-specific eQTLs of COVID-19-related 
variants
To gain a better understanding of transcriptional variability and dynam-
ics regulated by the GWAS-identified COVID-19-associated variants, 
we examined eQTL effects of the replicated variants at the GWAS of 
COVID-19 in the Japanese population20, separately for COVID-19 (n = 67) 
and healthy controls (n = 75; Extended Data Fig. 7a).

First, we performed eQTL analysis for the six major cell types 
(Methods). COVID-19-associated variants showed different cell type 
distributions with significant eQTL effects between the COVID-19 
patients and healthy controls, demonstrating context-specific eQTL 
effects (Fig. 7a and Supplementary Table 8). Among them, mono-
cytes of the COVID-19 patients had significant eQTL effects in multiple 
variants (FDR < 0.02). Given the previous analyses demonstrating the 
involvement of monocytes with COVID-19 severity in this dataset, we 
examined eQTL effects in the three subsets of monocytes. The two 
variants with eQTL effects in monocytes of the COVID-19 patients had 
significant eQTL effects specifically in cMono (FDR = 2.6 × 10−6 for ABO 
and FDR = 0.017 for IFNAR2), and no such eQTL effect of the IFNAR2 
variant was observed in the healthy controls (FDR = 0.66; Fig. 7b and 
Supplementary Table 9).

IFNAR2 has a key role in Type I IFN signaling pathway16, lead-
ing us to investigate eQTL effect of the IFNAR2 variant in more 
detail. We found COVID-19 context-specific increasing dosage 
effect of the risk allele (rs13050728-T) on IFNAR2 expression lev-
els in monocytes (β = 0.030, 95% CI = 0.011–0.049, P = 2.7 × 10−3 
for COVID-19 and β  = 4.9 × 10−4, 95% CI = −0.010 to 0.011, 
P = 0.93 for healthy controls), especially in cMono (β = 0.030, 
95%CI = 0.012–0.049, P = 2.3 × 10−3 for COVID-19 and β = 3.7 × 10−3, 
95% CI = −5.2 × 10−3 to 0.013, P = 0.42 for healthy controls; Fig. 7c,  
Extended Data Fig. 7b and Supplementary Tables 8 and 9).  
While many cell types showed a larger eQTL effect in COVID-19 than 
healthy controls, monocytes, in particular cMono, specifically had a 
significant interaction of eQTL effect between COVID-19 and healthy 
controls (PInteraction = 0.010 for monocytes and PInteraction = 0.012 for 
cMono; Fig. 7c and Extended Data Fig. 7b,c). DE analysis revealed 
increased IFNAR2 expression in cMono of COVID-19 patients than 
healthy controls (P = 1.7 × 10−5; Extended Data Fig. 7d), consistent 
with previous findings5. Taken together, the risk allele of rs13050728 
might contribute to severe COVID-19 by increasing expression of 
IFNAR2 in cMono, highlighting the importance of context and cell 
type-specific eQTL analysis to elucidate host genetical effects in 
pathophysiology of COVID-19.

Discussion
Here we reported comprehensive analyses of single-cell transcriptome 
and TCR and BCR of PBMCs from the COVID-19 patients and healthy 
controls in Japanese, integrated with host genetics data. Our data pre-
sented the dysfunction of monocytes or DC, particularly ncMono, in 
severe COVID-19, the enrichment of host genetics COVID-19 risks in 
monocytes or DC, as well as COVID-19 context-specific eQTL effect 
of the IFNAR2 variant (rs13050728) in monocytes. These highlighted 
the biological and host genetic critical involvement of innate immune 
cells in COVID-19 severity.

While previous studies on IFN and SARS-CoV-2 have focused on 
Type I IFN due to their robust capacity to interfere with viral replica-
tion43, several studies have indicated that IFN-γ is also an essential 
component in the severity of COVID-19 (refs. 29,44,45). We found the 
depleted enrichment of IFN-γ response pathways in monocyte subsets 
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from patients with severe COVID-19, again demonstrating the impor-
tance of IFN-γ response for COVID-19. One of the COVID-19-specific 
features is decreased cell fraction of ncMono in severe disease13,31, 
whereas its fraction generally increases in patients with sepsis and 
inflammatory disease46. This phenomenon was also observed in this 
study, and we revealed the downregulation of the cellular transitions 
from cMono to ncMono in COVID-19 patients using RNA velocity anal-
ysis. In addition to decreased cell fraction, differential expression 
analysis revealed the severely downregulated expression of CXCL10, 

which is IFN-γ-induced gene and reported to be involved in COVID-19 
severity with proteomics analysis5,13, in ncMono for severe COVID-19, 
and cell–cell communication analysis inferred the possibility that 
CXCL10/CXCR3 interaction between ncMono and pDC was depleted 
whereas ncMono firmly received IFN-γ signal from activated T cells 
in severe COVID-19. Thus, these findings indicate that ncMono might 
contribute to immunopathology of COVID-19 severity via decreased 
cell fraction as well as biological dysfunction. However, the mecha-
nisms of the reduced differentiation to ncMono and the dysfunction 
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HGI (round 6). b, Differences of disease score in individual cell-level among 
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of ncMono are still elusive. Multimodal single-cell analysis and in vivo 
experiments should be warranted in the future.

Human genetic background has been demonstrated to influence 
the pathogenesis of COVID-19 (refs. 17–20). Functional analysis has 
mostly focused on the variant at LZTFL1 on 3p21, which showed the 
strongest severity association in Europeans but conferred a rare fre-
quency of the risk allele in East Asian47,48, suggesting the importance 
of additional studies in non-Europeans. We found that the putative 
disease genes identified by the GWAS of severe phenotypes showed 
cell type-specific expressions in monocytes and DC. We also showed 
that eQTL effects of the COVID-19-associated variants replicated in the 
Japanese GWAS were context and cell type-specific, with the IFNAR2 
variant, in particular, having COVID-19-specific and monocytes-specific 
eQTL effect, indicating the host genetic involvement of innate immune 
cells in COVID-19 severity. Because the context-specific eQTL effects 
were confirmed, collecting more COVID-19 cases and comparing them 
with healthy controls will help to clarify the pathogenesis of COVID-19 
from the perspective of the host genome.

Collectively, our results motivate us for a detailed examination 
of ncMono function in the context of COVID-19, as well as to increase 
sample size to perform integrated analysis with genetic data on  
a larger scale.
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Any methods, additional references, Nature Portfolio reporting sum-
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acknowledgements, peer review information; details of author con-
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scRNA-seq computational pipelines and analysis
The R package Seurat (v4.1.0) was used for data scaling, transforma-
tion, clustering, dimensionality reduction and most visualization26. 
Data were scaled and transformed using the SCTransform() function, 
and linear regression was performed to remove unwanted variation 
due to cell quality (% mitochondrial reads). For integration, we identi-
fied 3,000 shared highly variable genes (HVGs) using SelectIntegra-
tionFeatures() function. Principal component analysis (PCA) was run 
on gene expression, followed by batch correction using harmony 
(v0.1)53. UMAP dimension reduction was generated based on the first 
30 harmony-adjusted principal components54. A nearest-neighbor 
graph using the first 30 harmony-adjusted principal components was 
calculated using FindNeighbors() function, followed by clustering 
using FindClusters() function.

Cellular identity was determined by finding differentially 
expressed genes (DEGs) for each cluster using FindMarkers() func-
tion with parameter ‘test.use=wilcox’, and comparing those markers to 
known cell type-specific genes (Extended Data Fig. 1a). At the first round 
of clustering, we identified 13 cell subsets (Fig. 1b). To identify clusters 
within each major cell type, we performed a second round of clustering 
on monocytes/DC (CD14+ monocytes, CD16+ monocytes, cDC and pDC), 
T/NK cells (CD4T, Treg, CD8T, MAIT, proliferative T cells (Pro_T) and NK) 
and B cells (B and PB), separately, and then we obtained 25 cell subsets 
(Extended Data Figs. 1a, 2a, 3a and 4a). The final annotation of PBMCs 
was compared to the PBMC annotation of Azimuth using Seurat26. For 
each of the 25 clusters in our data, the percentage of cells mapped to 
each Azimuth annotation was calculated (Extended Data Fig. 1b).

To perform polygenic GWAS signal analysis (Fig. 6c) and single-cell 
eQTL analysis (Fig. 7a), six major cell types were defined from 25 clus-
ters as follows: CD4_naive, CD4_memory, CD4_Ef and Treg were anno-
tated as CD4+ T cells (CD4T); CD8_naive, CD8_memory and CD8_Ef 
were annotated as CD8+ T cells (CD8T); NK and NK_CD56bright were 
annotated as NK; cMono_S100A, cMono_IL1B, cMono_CCL3, intMono 
and ncMono were annotated as monocytes (Mono); cDC and pDC were 
annotated as DC; B_naive, B_memory and B_activated and B_plasma 
were annotated as B cells (B).

Differential abundance analysis
We used Milo27 (v1.2.0) to test for the differential abundance of cells 
within defined neighborhoods, between two conditions (that is, COVID-
19 versus healthy controls or moderate COVID-19 versus severe COVID-
19). We first used the buildGraph function to construct a KNN graph 
with k = 30, using 30 principal components (d = 30). Next, we used 
the make neighborhoods function to assign cells to neighborhoods 
based on their connectivity over the KNN graph. For computational 
efficiency, we subsampled 5% for all PBMCs and T cells and 10% for 
mono/DC and B cells. To test for differential abundance, Milo fit an NB 
GLM to the counts for each neighborhood, accounting for different 
numbers of cells across samples using TMM normalization, and use 
the QL F-test with a specified contrast to compute a P value for each 
neighborhood. We included age, sex, days since symptom onset and 
duration of systemic steroids treatment at the time of specimen collec-
tion (the last two variables included only in moderate COVID-19 versus 
severe COVID-19) as covariates in testNhoods function. To control for 
multiple testing, we adapted the spatial FDR implemented in Milo and 
used 10% spatial FDR as a threshold for significance. The spatial FDR 
and log2 foldchange (FC) of number of cells between two conditions 
in each neighborhood were used for visualization.

IFN response scoring
To evaluate IFN response across PBMCs, we downloaded a gene set 
termed ‘GOBP_RESPONSE_TO_TYPE_I_INTERFERON (GO:0034340)’ 
and ‘GOBP_RESPONSE_TO_INTERFERON_GAMMA (GO:0034341)’ from 
MSigDB. IFN response scores were evaluated using AddModuleScore() 
function implemented in Seurat with default parameter. To identify cell 

Methods
Ethics and specimen collection of PBMC for scRNA-seq
Peripheral blood samples were obtained from patients with COVID-
19 (n = 73) and healthy controls (n = 75) at Osaka University Hospital. 
Patients with COVID-19 were further categorized into groups of moder-
ate (n = 9) and severe (n = 64) according to disease severity based on the 
highest score on the World Health Organization (WHO) Ordinal Scale 
for Clinical Improvement ever-present (WHO, R&D Blueprint—new 
coronavirus—COVID-19 Therapeutic Trial Synopsis, 2020; ref. 23).  
Almost all cases were patients who were transferred from nearby gen-
eral hospitals because of severe or potentially severe illness during 
treatment and already initiated with systemic corticosteroids therapy 
at others hospitals according to RECOVERY study49. The detailed clini-
cal data are summarized in Supplementary Table 1. Part of the sub-
jects (nCOVID-19 = 30, nControl = 31) are described elsewhere20. One patient 
with COVID-19 had the karyotype abnormality and was excluded from 
the analyses including sex as a covariate. This study strictly follows 
the principles according to the Declaration of Helsinki, with written 
informed consent obtained from all participants before sample collec-
tion according to regular principles. Ethical approvals were gained from 
the Ethics Committees of Osaka University. There was no compensation 
for participants.

Preparation of single-cell suspensions
For both patients with COVID-19 and healthy controls, blood was col-
lected into heparin tubes and PBMCs were isolated using Leucosep 
(Greiner Bio-One) density gradient centrifugation according to the 
manufacturer’s instructions. Blood was processed within 3 h of col-
lection for all samples, and stored at −80 °C until use.

Droplet-based single-cell sequencing
Single-cell suspensions were processed through the 10X Genomics 
Chromium Controller following the protocol outlined in the Chromium 
Single Cell V(D)J Reagent Kits (v1.1 Chemistry) User Guide. Chromium 
Next GEM Single Cell 5′ Library & Gel Bead Kit v1.1 (PN-1000167), Chro-
mium Next GEM Chip G Single Cell Kit (PN-1000127) and Single Index 
Kit T Set A (PN-1000213) were applied during the process. Oil droplets 
of encapsulated single cells and barcoded beads (GEMs) were subse-
quently reverse-transcribed in a Veriti Thermal Cycler (Thermo Fisher 
Scientific), resulting in cDNA tagged with a cell barcode and unique 
molecular index (UMI). Next, cDNA was then amplified to generate 
single-cell libraries according to the manufacturer’s protocol. Quan-
tification was made with an Agilent Bioanalyzer High-Sensitivity DNA 
assay (Agilent, High-Sensitivity DNA Kit, 5067-4626). Subsequently 
amplified cDNA was enzymatically fragmented, end-repaired and polyA 
tagged. Cleanup/size selection was performed on amplified cDNA using 
SPRIselect magnetic beads (Beckman-Coulter; SPRIselect, B23317). 
Next, Illumina sequencing adapters were ligated to the size-selected 
fragments and cleaned up using SPRIselect magnetic beads. Finally, 
sample indices were selected and amplified, followed by a double-sided 
size selection using SPRIselect magnetic beads. Final library qual-
ity was assessed using an Agilent Bioanalyzer High-Sensitivity DNA 
assay. Samples were then sequenced on an Illumina NovaSeq 6000 as 
paired-end mode.

Alignment, quantification and quality control of scRNA-seq
Droplet libraries were processed using Cell Ranger 5.0.0 (10X Genom-
ics). Sequencing reads were aligned with STAR (v2.7.2a)50 using the 
GRCh38 human reference genome. Filtered expression matrices gen-
erated using Cell Ranger count were used to perform the analysis. We 
excluded cells that had fewer than the first percentile of UMIs or greater 
than 99th percentile of UMIs in each sample. We also excluded cells with 
<200 genes expressed or >10% of reads from mitochondrial genes or 
hemoglobin genes. Additionally, putative doublets were removed using 
Scrublet (v0.2.1)51 and scds (v1.10.0)52 for each sample.
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types with high IFN response, we calculated the average module scores 
across each of 13 cell types and compared them with that of all PMBCs. 
The module scores of cells in each cell type were also compared with 
the average score of all PBMCs using two-sided one-sample t-test. To 
evaluate IFN response of COVID-19 patients in each cell type, we calcu-
lated the average module scores across each of 13 cell types by three 
clinical statuses and compared the scores of moderate or severe group 
with those of healthy group. The module scores of cells of moderate 
or severe group were also compared to those of healthy group in each 
cell type using two-sided Welch’s t-test.

Differential gene expression analysis and GO enrichment
Differential gene expression analysis was performed among (1) all 
COVID-19 patients versus healthy controls, (2) moderate patients ver-
sus healthy controls, (3) severe patients versus healthy controls and 
(4) moderate versus severe patients. Donor pseudobulk matrices were 
first created by aggregating gene counts for each cell type, within each 
sample. Genes were considered for the analysis if they were expressed 
(UMI count > 0) in more than 10% of cells per cell type. Samples with 
more than five cells in a cell type were considered in the analysis of 
the corresponding cell type. Differential gene expression testing was 
performed using an NB GLM implemented in the Bioconductor pack-
age edgeR (v3.32.0)55. We included age, sex, days since symptom onset 
and duration of systemic steroids treatment at the time of specimen 
collection (the last two variables included only in moderate COVID-
19 versus severe COVID-19) in the model as covariates. Statistically 
significant DEGs were defined with FDR < 0.05 and FC > 2. To find the 
function of upregulated DEGs, we used the function compareClus-
ter (fun = “enrichGO,” pvalueCutoff = 0.05, pAdjustMethod = “BH,” 
OrgDb = “org.Hs.eg.db”, ont = ”BP”) of Clusterprofiler (v3.14.3)56.

Estimation of RNA velocity
Spliced and unspliced transcripts were quantified using dropEst 
(v0.8.6)57. Monocytes and DC clusters were evaluated by RNA velocity 
analysis using scVelo (v0.2.3)34, separately for each of the two condi-
tions. dropEst-derived counts were processed, filtered and normalized 
before velocity estimation on the basis of the top 2,000 HVGs with at 
least 20 UMI for both spliced and unspliced transcripts across all cells. 
The moments facilitated the RNA velocity estimation implemented in 
function scv.tl.velocity with mode set to ‘dynamical’. The estimated 
velocities were used to construct a velocity graph representing the 
transition probabilities among cells by function scv.tl.velocity_graph. 
Finally, the velocity graph was used to embed the RNA velocities into 
the UMAP by the function scv.pl.velocity_embedding_stream. The 
fractions of unspliced counts were adopted to quantitatively compare 
the differences in estimated cell transition in monocytes between 
COVID-19 and healthy groups. The average unspliced ratio of each 
sample for each of the three monocyte clusters was calculated. The 
difference of increase in unspliced ratio across three monocyte clus-
ters (ordered from cMono < intMono < ncMono) was evaluated using 
a linear regression model in each of the two conditions. The interaction 
between three monocyte clusters and two conditions (ordered from 
healthy < COVID-19) was also evaluated using a linear regression model 
with cluster, condition and cluster × condition as covariates.

TCR and BCR analysis
Droplet-based sequencing data for TCR sequences and BCR sequences 
were aligned and quantified using 5.0.0 (10X Genomics) against the 
GRCh38 human VDJ reference genome. Filtered annotated contigs 
for TCR sequences and BCR sequences were analyzed using Scirpy 
(v0.10.0)58. For TCR analysis, we selected T cells that were annotated 
as following nine cell types via single-cell RNA-seq analysis: CD4_naive, 
CD4_memory, CD4_Ef, Treg, CD8_naive, CD8_memory, CD8_Ef, MAIT 
and Pro_T (Extended Data Fig. 3a). Only cells with both TCR α-chain 
(TRA) and TCR β-chain (TRB) remained for the downstream analysis. 

Each unique TRA(s)–TRB(s) pair was defined as a clonotype. Similarly, 
for BCR analysis, we selected B cells which were annotated as following 
four cell types via scRNA-seq analysis: B_naive, B_memory, B_activated 
and B_plasma (Extended Data Fig. 4a). Only cells with both heavy chain 
(IGH) and light chain (IGK or IGL) were kept for further analysis. Each 
unique IGH(s)–IGK/IGL(s) pair was defined as a clonotype.

For TCR and BCR data, clonotypes were defined based on CDR3 
amino acid sequences with receptor_arms = ‘any’, metric = ‘alignment’ 
and default cutoff of ten. If one clonotype was present in at least two 
cells, cells harboring this clonotype were considered to be clonal and 
the number of cells with such pairs indicated the degree of clonality of 
the clonotype. Using barcode information, T cells with prevalent TCR 
clonotypes and B cells with prevalent BCR clonotypes were projected 
on UMAP embedding. To evaluate differences of clonal state between 
disease status in each cluster, the average clonal expansion rate of each 
sample was evaluated using two-sided Welch’s t-test, where only cells 
mapped with TCRs/BCRs were included in the analysis.

We downloaded VDJdb37, a curated database of TCR sequences 
with known antigen specificities, and then investigated the TCR that 
was specific to SARS-CoV-2, based on CDR3 amino acid sequences with 
the same parameter as above.

Cell–cell interaction analysis in PBMC
At first, to reduce the influence of individual samples contributing a larger 
number of cells and to speed up computation, we capped the number of 
cells per sample at 2,500 randomly sampled cells. This was done using 
the SubsetData() function in Seurat. Genes were adopted if they were 
expressed in more than 1% of all PBMCs. Putative cell–cell interactions 
of COVID-19 and healthy were quantified using CellPhoneDB (v2.0.0) 
and NATMI with default settings39,40. To investigate the differences in 
cell–cell interactions between COVID-19 versus healthy and between 
moderate versus severe COVID-19, we evaluated FC of mean expression 
weight using DiffEdges.py implemented in NATMI with default settings. 
As CXCL10/CXCR3 interaction is not listed on connectomeDB2020, we 
manually added CXCL10 as ligand and CXCR3 as receptor. Then, cell–cell 
interactions of CXCL10/CXCR3 and IFNG/IFNGR were evaluated for each 
of the three conditions by mean expression weight using NATMI.

Polygenic GWAS signals on PBMC
We used MAGMA (v1.07)59 to compute gene-level association P values 
and z-score from GWAS summary statistics of COVID-HGI (round 6)18. 
We used a reference panel based on individuals of European ancestry 
in the 1000 Genomes Project and used a 10-kb window around the gene 
body to map SNPs to genes. We selected the top 100 genes based on 
MAGMA P values as putative disease genes.

We used scDRS (v1.0.1)41 to quantify the aggregate expression of 
putative disease genes derived from GWAS summary statistics using 
MAGMA (each putative disease gene is weighted by its GWAS MAGMA 
z-score and inversely weighted by its gene-specific technical noise level 
in the single-cell data) in each cell of COVID-19 scRNA-seq data to gen-
erate cell-specific raw disease scores. A 1,000 sets of cell-specific raw 
control scores were calculated from matched control gene sets (match-
ing the gene set size, mean expression and expression variance of the 
putative disease genes). Then, we normalized the raw disease score 
and raw control scores for each cell, producing the normalized disease 
score and normalized control scores. To compute the scores described 
above, we used the function scdrs compute-score (--n_ctrl = 1000, -- 
cov-file = age, sex, number of genes per cell and disease severity).

For downstream analysis, we performed cell type-level analyses to 
associate predefined cell types to disease and assess heterogeneity in 
association to disease across cells within a predefined cell type using 
the function scdrs perform-downstream with default settings. To cor-
rect multiple testing, FDR was calculated via the Benjamini–Hochberg 
method across all pairs of cell types and three GWAS phenotypes. To 
compare scDRS disease scores between COVID-19 phenotypes in six 
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major cell types, the differences in average disease scores of each sam-
ple were evaluated using two-sided paired t-test (adjusted for multiple 
comparisons using Bonferroni’s correction).

Genotype data, quality control and genotype imputation
We performed GWAS genotyping of COVID-19 cases and healthy con-
trols using Infinium Asian Screening Array (Illumina) through collabo-
ration with Japan COVID-19 Task Force (https://www.covid19-taskforce.
jp/en/home/). We applied stringent quality control filters to the sam-
ples (sample call rate < 0.98, related samples with PI_HAT > 0.175 or 
outlier samples from East Asian clusters in PCA with HapMap project 
samples), and variants (variant call rate < 0.99, deviation from Hardy–
Weinberg equilibrium with P < 1.0 × 10−6, or minor allele count < 5). We 
used SHAPEIT4 software (version 4.2.1)60 for haplotype phasing of 
autosomal genotype data. After phasing, we used Minimac4 software 
(version 1.0.1)61 for genome-wide genotype imputation. We used the 
population-specific imputation reference panel of Japanese (n = 1,037) 
combined with 1,000 Genomes Project Phase3v5 samples (n = 2,504)62.

Single-cell eQTL analysis
We applied pseudobulk approach for single-cell eQTL analysis. First, we 
performed single-cell-level normalization using scran (v1.18.5)63. Gene 
expression per cell type per sample was then calculated as the mean of 
log2-transformed counts-per-cell-normalized expression across cells. 
Samples with more than five cells in a cell type were considered in the 
analysis of the corresponding cell type. We examined eQTL effects of 
the replicated variants in Japanese COVID-19 GWAS on V2G, the highest 
gene prioritized by the V2G score of Open Target Genetic, separately 
for COVID-19 and healthy controls20,64. rs35081325 and rs77534576 
were excluded from eQTL analysis due to low allele frequency and 
low expression of V2G (FLJ45513), respectively. For PCA, genes were 
adopted if they were expressed in more than 1% of all PBMCs.

In the eQTL analysis of COVID-19-associated variants, dosage 
effects of the variants on the gene expression mean were evaluated 
using linear regression models with the top two PCs of the genotype 
data, the top two PCs of the gene expression, age, sex, days since 
symptom onset, duration of systemic steroids treatment at the time 
of specimen collection and disease severity (the last three variables 
included only in COVID-19 analysis) as covariates. In the interaction 
eQTL analysis of the IFNAR2 variant (rs13050728), the top two PCs of 
the genotype data, the top two PCs of the gene expression, age and sex 
were included as covariates. R statistical software (version 4.0.2) was 
used for the analysis. To correct multiple testing, FDR was calculated 
via the Benjamini–Hochberg method across all pairs of cell types and 
five variants, separately for COVID-19 and healthy controls.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data 
were excluded from the analyses. We did not use any study design that 
required randomization or blinding.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw sequencing data of scRNA-seq are available at the Japanese 
Genotype-phenotype Archive ( JGA) with accession codes JGAS000593 
(https://ddbj.nig.ac.jp/resource/jga-study/JGAS000593)/JGAD000722 
(https://ddbj.nig.ac.jp/resource/jga-dataset/JGAD000722). A part 
of the raw scRNA-seq data (nCOVID-19 = 30, nControl = 31) has already 
been deposited20 and is available under controlled access at JGA 
with accession codes JGAS000543 (https://ddbj.nig.ac.jp/resource/
jga-study/JGAS000543)/JGAD000662 (https://ddbj.nig.ac.jp/
resource/jga-dataset/JGAD000662). All the raw sequencing data of 

scRNA-seq can also be accessed through application at the NBDC 
with the accession code hum0197 (https://humandbs.biosciencedbc.
jp/en/hum0197-latest). Genotype data of the subjects are avail-
able at European Genome-Phenome Archive (EGA) with the acces-
sion code EGAS00001006950 (https://ega-archive.org/studies/
EGAS00001006950). Raw sequencing data of scRNA-seq and genotype 
data are potentially identifiable and therefore under controlled access 
at JGA and EGA. The GWAS summary statistics of COVID-19 HGI (release 
6) were obtained from https://www.covid19hg.org/results/r6/. The 
reference for cell type annotation of PBMC in scRNA-seq (pbmc_mul-
timodal.h5seurat) was obtained from https://satijalab.org/seurat/
articles/multimodal_reference_mapping.html.

Code availability
The code used in the paper is available at https://github.com/REdahiro/
JPN_COVID-19_scRNAseq.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Cell type annotation of PBMC, differential abundance analysis and IFN responses. (a) Violin plots showing the expression distribution 
of selected canonical cell markers in the 13 clusters. The rows represent selected marker genes and the columns represent clusters. (b) Tile plot showing percentage 
concordance between the manually annotated 25 clusters and Azimuth annotation. (c) A bar plot of the proportion of cell types shown in Fig. 1b, separated by 
three conditions (n = 75 healthy, n = 9 moderate, n = 64 severe). (d) Graph representation of neighborhoods identified by Milo in COVID-19 patients. Nodes are 
neighborhoods, colored by their log2 fold change between moderate (n = 8) and severe (n = 64) COVID-19 patients adjusted by age, sex, time since symptom onset and 
duration of systemic steroids treatment. Nhood, neighborhood. (e) Box plot showing the distribution of adjusted log2 fold change in abundance between moderate 
and severe COVID-19 in neighborhoods according to 13 cell types. Boxes denote the interquartile range (IQR), and the median is shown as horizontal bars. Whiskers 
extend to 1.5 times the IQR, and outliers are shown as individual points. (f,g) UMAP embedding of PBMCs colored by Type I IFN response score and IFN-γ response 
score. The score was calculated using a gene set termed ‘GOBP_RESPONSE_TO_TYPE_I_INTERFERON’ (GO:0034340) and ‘GOBP_RESPONSE_TO_INTERFERON_GAMMA’ 
(GO:0034341), respectively.
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Extended Data Fig. 2 | Immunological features of monocytes and dendritic 
cells. (a) Violin plots showing the expression distribution of selected canonical 
cell markers in the seven clusters. The rows represent clusters and the columns 
represent selected marker genes. (b) A bar plot of the proportion of cell types, 
separated by three conditions (n = 75 healthy, n = 9 moderate, n = 64 severe). 
(c) Graph representation of neighborhoods identified by Milo in COVID-19 
patients. Nodes are neighborhoods, colored by their log2 fold change between 
moderate (n = 8) and severe (n = 64) COVID-19 patients adjusted by age, sex, 
time since symptom onset and duration of systemic steroids treatment. Nhood, 
neighborhood. (d) Box plot showing the distribution of adjusted log2 fold 

change in abundance between moderate and severe COVID-19 in neighborhoods 
according to seven cell types. Boxes denote the interquartile range (IQR), and 
the median is shown as horizontal bars. Whiskers extend to 1.5 times the IQR, 
and outliers are shown as individual points. (e) The top 20 enriched biological 
processes by GO analysis of upregulated DEGs of COVID-19 (n = 72) compared 
to healthy controls (n = 75) in five cell types. Dot color indicates the statistical 
significance of the enrichment (adjusted P-values via the Benjamini-Hochberg 
method), and dot size represents gene ratio annotated to each term. (f) 
Heatmaps depicting the average unspliced ratio of seven cell types stratified by 
COVID-19 (n = 73) and healthy controls (n = 75).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Immunological features of T cells and NK cells and TCR analysis. (a) Violin plots showing the expression distribution of selected canonical 
cell markers in 13 clusters. The rows represent clusters and the columns represent selected marker genes. (b) A bar plot of the proportion of cell types, separated 
by three conditions (n = 75 healthy, n = 9 moderate, n = 64 severe). (c) Graph representation of neighborhoods identified by Milo in COVID-19 patients. Nodes are 
neighborhoods, colored by their log2 fold change between moderate (n = 8) and severe (n = 64) COVID-19 patients adjusted by age, sex, time since symptom onset and 
duration of systemic steroids treatment. Nhood, neighborhood. (d) Box plot showing the distribution of adjusted log2 fold change in abundance between moderate 
and severe COVID-19 in neighborhoods according to 13 cell types. Boxes denote the interquartile range (IQR), and the median is shown as horizontal bars. Whiskers 
extend to 1.5 times the IQR, and outliers are shown as individual points. (e) UMAP embedding of TCR detection. (f) Repertoire overlap according to clonotype size 
between COVID-19 (n = 73) and healthy controls (n = 75) in all clonotypes (left) and in clonotypes with size < 50 (right). (g) Repertoire overlap according to clonotype 
size between moderate (n = 9) and severe (n = 64) group in all clonotypes (left) and in clonotypes with size < 50 (right). (h) The distribution of the clonal state of T cells 
which were suspected to be specific to SARS-CoV-2 based on CDR3 amino acid sequence in each cluster according to disease status (n = 75 healthy, n = 9 moderate, 
n = 64 severe).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Immunological features of B cells and BCR analysis. (a) Violin plots showing the expression distribution of selected canonical cell markers 
in four clusters. (b) A bar plot of the proportion of cell types, separated by three conditions (n = 75 healthy, n = 9 moderate, n = 64 severe). (c) Graph representation 
of neighborhoods identified by Milo in COVID-19 patients. Nodes are neighborhoods, colored by their log2 fold change between moderate (n = 8) and severe (n = 64) 
COVID-19 patients adjusted by age, sex, time since symptom onset and duration of systemic steroids treatment. Nhood, neighborhood. (d) Box plot showing the 
distribution of adjusted log2 fold change in abundance between moderate and severe COVID-19 in neighborhoods according to four cell types. Boxes denote the 
interquartile range (IQR), and the median is shown as horizontal bars. Whiskers extend to 1.5 times the IQR, and outliers are shown as individual points. (e) The top 20 
enriched biological processes by GO analysis of upregulated DEGs of COVID-19 (n = 72) compared to healthy controls (n = 75) in four cell types. Dot color indicates the 
statistical significance of the enrichment (adjusted P-values via the Benjamini-Hochberg method), and dot size represents gene ratio annotated to each term. (f) The 
top 10 enriched biological processes by GO analysis of upregulated DEGs of moderate (n = 8) and severe (n = 64) compared to healthy group (n = 75). Dot color and dot 
size mean the same as in (e). (g) Repertoire overlap according to clonotype size between COVID-19 (n = 73) and healthy controls (n = 75) in all clonotypes (left) and in 
clonotypes with size < 10 (right). (h) Repertoire overlap according to clonotype size between moderate (n = 9) and severe (n = 64) group in all clonotypes (left) and in 
clonotypes with size < 10 (right).
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Extended Data Fig. 5 | Cell-cell interaction analysis using CellPhoneDB 
and NATMI. (a) Heatmaps depicting cell-cell communications quantified by 
CellPhoneDB in COVID-19 (n = 73) and healthy controls (n = 75), respectively.  
(b) Heatmaps depicting cell-cell communications quantified by NATMI in 
moderate (n = 9) and severe (n = 64) group, respectively. Rows indicate cells 

expressing the ligands and columns indicate cells expressing the receptors. 
Asterisk indicates cell-cell interactions with a number of ligand-receptor more 
than 100, and cell types which share more than 100 cell-cell interactions with at 
least one cell type are highlighted in red.
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Extended Data Fig. 6 | Assessing the association of PBMC cell types with 
host genetic risk. (a) Flowchart of integrated analysis of scRNA-seq data and 
COVID-19 HGI (round6) GWAS summary statistics using scDRS. The figure design 
is based on the original paper of scDRS41. (b) Differences of scDRS disease score 
between COVID-19 phenotypes in six major cell types. Differences of average 
disease scores of each sample were evaluated using two-sided paired t-test 
(adjusted for multiple comparisons using Bonferroni’s correction across all 
pairs of six cell-types and three GWAS comparisons, *P < 1×10-10, **P < 1×10-20, 
***P < 1×10-30). Boxes denote the interquartile range (IQR), and the median is 

shown as horizontal bars. Whiskers extend to 1.5 times the IQR, and all COVID-19 
patients (n　= 72) are shown as individual points. (c) Heatmaps depicting cell 
type-disease association for three phenotypes in the manually annotated  
25 clusters of COVID-19 scRNA-seq dataset. Heatmap colors denote uncorrected 
P-value of cell type-disease association evaluated using scDRS. Squares denote 
significant cell type-disease associations (FDR < 0.05), and cross symbols 
denote significant heterogeneity in association with disease across individual 
cells within a given cell type (FDR < 0.05). FDR was calculated via the Benjamini-
Hochberg method across all pairs of 25 cell types and three GWAS phenotypes.
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Extended Data Fig. 7 | Single-cell eQTL analysis of rs13050728 and differential 
expression analysis of IFNAR2. (a) Flowchart of how to select COVID-19-
associated variants in single-cell eQTL analysis. (b) rs13050728 eQTL for IFNAR2 
in classical monocytes. The box plot shows the eQTL in COVID-19 (red) and 
healthy controls (blue). Boxes denote the interquartile range (IQR), and the 
median is shown as horizontal bars. Whiskers extend to 1.5 times the IQR. All 
samples are shown as individual points (n = 67 COVID-19, n = 75 healthy). (c) 
Co-plots of the eQTL effect sizes of rs13050728 and 95% confidence intervals 

between COVID-19 and healthy controls. Dots represent the effect sizes and bars 
represent the 95 % confidence intervals. Cell types with significant interaction 
(PInteraction < 0.05) in eQTL effect between COVID-19 and healthy controls are 
colored in red, and the rest are colored in blue. (d) Expression changes of IFNAR2 
in differential expression (DE) analysis between COVID-19 (n = 72) vs healthy 
controls (n = 75) are indicated for each cell cluster. Cell types with P < 0.05 in 
DE analysis are colored in green, and the rest is colored in gray. P-values are 
uncorrected and reflect two-sided tests in (b-d).
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