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Aberrant splicing prediction across  
human tissues

Nils Wagner    1,2,7, Muhammed H. Çelik1,3,7, Florian R. Hölzlwimmer1, 
Christian Mertes    1,4, Holger Prokisch    5,6, Vicente A. Yépez    1 & 
Julien Gagneur    1,2,5,6 

Aberrant splicing is a major cause of genetic disorders but its direct 
detection in transcriptomes is limited to clinically accessible tissues such as 
skin or body fluids. While DNA-based machine learning models can prioritize 
rare variants for affecting splicing, their performance in predicting 
tissue-specific aberrant splicing remains unassessed. Here we generated 
an aberrant splicing benchmark dataset, spanning over 8.8 million rare 
variants in 49 human tissues from the Genotype-Tissue Expression (GTEx) 
dataset. At 20% recall, state-of-the-art DNA-based models achieve maximum 
12% precision. By mapping and quantifying tissue-specific splice site usage 
transcriptome-wide and modeling isoform competition, we increased 
precision by threefold at the same recall. Integrating RNA-sequencing data 
of clinically accessible tissues into our model, AbSplice, brought precision 
to 60%. These results, replicated in two independent cohorts, substantially 
contribute to noncoding loss-of-function variant identification and to 
genetic diagnostics design and analytics.

Identifying noncoding loss-of-function DNA variants is a major bot-
tleneck of whole genome interpretation, as predicting function out-
side coding regions is difficult1. Variants altering splicing represent 
an important class of noncoding loss-of-function variants because 
they can lead to drastically altered RNA isoforms, for instance, by 
inducing frameshifts or ablations of functionally important protein 
domains. If the variant strongly alters splicing isoform choice, the 
remaining abundance of functional RNA isoforms can be so reduced 
that the function of the gene is lost. Due to the relevance of splicing 
for variant interpretation, notably in rare disease diagnostics and 
in oncology, algorithms have been developed to predict whether 
variants affect splicing2–9. However, only recently, aberrant splicing 
events, that is, rare large alterations of splice isoform usage, have 
been called in human tissues10–12. While a method to a posteriori pri-
oritize candidate causal rare variants for observed aberrant splicing 
events has been proposed12, the forward problem, that is, predicting 

among rare variants which ones will result in aberrant splicing, has not  
been addressed.

Here, we set out to establish models predicting whether a rare vari-
ant associates with aberrant splicing in any given human tissue. First, 
we assumed only DNA to be available and later on further considered 
complementary RNA-sequencing (RNA-seq) data of clinically acces-
sible tissues (CATs) (Fig. 1).

Results
A benchmark dataset for aberrant splicing predictions
We created a benchmark using the aberrant splicing caller FRASER 
(Find RAre Splicing Events in RNA-seq)10 on 16,213 RNA-seq samples of 
the Genotype-Tissue Expression (GTEx) dataset, spanning 49 tissues 
and 946 individuals. Compared with other splicing outlier detection 
methods11,12, FRASER consistently showed the highest agreement with 
sequence-based predictors and was therefore subsequently used for 
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(Extended Data Fig. 5). Using larger prediction window sizes for SpliceAI 
did not improve the results (Supplementary Fig. 1). For individuals with 
multiple rare variants on a gene, we retained the highest score of each 
model. Out-of-the-box application of MMSplice and SpliceAI showed a 
modest performance, with an overall precision of 8% for MMSplice and 
of 12% for SpliceAI at 20% recall, and an area under the precision–recall 
curve (auPRC) of 4% ± 1 percentage point across tissues for MMSplice 
and 5% ± 2 percentage points for SpliceAI.

Tissue-specific splicing annotations improve aberrant 
splicing predictions
We observed that many false predictions originated from inaccurate 
genome annotations. On the one hand, standard genome annota-
tions are not tissue-specific, leading to false positive predictions. 
This includes predictions for genes that are not expressed in the tis-
sue of interest, as for the gene TRPC6 in the brain (Fig. 2a), and, among 
expressed genes, predictions for exons that are not canonically used 
in the tissue, as for exon 2 of C2orf74 in the tibial nerve (Fig. 2b). On 
the other hand, many splice sites are missing from standard genome 
annotations14,15. These nonannotated splice sites are often spliced at 
a low level, yet can be strongly enhanced by variants (see Fig. 2c for 
an example) and are suspected to be a major cause of aberrant splic-
ing16,17. To address all these issues, we created a tissue-specific splice site 
map, which we named SpliceMap, using GTEx RNA-seq data. SpliceMap 
excludes untranscribed splice sites and introns for each tissue and 
includes nonannotated splice sites and introns reproducibly observed 
among samples of the same tissue (Methods). The standard genome 
annotation GENCODE18 (release 38 of hg38) contains 244,189 donor 
sites and 235,654 acceptor sites, of which 93% were detected at least in 
one GTEx tissue (Fig. 2d). SpliceMap contains 168,004 ± 9,288 donor 
sites and 164,702 ± 8,950 acceptor sites per tissue (Extended Data Fig. 6).  

our evaluations (Extended Data Fig. 1). For every individual, we consid-
ered every protein coding gene carrying at least one rare variant (minor 
allele frequency (MAF) less than 0.1% based on the Genome Aggregation 
Database (gnomAD)13 and found in no more than two individuals across 
GTEx) and set out to predict in which tissue, if any, is this gene aber-
rantly spliced. We defined a gene to be aberrantly spliced in a sample 
if it was called as a transcriptome-wide significant splicing outlier and 
with a sufficient amplitude (differential percent spliced-in (Ψ) larger 
than 0.3; Methods, and see Extended Data Fig. 1 for results with alter-
native cutoffs). Previous studies had reported that as many as 75% of 
aberrant splicing events in GTEx RNA-seq samples are not replicated 
across tissues10,12 and thus may reflect technical artifacts or aberrant 
splicing that is not genetically driven. We quantified the enrichment 
of replicated splicing outliers across tissues of the same individual 
with respect to the distance to the closest rare variant and found them 
to be enriched up to a distance of 250 base pairs (bp) (Extended Data 
Fig. 2). Therefore, we also required a rare variant to be less than 250 bp 
away from the boundaries of any intron associated with the aberrantly 
spliced splice site (Methods and Extended Data Fig. 3). This filter yielded 
similar results as filtering for replicated aberrant events with the extra 
advantage of being applicable to independent cohorts that have a single 
sample per individual (Extended Data Fig. 4).

State-of-the art sequence-based models poorly predict 
tissue-specific aberrant splicing
We then assessed the performance of two complementary 
state-of-the-art sequence-based deep learning models: modular 
modeling of splicing (MMSplice)3, which predicts quantitative usage 
changes of predefined splice sites within a 100-bp window of a vari-
ant, and SpliceAI2, which is independent of gene annotations and pre-
dicts creation or loss of splice sites within a 50-bp window of a variant 
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Fig. 1 | Study design and main findings. We set out to predict whether rare 
variants associate with aberrant splicing across 49 human tissues. a, We 
established a comprehensive benchmark for aberrant splicing by processing 
GTEx samples with a recently published aberrant splicing caller10 based on which 
we could assess and develop predictors that could take as input DNA sequence 
and, optionally, RNA-seq data of CATs. b, Benchmarking revealed modest 

performance of currently used algorithms based on DNA only, a substantial 
performance improvement when integrating these models with SpliceMap, 
a quantitative map of tissue-specific splicing we developed in this study, and 
further improvements when also including direct measures of aberrant splicing 
in accessible tissues.
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From this total, 7,060 ± 3,706 donor sites and 8,222 ± 3,740 acceptor 
sites were unannotated, with testis containing the maximum number 
of nonannotated donor and acceptor sites (29,673 and 29,911 respec-
tively), in line with the unique transcriptional and splicing patterns of 
testis19,20. SpliceMap is robust to variations in sample size and to differ-
ent split-read counting tools21,22 (Supplementary Fig. 2). Moreover, we 
found that currently available long-read RNA-seq data in GTEx23 were 
not yet sensitive enough24 to reliably identify nonannotated splice 
sites (Supplementary Fig. 2). Applying MMSplice on the tissue-specific 
splice sites defined by SpliceMap increased the precision of MMSplice 
to 13% at 20% recall (Fig. 2e), with a significantly higher auPRC consist-
ently across tissues (Fig. 2f). Similarly, applying SpliceMap on SpliceAI 
increased precision to 22% at 20% recall.

Quantified reference isoform proportions improve aberrant 
splicing predictions
Variants affecting splicing typically associate with abundance ratio 
fold-changes of competing splicing isoforms, which result in nonlin-
ear effects on isoform proportions according to the so-called scaling 
law of splicing25,26. For instance, starting from a 1:1 ratio between one 
splicing isoform and its alternative in a major allele background, a 
tenfold decrease leads to a 1:10 ratio, which amounts to around 40 
percentage points decrease (from 50% to approximately 10%). However, 
the same ratio fold-change starting from a 1:10 ratio amounts to less 
than 1 percentage point decrease (Extended Data Fig. 7). Hence, the 
scaling law of splicing implies that the variation of isoform abundance 
between tissues in major allele background alone can explain some 
of the tissue-specific effects of variants on isoform proportion25, as 
exemplified with exon 7 of the gene TRPC6 (Fig. 3a). We estimated major 
allele background levels of alternative donor and acceptor splice site 
usage proportions for all introns and all tissues of SpliceMap (Extended 
Data Fig. 7). Integrating these reference levels further improved the 
MMSplice predictions by 1.6-fold consistently across tissues, and to a 
lesser extent the SpliceAI predictions (Fig. 3b,c and Methods). We sus-
pect that MMSplice showed stronger relative improvement compared 
with SpliceAI because it models percent spliced-in of predefined splice 
sites and can integrate in a principled fashion reference levels using 
the scaling law. In contrast, SpliceAI models creation or loss of splice 
sites. We integrated reference levels with SpliceAI by applying filters 
(Methods). However, predicted activations of annotated splice sites 
and predicted deactivations of unannotated splice sites are already 
masked in SpliceAI, thereby qualitatively capturing the effect of using 
reference level filters for a large number of splice sites.

AbSplice-DNA predicts the probability that a variant causes 
aberrant splicing in a given tissue
Next, to leverage the complementarity of MMSplice and SpliceAI pre-
dictions7, we trained a generalized additive model using the scores 
from both deep learning models as well as annotation features from 
tissue-specific SpliceMaps (Methods). This model, which we call 
AbSplice-DNA, achieved an additional 1.5-fold improvement (Fig. 3b,c). 
The AbSplice-DNA scores are probability estimates which we found to 
be well calibrated on GTEx (Extended Data Fig. 8). AbSplice predicts 

for each variant how likely aberrant splicing of some sort takes place in 
a given tissue and reports the splice site with the strongest effect (see 
Supplementary Table 1 for an example). To ease downstream applica-
tions we suggest three cutoffs (high: 0.2, medium: 0.05, low: 0.01), 
which have approximately the same recalls as the high, medium and 
low cutoffs of SpliceAI (Fig. 3b).

We also tested integration of other predictors into AbSplice-DNA 
by including scores from Combined Annotation Dependent 
Depletion-Splice (CADD-Splice)7, Multi-tissue Splicing (MTSplice)9 
and Super Quick Information-content Random-forest Learning of 
Splice variants (SQUIRLS)8 (Methods). However, those models only led 
to minor improvements (Extended Data Fig. 9). We decided to incorpo-
rate only MMSplice and SpliceAI into the final model so as not to have a 
model confounded by conservation information (used by CADD-Splice 
and SQUIRLS), and to keep the possibility to easily integrate new tissues 
which would not be the case with MTSplice. Nevertheless, the code of 
AbSplice can easily be modified to incorporate new features. We also 
tried random forest and logistic regression as alternative machine 
learning models, which gave similar performances to the generalized 
additive model (Methods and Extended Data Fig. 9).

We evaluated the model performances in more detail by strati-
fying the results on two different scenarios. First, we stratified by 
variant categories. As expected, the precision was the best on vari-
ants affecting the donor and acceptor dinucleotides on all models, 
followed by variants in the splice region (within 1–3 bases of the exon 
or 3–8 bases of the intron), then in the exonic, and lastly in the intronic 
regions (Methods and Fig. 3d). AbSplice-DNA outperformed all models 
throughout all variant categories, including intronic variants, whose 
effects are notoriously more difficult to predict. Second, we analyzed 
the model performance for five nonexclusive aberrant splicing out-
comes: exon elongation, exon truncation, exon skipping, any alter-
native donor or acceptor choice outlier, and any splicing efficiency 
outlier. AbSplice-DNA performed better for exon skipping than for 
exon elongation and truncation, as well as better for alternative donor 
or acceptor choice than for splicing efficiency outliers. Moreover, 
AbSplice-DNA outperformed all other models throughout all investi-
gated outlier outcome categories (Fig. 3e).

AbSplice-DNA performance is confirmed on independent data
Having established our model on GTEx, we next assessed how well 
the performance replicated in independent cohorts. We first evalu-
ated a dataset consisting of RNA-seq samples from skin fibroblasts of  
303 individuals with a suspected rare mitochondriopathy27. We found 
that there was a large overlap (86%) of splice sites in SpliceMaps gener-
ated from GTEx fibroblasts and from this cohort (Fig. 4a and Supple-
mentary Fig. 3). Moreover, we observed consistent reference levels of 
splicing between the two datasets (Fig. 4b, Pearson correlation 0.87). 
We applied AbSplice-DNA trained on GTEx using the SpliceMap from 
GTEx fibroblasts on the subset of this data for which whole genome 
sequencing (WGS) was available (n = 20) and used aberrant splicing 
calls performed on the RNA-seq samples to assess the predictions. The 
relative improvements between the baseline models and AbSplice-DNA 
replicated. AbSplice-DNA achieved 13.2 ± 1.5% auPRC, 2.5-fold higher 

Fig. 2 | Tissue-specific splice site map improves prediction performance. 
a–c, Sashimi plots showing RNA-seq read coverage (y axis) and the numbers 
of split reads spanning an intron indicated on the exon-connecting line (using 
pysashimi50) for instances illustrating the benefits of the SpliceMap annotation. 
For each instance, two individuals are displayed. The individual with the rare 
genetic variant (located at the dashed black line) is shown in the lower track 
(darker color). SpliceMap catalogs expressed genes and splice sites in each tissue 
and can thus help in identifying cases for which there is no variant effect in tissues 
not expressing the whole gene (a) or the exon (b) in proximity of the variant. 
Moreover, SpliceMap includes weak splice sites, which are spliced at a low level, 
but can be activated and create novel exons in the presence of a variant (c).  

d, Venn diagram comparing annotated splice sites in standard genome 
annotation (GENCODE release 38) and SpliceMap aggregating all GTEx tissues. 
e, Precision–recall curves comparing the overall prediction performance across 
all GTEx tissues (n = 49) of MMSplice applied to GENCODE splice sites, MMSplice 
applied to tissue-specific splice sites according to SpliceMap, SpliceAI and 
SpliceAI using tissue-specific SpliceMaps. f, Distribution of the auPRC across all 
GTEx tissues of the models in e. Center line, median; box limits, first and third 
quartiles; whiskers span all data within 1.5 interquartile ranges of the lower and 
upper quartiles. P values were computed using the paired one-sided Wilcoxon 
test. Alt, alternative; Ind, individual; Ref, reference.
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than SpliceAI or MMSplice alone (Fig. 4c). From a rare variant pri-
oritization standpoint, AbSplice-DNA typically gave about twofold 
fewer candidate predictions at the same level of recall than SpliceAI, 
itself comparing favorably over MMSplice (Supplementary Fig. 4). 
Hence, AbSplice-DNA can help rare disease diagnostics by providing 

substantially shorter lists of predicted candidate variants to investigate 
compared with state-of-the–art sequence-based models.

We next considered a cohort of WGS samples paired with RNA-seq 
and proteomics data of induced pluripotent stem cell (iPSC)-derived 
spinal motor neurons from 245 amyotrophic lateral sclerosis 

C2orf74

chr2:61,162,594:T > GRef:
Alt:

420

210

420

210

420

210

420

210

156

65

117

274

297

69

35

61,162,389 61,162,627 61,162,865 61,163,103  61,163,341

Genomic coordinate (chr2), '+' strand
In

d 
no

. 2
(v

ar
ia

nt
)

In
d 

no
. 1

(c
on

tr
ol

)
In

d 
no

. 2
(v

ar
ia

nt
)

In
d 

no
. 1

(c
on

tr
ol

)

Te
st

is
N

er
ve

 ti
bi

al

Ψ3 = 36%

Ψ3 = 100%Ψ3 = 100%

Ψ3 = 67%

Ψ3 = 77%

Ψ3 = 5%

∆
Ψ

 =
 –

64
%

∆
Ψ

 =
 –

33
%

∆
Ψ

 =
 7

2%

432

New exon

chr1:108,939,630:A > C

CLCC1118

59

118

59

2

57

17

42

108,937,218 108,937,872 108,938,526 108,939,180 108,939,834

Genomic coordinate (chr1), '–' strand

In
d 

no
. 2

(v
ar

ia
nt

)
In

d 
no

. 1
(c

on
tr

ol
)

Ad
ip

os
e

910

GENCODE
33,656 (6%)

SpliceMap
(all GTEx tissues)

114,181 (19%)
446,049 (75%)

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1.0

Recall

Pr
ec

is
io

n

SpliceAI + SpliceMap
SpliceAI
MMSplice + SpliceMap
MMSplice

All tissues

0

0.05

0.10

0.15

0.20

0.25

MMSplice MMSplice
+ SpliceMap

SpliceAI SpliceAI
+ SpliceMap

au
PR

C

Across tissues

P = 5.7 × 10–10

P = 6.0 × 10–10

In
d 

no
. 2

(v
ar

ia
nt

)
In

d 
no

. 1
(c

on
tr

ol
)

In
d 

no
. 2

(v
ar

ia
nt

)
In

d 
no

. 1
(c

on
tr

ol
)

Lu
ng

Br
ai

n

TRPC6

chr11:101,453,649:C > G Ref.
Alt:

Ref:
Alt:

254

127

254

127

254

127

254

127

174

42

88

101,453,006 101,453,192 101,453,378 101,453,564

Genomic coordinate (chr11), '–' strand

1213

a b

c d

e f

http://www.nature.com/naturegenetics


Nature Genetics | Volume 55 | May 2023 | 861–870 865

Technical Report https://doi.org/10.1038/s41588-023-01373-3

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1.0
Recall

Pr
ec

is
io

n

AbSplice-DNA

MMSplice + SpliceMap
MMSplice

SpliceAI + SpliceMap
SpliceAI

Cuto�

High
Medium
Low

All tissues
b

0

0.1

0.2

0.3

+ SpliceMap
SpliceAI

+ SpliceMap
SpliceAI SpliceAI MMSplice MMSplice

+ SpliceMap
MMSplice

+ SpliceMap
AbSplice-DNA

au
PR

C

Across tissuesc

Splice acceptor
n = 1,768

Splice donor
n = 2,432

Splice region
n = 2,868

Exon
n = 5,660

Intron
n = 8,225

All
n = 24,159

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

Recall

Pr
ec

is
io

n

d

Exon elongation
n = 3,547

Exon truncation
n = 2,733

Exon skipping
n = 5,188

Any splicing
e�iciency outlier

n = 4,698

Any alternative donor
or acceptor choice

n = 20,219

All
n = 24,159

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

Recall

Pr
ec

is
io

n

e

AbSplice-DNA SpliceAI MMSplice CADD-Splice SQUIRLS

a

P = 7.3 × 10–10
P = 5.7 × 10–10

P = 1.3 × 10–3

MMSplice + SpliceMap + Ψref

SpliceAI + SpliceMap + Ψref

+ Ψref+ Ψref

1,254

627

474

237

3,588

1,794

1,188

594

In
d 

no
. 2

(v
ar

ia
nt

)
In

d 
no

. 1
(c

on
tr

ol
)

In
d 

no
. 2

(v
ar

ia
nt

)
In

d 
no

. 1
(c

on
tr

ol
)

Lu
ng

Br
ai

n

TRPC6

737

317

140

238 141

700

127

1,056 133

72

637 61

Ψ3 = 37%

Ψ3 = 11%

Ψ3 = 10%

Ψ3 = 70%

∆
Ψ

 =
 –

33
%

∆
Ψ

 =
 –

1%

25,981,937 25,987,015 25,997,359

Genomic coordinate (chr21), '–' strand

chr21:25,997,362:TTAACA > T

8 7 6

Ref:
Alt:

Fig. 3 | Quantitative splicing levels further improve prediction performance. 
a, Sashimi plot of TRPC6 around exon 7 in lung and brain for two individuals, one 
carrying no rare variant in this region (control, upper tracks), and one carrying 
an exonic rare deletion (dashed line and lower tracks) associated with reduced 
splicing of exon 7. The donor sites of exon 6 and exon 7 compete against each 
other for splicing with the acceptor site of exon 8. For the control individual, the 
donor site of exon 7 is used 70% of the time in the lung, and only 11% of the time 
in the brain. The variant associates with a stronger difference (33 percentage 
points) in the lung than in the brain (1 percentage point). b, Precision–recall 
curve comparing the overall prediction performance on all GTEx tissues 
of SpliceAI, SpliceAI using SpliceMap, SpliceAI using SpliceMap along with 
quantitative reference levels of splicing, MMSplice using GENCODE annotation, 
MMSplice using SpliceMap annotation, MMSplice using SpliceMap annotation 
along with quantitative reference levels of splicing and the integrative model 

AbSplice-DNA. Different cutoffs are shown (SpliceAI, high: 0.8, medium: 
0.5, low: 0.2; MMSplice (score absolute value), high: 2, medium: 1.5, low: 1; 
AbSplice-DNA, high: 0.2, medium: 0.05, low: 0.01). c, Distribution of the auPRC 
of the models in b across tissues (n = 49). Center line, median; box limits, first 
and third quartiles; whiskers span all data within 1.5 interquartile ranges of the 
lower and upper quartiles. P values were computed using the paired one-sided 
Wilcoxon test. d, Model performance across different VEP51 variant categories. 
Categories are ordered from left to right by decreasing severity. Each annotated 
variant is labeled by its most severe category. The ‘Exon’ category consists of 
the VEP categories stop gained, stop lost, missense and synonymous. e, Model 
performance across nonexclusive outlier outcome categories (Methods). For 
panels d and e, the ‘All’ category contains all unique variants (independent of the 
VEP annotation and outlier outcome categories) and n is the number of variants 
associated with outliers.
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Fig. 4 | Application of AbSplice-DNA on independent data. a, Venn diagram 
comparing the splice sites in the SpliceMap generated from fibroblasts from a 
mitochondrial disease dataset (n = 303) and GTEx (n = 492). b, Correlation of 
the reference Ψ values from the union of introns of the SpliceMaps from a. For 
the union of introns: n = 736,503, Pearson correlation = 0.87, R2 = 0.74, where 
reference Ψ of nonintersecting introns was set to zero. For the intersection 
of introns: n = 522,876, Pearson correlation = 1.0, R2 = 0.99. c, AuPRC for 
classification of aberrant splicing events from rare variants in the mitochondrial 
disease dataset for SpliceAI, MMSplice and AbSplice-DNA trained on GTEx using 
the GTEx fibroblasts SpliceMap from a. Error bars represent s.e.m. ( Jackknife 
over samples, n = 20). d, Enrichment of high-score predictions in ALS genes 
(n = 165). Cutoffs are for SpliceAI (high: 0.8), MMSplice (high: 2) and AbSplice-
DNA (high: 0.2). The sample size n in the x-axis labels corresponds to the total 
number of predictions above the cutoff. P values were computed using one-sided 

Fisher tests considering all protein coding genes as the universe. e, Proportion 
of rare variants that pass the high cutoffs described in d for MMSplice with 
GENCODE annotation, SpliceAI and AbSplice-DNA trained on GTEx and using 
GTEx brain SpliceMaps as well as a SpliceMap from ALS motor neurons, validated 
using proteomics (Z-score < −2; Methods) in the ALS dataset. The sample size  
n in the y-axis labels corresponds to the total number of predictions above the 
cutoff. Error bars represent 95% CIs from the binomial test. f, Genome-wide 
depletion of high-impact variants among rare SNVs (gnomAD MAF < 0.1%) within 
a gene (n = 19,534) as a function of LOEUF score deciles. High-impact variants  
are defined by a SpliceAI score > 0.8, MMSplice score > 2 (absolute score)  
and an AbSplice-DNA score > 0.2 in at least one tissue. Asterisks mark significance 
levels of two-sided Fisher tests of AbSplice-DNA compared with SpliceAI  
(*<0.05, **<10−4, ***<10−8). NS, not significant.
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(ALS)-affected and 45 healthy individuals from the Answer ALS project 
(Methods). As iPSC-derived spinal motor neurons were not profiled in 
GTEx, we considered two approaches. On the one hand, we used the 
Answer ALS healthy controls to generate a SpliceMap for iPSC-derived 
spinal motor neurons. On the other hand, we used the SpliceMap of 
GTEx brain tissues as a proxy which showed the highest overlap from all 
GTEx tissues (Supplementary Fig. 5). We found that the GTEx SpliceMap 
from brain tissues agreed reasonably well with the one derived from 
this cohort both qualitatively (76% shared splice sites) and quantita-
tively (Pearson correlation 0.86; Supplementary Fig. 5). Here, too, 
AbSplice-DNA outperformed SpliceAI and MMSplice. Interestingly, 
AbSplice-DNA achieved similar performances using the SpliceMap 
from GTEx brain tissues or using the SpliceMap from iPSC-derived 
spinal motor neurons, suggesting that AbSplice-DNA can be applied 
robustly in absence of control samples using SpliceMaps from proxy 
tissues (Supplementary Fig. 6). Moreover, AbSplice-DNA predictions 
were enriched for genes associated with ALS28–32 (threefold enrichment; 
Fig. 4d), which was less so for MMSplice predictions and not the case 
for SpliceAI predictions. We further validated AbSplice-DNA using 
proteomics data available for this cohort. At our recommended cutoff, 
AbSplice-DNA predicted 58 genes to be aberrantly spliced, of which 
31% (18 of 58; 95% confidence interval (95% CI), 20–45%) of the corre-
sponding proteins showed significantly low abundance (Z-score < −2; 
Methods), consistent with RNA degradation via nonsense-mediated 
decay or protein isoforms resulting from aberrant splicing events 
that are more poorly translated or less stable. Similarly, independent 
confirmation by proteomics led to validation rates of MMSplice (26 of 
183; 95% CI, 9–20%) and SpliceAI (17 of 80; 95% CI, 13–32%) consistent 
with the validation rates we originally observed at those cutoffs using 
the GTEx RNA-seq benchmark (Fig. 3b). Altogether, the proteomics 
analyses confirm the relative improvements of the different models 
and are overall consistent with our precision estimates.

Furthermore, we applied AbSplice-DNA to 203,306,868 rare vari-
ants (MAF < 0.1%) from the gnomAD dataset using SpliceMaps from all 
GTEx tissues. In highly constrained genes, defined as the 10% of genes 
most strongly depleted for loss-of-function variants in gnomAD13, rare 
variants were more strongly depleted for high AbSplice-DNA scores in 
at least one tissue (3.4-fold depletion), than for high SpliceAI scores 
(2.9-fold depletion, P < 10−21; Fig. 4f) or high MMSplice scores (2.2-fold 
depletion). A stronger depletion than with SpliceAI or MMSplice also 
held when relaxing the AbSplice-DNA cutoff to match the total number 
of predictions of SpliceAI (Supplementary Fig. 7).

Collectively, these results on independent data demonstrate the 
robustness and the applicability of AbSplice-DNA and suggest its utility 
for rare disease diagnostics and rare variant interpretation.

AbSplice-RNA incorporates RNA-seq from CATs
Sequencing transcriptomes of CATs such as skin or body fluids is of 
increasing interest in rare disease research as it allows direct detection 
of aberrant splicing for those splice sites used both in the CAT and in 
tissues of suspected disease relevance16,33–35. The GTEx dataset consists 
of post-mortem-collected RNA-seq samples across a vast variety of 
tissues and thereby offers the unique opportunity to evaluate to what 
extent aberrant splicing in an accessible tissue reflects aberrant splicing 
of another tissue of interest. One positive example in GTEx is aberrant 
splicing of DDX27 in the heart which can also be observed in skin fibro-
blasts (Fig. 5a). Consistent with a previous study35 based on the Ensembl 
gene annotation36, we found that among the CATs, fibroblasts have 
the highest overlap of transcribed splice sites according to SpliceMap 
with nonaccessible tissues, followed by lymphocytes and whole blood  
(Fig. 5b). To predict aberrant splicing in nonaccessible tissues, we con-
sidered ranking genes of an individual first for showing significant 
and large aberrant splicing in a CAT (false discovery rate (FDR) < 0.1 
and |ΔΨ| > 0.3) and then by significance level. This simple method 
yielded a markedly increased precision compared with the DNA-based 

models, up to nearly 40% recall (Fig. 5c and Extended Data Fig. 10a). 
However, RNA-based predictions remain limited to those splice sites 
expressed and spliced in the CAT. Therefore, we next trained models 
integrating AbSplice-DNA features together with RNA-seq-based fea-
tures from CATs, including differential splicing amplitude estimates to 
leverage the splicing scaling law and the SpliceMaps (Methods). These 
models, which we call AbSplice-RNA, outperformed all other models  
(Fig. 5c and Extended Data Fig. 10a). We found that using fibroblasts 
only led to the same performance as using all CATs, reaching around 
60% precision at 20% recall and amounting to a twofold improvement 
over AbSplice-DNA (Fig. 5c and Extended Data Fig. 10b). Those improve-
ments were consistent across target tissues (Fig. 5d). As expected, 
AbSplice-RNA outperformed AbSplice-DNA for genes expressed in 
CATs and remained on par with it otherwise (Extended Data Fig. 10c). 
Altogether, these results establish a formal way to integrate direct 
measurements of aberrant splicing along with sequence-based models 
to predict aberrant splicing in a tissue of interest.

Discussion
We established a comprehensive benchmark for predicting variants lead-
ing to aberrant splicing in human tissues, revealing limited performance 
of state-of-the-art sequence-based models. We created a tissue-specific 
splicing annotation (SpliceMap) based on GTEx which maps acceptor 
and donor splice sites and quantifies their usage in 49 human tissues. We 
showed that integrating SpliceMap with DNA-based prediction models 
leads to a threefold increase of precision at the same recall. Additionally, 
we found that RNA-seq from CATs complements DNA-based splicing 
predictions when incorporated into an integrative model.

The prediction of splicing-perturbing variants has a long history 
of over 20 years’ work2–9,26,37–44. This includes tissue-specific models 
for mouse43,44 and more recently human9,41. Those models showed 
successes in various splicing prediction tasks, such as quantitative 
change of percent spliced-in, splice site usage or splicing efficiency. 
This study mainly focuses on the prediction of extreme splicing effects 
(outliers), which has not yet been assessed. This modeling task could be 
investigated only now, after the development of aberrant splicing call-
ers10–12 which enabled the establishment of a ground truth for splicing 
outlier prediction. We foresee that the paradigm of predicting extreme 
effects in splicing from DNA could be an inspiration for future research 
and further be extended to aberrant expression or protein abundance 
prediction. Furthermore, the large multi-tissue cohorts provided 
by GTEx allowed us to assess and develop tissue-specific predictors. 
Using aberrant splicing predictions for tissues that are mechanistically 
related to the disease of interest may prove to be helpful to identify 
the effector gene, just as tissue-specific predictions are important for 
transcriptome-wide association studies45.

Some splicing variant effect prediction models leverage conserva-
tion as further evidence of the functional relevance of a variant7,8. Even 
though conservation is a strong indicator of function, we decided not 
to include conservation in our final model, as variants causing aber-
rant splicing do not necessarily have to reside on conserved regions. 
Moreover, conservation depends on the functional importance of 
the gene. A nucleotide strongly affecting splicing of a nonconserved 
gene may be less conserved than a nucleotide with a milder effect on 
splicing located in a highly conserved gene. Also, a nucleotide can 
be conserved due to its other potential roles besides splicing. For 
example, exonic regions near splice sites might be conserved due to 
their role in protein function. Altogether, even though conservation 
could still marginally yet significantly improve our model (Extended 
Data Fig. 9), we opted to provide to the community a model predicting 
aberrant splicing per se by integrating models solely trained on DNA 
sequence and splicing metrics measured from RNA-seq or massively 
parallel reporter assays (MPRAs) (SpliceAI and MMSplice). AbSplice 
users can still benefit from conservation evidence in post-processing 
steps to further prioritize variants.
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We constructed SpliceMaps and detected aberrant splicing from 
short-read RNA-seq. We found that current long-read RNA-seq data 
available for GTEx23 did not provide sufficient coverage to detect unan-
notated splice sites (Supplementary Fig. 2). Since split short reads 
reveal splice sites, we foresee that the major added value of long-read 
over short-read sequencing is not about calling splice sites but identi-
fying the complete RNA isoforms. This could be used in the future to 
develop models predicting the exact splicing outcome (for example, 
exact elongated or truncated exon boundaries, exon combinations 
and so on) caused by the variant, which is beyond the scope of current 
models trained primarily on short-read data.

We showed how RNA-seq of CATs effectively complements 
DNA-based predictions. An alternative to this approach is to repro-
gram or transdifferentiate cells into the suspected mechanistically 
involved cell type and perform RNA-seq on them46. This approach has, 
however, important caveats. First, it is not ensured that the suspected 
mechanistically involved cell type is the correct one, as symptoms may 
manifest more strongly in downstream affected tissues. Second, this 
approach is cost, time and labor intensive. Third, cell reprogramming 
can induce and select mutations which may lead to false identifications. 
Therefore, predictive models that can leverage RNA-seq of CATs will 
probably remain relevant in practice47. Furthermore, RNA-seq reveals 
the consequence of the splicing defect on the resulting transcript 
isoform (for example, frameshift or exon truncation), which is crucial 
for diagnostics.

By increasing the precision at 20% recall from about 10% to 60%, 
the cumulative improvements of our models are substantial. Still, 
a majority of the aberrant splicing events are not recalled and there 
remains a majority of false positives. An unknown and potentially 
large fraction of events that are not recalled might be aberrant splic-
ing calling artifacts, as suggested by the high number of singleton 
calls. In this study, we implemented strategies aiming at improving 
the proportion of genuine genetically driven aberrant splicing events 
in the ground truth while not introducing biases favoring particular 
models (Extended Data Figs. 2–4). However, every classification task 
is founded on a reliable ground truth. As splicing is a complex process 
and not all aberrant events can be reliably called by state-of-the art aber-
rant splicing callers, the ground truth in the prediction task remains 
a proxy. Progress in aberrant splicing calling or better understanding 
of the technical reasons could reduce the number of incorrectly called 
aberrant splicing events and improve the recall. Moreover, some of 
the apparent false positive predictions may be actually correct. This 
is the case when the aberrant splicing isoform contains a premature 
termination codon and, often, though not systematically48, gets rapidly 
degraded by nonsense-mediated decay. Rapidly degraded isoforms 
barely have any reads in RNA-seq data and hence are typically not 
detected by aberrant splicing callers. In diagnostic applications, those 
variants remain relevant. Moreover, dedicated experiments can be 
done to test whether aberrant splicing is taking place, for instance, 
using the translation inhibitor cycloheximide.

As WGS becomes more readily available in research and healthcare, 
there is a growing need for accurate annotation of noncoding variants 
with strong deleterious effects for establishing genetic diagnostics 
of rare disorders, identifying effector genes of common diseases and 
more precisely stratifying patients with cancer based on their tumor 
genetic alterations. Variants causing aberrant splicing are not only 
a major class of such noncoding loss-of-function variants, but their 
mechanisms of action also now become targetable for an increasingly 
rich therapeutic arsenal49. Hence, because of its high precision and its 
focus on extreme events, we foresee AbSplice to be instrumental for 
genome-based diagnostics and therapy design.
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Methods
Ethics statement
No primary data were generated for this study. Person-related data were 
obtained through authorized access from primary data controllers. 
The study adheres to the ethical and research agreements between 
the Technical University of Munich and the primary data controllers. 
All participant informed consents were collected by and remain with 
the primary data controllers.

Statistics and reproducibility
No statistical method was used to predetermine sample size. We did not 
use any study design that required randomization or blinding. In the 
GTEx data we excluded tissues with fewer than 50 samples. In the ALS 
and mitochondrial disease datasets we did not exclude any samples.

Datasets
GTEx. We downloaded the RNA-seq read alignment files (BAM files) and 
the variant calling files (VCF files) from WGS from GTEx v8p (hg38) from 
the database of Genotypes and Phenotypes (dbGaP) (study accession: 
phs000424.v8.p2). We used data from 946 individuals with paired WGS 
and RNA-seq measurements (n = 16,213) in at least one tissue. For the 
long-read RNA-seq data, we downloaded the transcript annotation 
(GTF) generated by FLAIR52 based on 88 Nanopore samples from the 
GTEx portal.

Mitochondrial disease dataset. The dataset consists of 303 patients 
with mitochondriopathy described by Yépez et al.27, all of which have 
RNA-seq from skin-derived fibroblasts. For 20 individuals, WGS is also 
available.

ALS dataset. The dataset consists of WGS, RNA-seq and proteomics 
data from 245 individuals diagnosed with ALS and 45 control samples. 
RNA-seq data were obtained from iPSC-derived spinal motor neurons. 
We downloaded the data from the Answer ALS portal (dataportal.
answerals.org). Genes known to be involved in ALS disease develop-
ment were manually curated from literature28–32.

Data preprocessing
Rare variants. Variants had to be supported by at least ten reads and 
had to pass the conservative genotype-quality filter of GQ ≥ 99. These 
criteria were used for single nucleotide variants (SNVs) and indels in 
the same way. We considered a variant to be rare if it had an MAF in the 
general population ≤0.001 based on gnomAD (v.3.1.2) and was found 
in at most two individuals within each cohort.

Splicing outlier detection. Splicing outliers were called using 
FRASER10 (v.1.6.0) as implemented in the Detection of RNA-seq Outli-
ers Pipeline53 (v.1.1.2). FRASER was used to detect introns (including 
de novo introns) and to count split reads for each intron. Based on 
the split-read counts, three intron-centric metrics were calculated: 
alternative acceptor usage with the ψ5 metric, alternative donor usage 
with the ψ3 metric, and splicing efficiencies as defined with the θ5 and 
θ3 metrics54:

Ψ5(D,A) =
n(D,A)

∑A ′ n(D,A′)
= k
N5

Ψ3(D,A) =
n(D,A)

∑D ′ n(D′,A) =
k
N3

θ5 =
∑A ′ n(D,A′)

n(D) + ∑A ′ n(D,A′)

θ3 =
∑D ′ n(D′,A)

n(A) + ∑D ′ n(D′,A)

where k is the number of split reads supporting the intron from donor 
D to acceptor A. The sum in the denominator of ψ5(D,A) goes over all 
possible acceptors A′ for donor D, and the sum in the denominator of 
ψ3(D,A) goes over all possible donors D′ for acceptor A. In the splicing 
efficiencies, the denominator contains n(D) or n(A) which are the num-
bers of nonsplit reads spanning the exon–intron boundary of donor 
D or acceptor A, respectively. The advantage of these intron-centric 
metrics over the exon-centric metric percent spliced-in (ψ) is that they 
do not require exons to be mapped, which is an ill-defined task when 
starting from short-read RNA-seq data.

FRASER models these metrics while controlling for latent con-
founders and reports both splice-site-level and gene-level FDRs. We 
called aberrant spliced genes using the gene-level FDR < 0.1 as in Mertes 
et al.10 Furthermore, we requested the gene to contain at least one 
significant splice site (FDR < 0.05, FRASER default) supported by 20 
reads and with an absolute deviation of ψ5,3 from the FRASER-modeled 
expected value larger than 0.3 (denoted |Δψ5,3| > 0.3). The same filters 
were applied to the splicing efficiency metrics.

To discard aberrant splicing calls that probably have no genetic 
basis10, we additionally applied and compared different filtering 
methods (Extended Data Fig. 4). In the GTEx dataset, where multiple 
RNA-seq samples from the same individual are available, we investi-
gated including splicing outliers from at least two tissues from the same 
individual (Filter 2; Extended Data Fig. 4b). Here, a gene-level outlier 
was considered to be replicated if the same splice-site-level outlier 
was detected in multiple tissues. As this strategy cannot be applied 
to other single-tissue datasets, we alternatively filtered for splicing 
outliers containing a rare variant in the vicinity of ±250 bp of every 
splice site based on RNA-seq from the sample (Filter 3; Extended Data  
Fig. 4c). Importantly, this filter was applied to all splice sites identified 
by FRASER, which includes both annotated splice sites as well as cryptic 
splice sites (Extended Data Fig. 3). For consistency, all reported results 
are based on Filter 3.

Aberrant splicing prediction benchmark
Aberrant splicing prediction task. The task is to predict whether a 
protein coding gene with one or more rare variants within the gene 
body is aberrantly spliced in a given tissue of an individual.

Performance evaluation metric. Due to the large class imbalance 
in the splicing outlier prediction benchmarking dataset, we chose to 
evaluate models using precision–recall curves. As evaluation metric 
we used the auPRC, computed using the average precision (AP) score55 
(which represents the mean of precisions for each threshold weighted 
by the recall difference):

AP = ∑
n
(Rn − Rn−1)Pn

where Pn and Rn are the precision and recall at the nth threshold.

Tissue-specific SpliceMap
For each tissue separately, we created a SpliceMap that lists all active 
introns along with aggregate statistics about acceptor and donor site 
usage useful for aberrant splicing prediction purposes.

Active introns. We started from all introns reported by FRASER. We 
filtered out untranscribed splice sites and background noise by filter-
ing out introns not supported by any split-read in more than 95% of the 
samples. For this and other operations involving genomic ranges we 
used PyRanges56 (v.0.0.115).

Aggregate statistics. Aggregate statistics were calculated on donor 
and acceptor sites independently. For donor site usage, the SpliceMap 
aggregate statistics are (1) the total number of split reads across 
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samples (s) supporting the intron (Σsk), (2) the total number of split 
reads across samples sharing the same acceptor site (ΣsN3), (3) the 
median number of split reads per sample sharing the same acceptor 
site and (4) the reference isoform proportion (ψref

3 ), defined as 

ψref
3 = ∑s k

∑s N3
. Aggregate statistics were computed analogously for 

acceptor site usage.

Exclusion of rare variant data in aggregate statistics. To prevent 
information leakage, the aggregate statistics were computed so that 
they do not contain information about splicing events associated 
with rare variants (specifically, we excluded from the computations 
of the aggregate statistics data from samples with a rare variant within 
±250 bp of any donor or acceptor site).

SpliceMap generation using alternative counting tools. Splice-
Maps were also created from split-read (introns) counts using Reg-
tools22 (v.0.5.2) and STAR21 (v.2.5.3) for the ‘Skin – Not Sun Exposed 
(Suprapubic)’ tissue. We ran Regtools using BAM files. Regtools per-
forms annotation-free counting; thus, it also calls unannotated introns 
and splice sites. We downloaded STAR split-read counts from the GTEx 
portal. The GTEx pipeline filters unannotated splice sites, although 
the STAR two-pass approach could call unannotated splice sites and 
introns. During SpliceMap generation, active introns and aggregate 
statistics were computed as described above.

Aberrant splicing prediction models
SpliceAI. SpliceAI2 (v.1.3.1) is a deep learning model that predicts 
splice site alteration for acceptor and donor sites from sequence. 
SpliceAI is annotation free and can therefore score all variants includ-
ing cryptic splice sites created by deep intronic variants. SpliceAI 
provides precomputed scores for all SNVs and indels up to the length 
of 4 nucleotides. These variant scores were computed with 50 bp as the 
maximum distance between the variant and gained/lost splice sites. 
We downloaded precomputed variant scores from Illumina BaseSpace 
and stored them in a RocksDB57 (v.6.10.2) key-value database for fast 
lookup. We ran SpliceAI to obtain variant scores for long indels not 
available in the database. Also, we used masked scores of SpliceAI as 
recommended by the authors for variant interpretation. This masking 
sets Delta scores to zero if SpliceAI predicts activation for annotated 
splice sites and deactivation for unannotated splice sites.

SpliceAI + SpliceMap. We used tissue-specific splice site annotations 
from SpliceMap together with SpliceAI predictions. For each tissue, we 
retained those variant scores that contained an annotated splice site 
within a 100-bp window.

SpliceAI + SpliceMap + ψref. As SpliceAI was trained to predict creation or 
loss of splice sites and not ψ, there is no principled way to apply the splic-
ing scaling law to include reference levels. Therefore, we used reference 
levels only to filter predictions. Analogously to the masking of scores 
representing annotated acceptor/donor gain and unannotated acceptor/
donor loss performed by the authors of SpliceAI, we used tissue-specific 
ψref values for filtering. Specifically, variant scores associated with accep-
tor/donor gain and a splice site with ψref ≥ 0.95 as well as with acceptor/
donor loss and a splice site with ψref ≤ 0.05 were filtered out.

MMSplice. MMsplice3 (v.2.3.0) is a deep learning model that predicts 
the impact of a variant (in a 100-bp window of annotated splice sites) 
on alternative usage of a nearby donor or acceptor site. MMSplice 
predicts the effect of a variant in log-odds ratios (denoted Δlogitψ5 
or Δlogitψ3). MMSplice requires a splice site annotation. We used the 
GENCODE (release 38 of hg38) annotation.

MMSplice + SpliceMap. We ran MMSplice on tissue-specific splice site 
annotations from SpliceMap.

MMSplice + SpliceMap + ψref. MMSplice is a quantitative model pre-
dicting percent spliced-in for which the splicing scaling law can be 
leveraged to integrate reference levels. For conversion of the variant 
effect into natural scale, reference levels of donor site and acceptor site 
usages are required. For the sake of shorter notations, we write in the 
following ψ instead of ψ5 and ψ3. We used MMSplice to predict Δlogit(ψ) 
values. Δlogit(ψ) values were then combined with the corresponding 
reference ψ value (ψref) in SpliceMap: first in logit scale to adjust the pre-
dicted variant effect by MMSplice to the correct reference level; then 
in natural scale by using the sigmoid function (Extended Data Fig. 7a):

Δlogit(Ψ ) = logit(Ψalt) − logit(Ψref)

Ψ̂ alt = σ (Δlogit (Ψ ) + logit (Ψref))

ΔΨ̂ = Ψ̂ alt − Ψref

σ−1 = logit

Variants further away than 100 bp from any SpliceMap splice site 
were scored 0 (no effect).

MTSplice. MTSplice9 (v.2.3.0) is a tissue-specific version of MMSplice. 
The model scores each exon–variant pair for 56 tissues. With respect 
to each annotated exon boundary, the model takes as input a sequence 
of 100 bp in the exon and 300 bp in the intron. MTSplice predicts the 
tissue-specific effect of a variant in log-odds ratios (denoted Δlogit(ψ)). 
MTSplice requires a splice site annotation. We used the GENCODE 
(release 38 of hg38) annotation.

CADD-Splice. CADD-Splice7 is an ensemble model that combines 
CADD scores (contains conservation scores) together with splicing 
predictions from SpliceAI and MMSplice. We ran CADD-Splice v.1.6. 
CADD-Splice provides raw and PHRED-scaled scores. We used the 
PHRED score.

SQUIRLS. SQUIRLS8 is based on engineered splicing features for 
donor and acceptor sites that are extracted from a genome annota-
tion. SQUIRLS predicts the probability of a variant to alter the splic-
ing pattern. We downloaded the SQUIRLS database v.2203 and ran 
SQUIRLS v.2.0.0.

AbSplice-DNA. AbSplice-DNA is a generalized additive model, 
namely the ExplainableBoostingClassifier from the python package 
interpretml58. Similar performance was achieved using a random for-
est or logistic regression model from scikit-learn55. The features of 
AbSplice-DNA were the prediction score from MMSplice + SpliceMap, 
MMSplice + SpliceMap + ψref, the SpliceAI Delta score and a binary feature 
from SpliceMap indicating if the splice site is expressed in the target 
tissue (using a cutoff of 10 reads for the median number of split reads 
sharing the splice site). The model includes interaction terms, thereby de 
facto capturing the effect of combining SpliceMap with SpliceAI scores. 
The model was trained on a variant level using outliers within 250-bp 
distance of rare variants as ground truth (Extended Data Fig. 4c before 
aggregation to gene level). The model was trained with fivefold-stratified 
cross-validation, grouped by individuals to avoid information leakage, 
and such that the proportions of the negative (variant is associated with 
no outlier on the gene) and positive (variant is associated with an outlier 
on the gene) classes were preserved in each fold.

Predictors using RNA-seq from CATs. We used different features from 
RNA-seq of three CATs from GTEx (Whole blood, Cells transformed 
fibroblasts, and Cells Epstein-Barr virus (EBV)-transformed lympho-
cytes) to predict aberrant splicing in nonaccessible target tissues.
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As one predictive feature we used the −log10 nominal gene-level P 
values obtained using FRASER. In the benchmark, we ranked all splic-
ing outlier genes (FDR < 0.1 and |Δψ| > 0.3) lower than the remaining 
genes, and further ranked genes within each of these two groups by 
increasing P value.

Additionally, we used SpliceMaps from the accessible and the 
nonaccessible tissues together with ψ measurements from RNA-seq 
and applied the splicing scaling law to infer Δψ values in the nonac-
cessible target tissue:

Δlogit (Ψ ) = logit (ΨCAT) − logit (ΨCAT
ref )

Ψ
target = σ (Δlogit (Ψ ) + logit (Ψ target

ref ))

ΔΨ target = Ψ
target − Ψ

target
ref

where ΨCAT is the splicing level in the CAT and ΨCAT
ref  is the reference  

level of splicing obtained from SpliceMap, and the difference of these 
two values provides the tissue unspecific variant effect, Δlogit(Ψ). 
Then, adding Δlogit(Ψ) with the reference level of splicing of the target 
tissue logit (Ψ target

ref ) in logit scale and converting back to natural scale 
provides Ψtarget in the target tissue. Subtracting the reference level of 
splicing of the target tissue, Ψ target

ref , provides the predicted splicing 
change in the target tissue, ΔΨtarget, using RNA-seq measurements in CAT.

All precision–recall curves involving CATs have been computed 
on a subset of the data, excluding CATs from the target tissues and 
only containing individuals that have RNA-seq measurements from 
multiple tissues (including the CAT).

AbSplice-RNA. We trained integrative models using the two predic-
tors from RNA-seq data from CATs described above in addition to 
DNA-based features used in AbSplice-DNA.

We trained AbSplice-RNA models using a single CAT and all 
CATs together. For the model using all CATs together we trained 
AbSplice-RNA in a CAT-agnostic manner such that the model predicts 
outliers regardless of the CAT source. This might be helpful in a diag-
nostic setting as it might be that the available CAT differs from the CATs 
that AbSplice-RNA was trained on.

Gene-level aggregation. For genes with multiple variants, we retained 
the largest score per model.

Model performance per variant and outlier category
Variant categories were annotated with the Ensembl Variant Effect 
Predictor (VEP)51. For each variant, the most severe VEP annotation 
was considered. For the ‘Exon’ category, the following VEP catego-
ries were grouped together: synonymous_variant, missense_variant, 
stop_lost, stop_gained. For the nonexclusive splicing outlier catego-
ries, we defined ‘exon elongation’, ‘exon truncation’, ‘exon skipping’ 
using FRASER’s branch: https://github.com/c-mertes/FRASER/tree/
junction_annotation ref. 59. We defined the category ‘Any alternative 
donor or acceptor choice’ as any ψ5 or ψ3 outlier, and the category ‘Any 
splicing efficiency outlier’ as any θ outlier.

Enrichment in known ALS genes
The enrichment of 165 manually curated genes involved in ALS28–31 was 
computed as the proportion of high-splicing-impact variants within 
those genes, divided by all the high-score predictions of the respective 
models. Depletion was computed as 1/enrichment.

Proteomics in ALS
We downloaded the protein intensities matrix from the ALS cohort 
consisting of 4,442 proteins and 204 samples from the Answer ALS por-
tal. We considered the 178 affected individuals. Proteins with missing 

values in more than 30% of the samples were filtered out, with 3,329 
remaining. We then ran PROTRIDER60, a denoising autoencoder-based 
method to detect outliers on proteomics data. The encoding dimen-
sion was optimized by injecting outliers. No covariates were provided. 
Z-scores were extracted from the results table.

Depletion in loss-of-function intolerant genes
For all possible rare SNVs (gnomAD MAF < 0.1%) in 19,534 protein cod-
ing genes, we computed AbSplice-DNA scores and obtained the SpliceAI 
precomputed scores from Illumina BaseSpace. The loss-of-function 
observed/expected upper bound fraction (LOEUF) scores were down-
loaded from https://gnomad.broadinstitute.org/downloads. For each 
LOEUF decile we computed the proportion of high-splicing-impact 
variants to the total sum of high-impact variants and divided it by the 
proportion of rare variants in each decile.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
No primary data were generated for this study. Rare variants from gno-
mAD v.3.1.2 are publicly available at https://gnomad.broadinstitute.org. 
The GTEx v8 dataset is available at (under dbGaP protection) https://
gtexportal.org/home. The ALS dataset is available at http://dataportal.
answerals.org after a registration and approval process. The mitochon-
drial dataset is described by Yépez et al.27. Precomputed SpliceAI scores 
are publicly available at Illumina Basespace, https://basespace.illu-
mina.com/s/otSPW8hnhaZR, after registration. SpliceMaps for all 49 
GTEx tissues and iPSC-derived spinal motor neurons from ALS (hg38) 
are available at Zenodo, https://doi.org/10.5281/zenodo.6387937. 
Precomputed AbSplice-DNA scores (hg38) in all 49 GTEx tissues are 
available at Zenodo, https://doi.org/10.5281/zenodo.6408331. Due 
to potential donor re-identification when revealing rare variants, the 
benchmark dataset cannot be shared without restrictions. Users with 
access to the GTEx data can reproduce the benchmark using the code 
repository below.

Code availability
SpliceMaps can be generated using the custom-written python pack-
age ‘splicemap’ (publicly available at: https://github.com/gagneurlab/
splicemap ref. 61). AbSplice predictions using the enhanced SpliceMap 
annotation can be performed with the custom-written python pack-
age ‘absplice’ (publicly available at: https://github.com/gagneurlab/
absplice ref. 62). We also provide a fast implementation of comput-
ing SpliceAI predictions using a wrapper based on fast lookup from 
a database of precomputed scores for existing variants and running 
SpliceAI for not precomputed variants at https://github.com/gagneur-
lab/spliceai_rocksdb ref. 63. Fast lookup of all gnomAD variants can be 
performed with https://github.com/gagneurlab/gnomad_rocksdb ref. 
64. The analyses are available under https://github.com/gagneurlab/
AbSplice_analysis ref. 65.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Performance comparison with different outlier 
detection methods and different differential splicing cutoffs. a, Distribution 
of the area under the precision-recall curve across GTEx tissues (n = 49) of 
different prediction methods (SpliceAI, SpliceAI using SpliceMap annotation, 
SpliceAI using SpliceMap annotation along with quantitative reference levels 
of splicing, MMSplice using GENCODE annotation, MMSplice using SpliceMap 
annotation, MMSplice using SpliceMap annotation along with quantitative 
reference levels of splicing, and the integrative model AbSplice-DNA) taking 
as ground truth 3 different aberrant splicing callers: FRASER, LeafcutterMD 
and SPOT. A gene was considered aberrantly spliced if it contained at least one 

significant splicing outlier reported by the aberrant splicing caller without 
applying any additional replication or rare variant filter (Extended Data Fig. 4a 
for FRASER). Center line, median; box limits, first and third quartiles; whiskers 
span all data within 1.5 interquartile ranges of the lower and upper quartiles. P 
values were computed using the paired one-sided Wilcoxon test. b, Precision-
recall curves comparing the overall prediction performance on all GTEx tissues 
of the same models as in a, using FRASER as the outlier caller and the rare variant 
filter in Extended Data Fig. 4c with 250 bp together with different differential 
splicing cutoffs, namely |ΔΨ| = 0.1, 0.2, 0.3.
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Extended Data Fig. 2 | Splicing outliers with a rare variant in the vicinity are 
enriched for replicated events. a, Enrichment of replicated splicing outliers 
across tissues with respect to the distance to the nearest rare variant. Note that 
there is an enrichment up to a distance of 250 bp. ‘Number of tissues’ denotes 
the minimum number of tissues from an individual with a shared splicing outlier 
such that the outlier is considered to be replicated. b, Replication rate of aberrant 
splicing events between tissues (n = 49) of a sample for all aberrant splicing 
events (red) compared with aberrant splicing events that contain a rare variant 
within a 250 bp window (blue). Filtering for aberrant splicing events with a rare 

variant reduces the amount of singletons probably by filtering out technical 
artifacts. Center line, median; box limits, first and third quartiles; whiskers 
span all data within 1.5 interquartile ranges of the lower and upper quartiles. 
c, Percentage of singletons (aberrant splicing events that are observed only in 
one tissue) among all outliers (in red) and among outliers with a rare variant 
(in blue) for each tissue. There are nearly no replicated RNA-seq samples in the 
GTEx dataset. Therefore, among all singleton events, genuinely tissue-specific 
aberrant splicing events are hard to distinguish from non-reproducible technical 
artifacts.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Outlier filtering. Visualization of different cases for  
the rare variant outlier filter (corresponds to Filter 3 in Extended Data Fig. 4).  
a, Exons 1, 3 and 4 were annotated in SpliceMap. Exon 2 is a novel exon detected 
on an individual whose splice sites are not in SpliceMap. If there exists a rare 
variant within 250 bp of any splice site (in SpliceMap or not) that shares a junction 
with either the donor or acceptor site of the outlier event, the outlier passes the 
‘rare variant filter’. Cases 1 and 2: The individual has a rare variant within 250 bp of 
either the donor site of exon 1 or the acceptor site of exon 2, which are the splice 
sites of the outlier junction. Importantly, exon 2 was not quantified by SpliceMap, 
but the outlier filter solely depends on split reads. Case 3: The individual has a 
rare variant within 250 bp of the donor site of exon 2. However, this donor site is 
not part of the outlier event. Case 4: The individual has a rare variant within 250 

bp of the acceptor site of exon 3, which forms a splicing junction with the donor 
site of exon 1. Case 5: The individual has two rare variants, one further than 250 bp 
of any splice site, the other within 250 bp of the acceptor site of exon 4. Notably, 
a variant can be far from the outlier junction and still be involved in the outlier 
event. b, Exon elongation detected as a splicing efficiency outlier. For splicing 
efficiency outliers, only the affected splice-site with altered splicing efficiency 
is considered for the variant filter. Case 1: The individual has a rare variant within 
250 bp of the donor site of exon 1. Case 2: The individual has a rare variant that 
overlaps the acceptor site of the elongated exon 3, but is further than 250 bp from 
the acceptor site of exon 3. Case 3: The individual has a rare variant within 250 bp 
of the acceptor site of exon 3. Case 4: The individual has a rare variant within 250 
bp of the donor site of exon 3, but the donor is not related to the exon elongation.
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Extended Data Fig. 4 | Performance with different filters. Precision-recall 
curve comparing the overall prediction performance on all GTEx tissues of 
SpliceAI, SpliceAI using SpliceMap annotation, SpliceAI using SpliceMap 
annotation along with quantitative reference levels of splicing, MMSplice using 
GENCODE annotation, MMSplice using SpliceMap annotation, MMSplice using 
SpliceMap annotation along with quantitative reference levels of splicing, and 
the integrative model AbSplice-DNA, using different filters for aberrantly spliced 
genes. a, Filter 1: FRASER default cutoffs (|ΔΨ| > 0.3, FDR < 0.05, 126,308 aberrant 
events) b, Filter 2: same as a, but restricting to genes that are aberrantly spliced in 
at least two different tissues from the same individual (32,886 aberrant events). 
c, Filter 3: same as a, but restricting to genes that have a rare variant within 250 bp 

of the splice sites (22,766 aberrant events). While the results are best with  
Filter 3, the relative improvements in terms of precision at the same recall 
between the methods is the same as with Filter 2. In particular, having restricted 
to variants 250 bp away from any detected split read boundary (Filter 3) did not 
bias our analysis for the splice-site centric method MMSplice over SpliceAI.  
d, After applying Filter 3, outliers were stratified into ‘replicated’ (14,030 
aberrant events), that is appearing in at least two different tissues of the same 
individual, and ‘not replicated’ (8,736 aberrant events). All models showed a 
significantly higher performance for aberrant splicing events replicated in two or 
more samples compared to those reported in a single sample only.
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Extended Data Fig. 5 | Variant scoring of SpliceAI, MMSplice, MMSplice + 
SpliceMap and AbSplice-DNA. a, A gene model with 3 annotated exons in the 
standard annotation (1, 3 and 4) and 3 exons detected by SpliceMap (1, 2 and 4). 
SpliceAI scores for every bp in a 50 bp window of a variant (shown as red star) and 
reports the maximum score independent of the distance to a junction. MMSplice 
provides a score in a 100 bp window around a variant as long as there is a junction 
in that window. b, Case with a variant within 100 bp of an annotated junction in 
SpliceMap, but further than 100 bp from any exon in the standard annotation. 

MMSplice + SpliceMap is able to score the variant, while MMSplice is not. c, Case 
with a variant within 100 bp of an annotated exon in the standard annotation, 
but further than 100 bp from any exon in the SpliceMap. Therefore, MMSplice is 
able to score the variant, while MMSplice + SpliceMap is not. d, The variant is not 
within 100 bp of any annotated junction in the standard annotation or SpliceMap. 
Therefore neither MMSplice nor MMSplice + SpliceMap can score the variant. 
However, SpliceAI is always able to score a variant. Consequently, AbSplice is 
always able to score a variant.
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Extended Data Fig. 6 | Comparison of annotated splice-sites in SpliceMap and GENCODE. Number of introns, acceptor sites, and donor sites annotated in 
GENCODE and the SpliceMap of each GTEx tissue (first row), GENCODE only (second row) and SpliceMap only (third row).
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Extended Data Fig. 7 | The variant effect depends on the reference isoform 
proportion. a, Ψ against Δlogit(Ψ) showing the non-linear splicing scaling law. 
The mutation effect of a variant can lead to different changes in Ψ in natural scale, 
depending on the reference splicing level of the intron. For example, the same 
variant can lead to a large change in Ψ if Ψref is initially at an intermediate  
level and almost no change if Ψref is initially at an extreme value (here low).  

b, Distribution of Ψref in SpliceMap. Most of the introns are not alternatively 
spliced, so the reference level of those introns is either 0 or 1. c, Cumulative 
distribution function of the maximum difference of Ψref (defined as: max(Ψref) 
- min(Ψref)) across tissues per intron. d, Heatmap of the Ψref of the most variable 
introns (defined as: max(Ψref) - min(Ψref) > 0.3) across tissues.
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Extended Data Fig. 8 | Calibration of AbSplice-DNA. a, Histogram of AbSplice-
DNA scores for gene, sample, tissue combinations that do not contain an 
aberrant splicing event. The dashed red line indicates the median. b, Histogram 
of AbSplice-DNA scores for gene, sample, tissue combinations that contain an 
aberrant splicing event. The peak at logit(AbSplice-DNA) ~-3.1 corresponds to 
AbSplice-DNA scores that are low due to small SpliceAI and MMSplice scores, 
but with an expressed splice site as annotated in SpliceMap. The peak at 

logit(AbSplice-DNA) ~-4.3 corresponds to small SpliceAI and MMSplice scores 
with an unused splice site as annotated in SpliceMap. c, Odds of aberrant splicing 
events as a function of logit transformed AbSplice-DNA scores (binned in bins 
of width 0.1). The line represents the diagonal. Note the linear relationship 
(especially in the high AbSplice-DNA score region) and the (extrapolated) 
intersection at AbSplice-DNA score of 0.5 (logit(AbSplice-DNA) = 0) 
corresponding to a log odds of 1, indicating a well calibrated model.
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Extended Data Fig. 9 | Performance analysis of additional state-of-the  
art models and AbSplice-DNA trained with different model methods.  
a, Precision-recall performance of CADD-Splice, SQUIRLS, MTSplice, MMSplice 
and SpliceAI. b, Distribution of the area under the precision-recall curve (auPRC) 
across all GTEx tissues (n = 49) of the AbSplice-DNA models trained with varying 
feature sets using the models in a, that is ‘AbSplice-DNA (+ CADD-Splice)’ 
additionally used CADD-Splice scores during training. Center line, median; box 
limits, first and third quartiles; whiskers span all data within 1.5 interquartile 
ranges of the lower and upper quartiles. Shown in red is the AbSplice-DNA model 

used in the manuscript. Models are sorted by auPRC. P-values were computed 
using the paired two-sided Wilcoxon test. c-d, AbSplice-DNA was trained using 
a generalized additive model (GAM), random forest and logistic regression. 
AbSplice-DNA with GAM is the one used in the manuscript. c, Precision-recall 
curve across all GTEx tissues. d, Distribution of the area under the precision-
recall curve of the models in c across tissues (n = 49). Center line, median; box 
limits, first and third quartiles; whiskers span all data within 1.5 interquartile 
ranges of the lower and upper quartiles.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | RNA-based predictions from CAT improve DNA-based 
scores. a, Precision-recall curves comparing the overall prediction performance 
on non-accessible GTEx tissues using the gene-level FRASER p-values from the 
CAT, AbSplice-RNA trained on a single CAT and AbSplice-DNA. Each panel shows 
a different CAT and the number of matching samples in the non-accessible 
tissues. b, Same as a, but for samples having RNA-seq from both blood and 
fibroblasts. AbSplice-RNA (all CATs) was trained using RNA-seq data from blood, 
fibroblasts and lymphocytes. Note that AbSplice-RNA (fibroblasts) gave a similar 

performance as AbSplice-RNA (all CATs). We did not restrict the samples to the 
ones also having lymphocytes as this would result in a low number of samples 
(N = 2,258). c, Model performance for genes not expressed or expressed in the 
clinically accessible tissue fibroblasts. The cutoff for calling a gene expressed 
was TPM > 1 (transcript per million). AbSplice-RNA improves for genes expressed 
in fibroblasts and remains on par with AbSplice-DNA for genes not expressed in 
fibroblasts.
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