Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics of myocardial interstitial fibrosis in the human heart and association with disease

Abstract

Myocardial interstitial fibrosis is associated with cardiovascular disease and adverse prognosis. Here, to investigate the biological pathways that underlie fibrosis in the human heart, we developed a machine learning model to measure native myocardial T1 time, a marker of myocardial fibrosis, in 41,505 UK Biobank participants who underwent cardiac magnetic resonance imaging. Greater T1 time was associated with diabetes mellitus, renal disease, aortic stenosis, cardiomyopathy, heart failure, atrial fibrillation, conduction disease and rheumatoid arthritis. Genome-wide association analysis identified 11 independent loci associated with T1 time. The identified loci implicated genes involved in glucose transport (SLC2A12), iron homeostasis (HFE, TMPRSS6), tissue repair (ADAMTSL1, VEGFC), oxidative stress (SOD2), cardiac hypertrophy (MYH7B) and calcium signaling (CAMK2D). Using a transforming growth factor β1-mediated cardiac fibroblast activation assay, we found that 9 of the 11 loci consisted of genes that exhibited temporal changes in expression or open chromatin conformation supporting their biological relevance to myofibroblast cell state acquisition. By harnessing machine learning to perform large-scale quantification of myocardial interstitial fibrosis using cardiac imaging, we validate associations between cardiac fibrosis and disease, and identify new biologically relevant pathways underlying fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the automated pipeline for native myocardial T1 time measurement at the IVS using machine learning.
Fig. 2: Change in native myocardial T1 time associated with prevalent cardiovascular, metabolic and systemic inflammatory diseases compared to healthy controls.
Fig. 3: Adjusted cumulative incidence of cardiovascular events stratified by native myocardial T1 time.
Fig. 4: Genome-wide and transcriptome-wide association analyses.
Fig. 5: Multi-omic examination of human cardiac fibroblast activation.

Similar content being viewed by others

Data availability

The UKB data are made available to researchers from research institutions with genuine research inquiries according to institutional review board and UKB approval. The genome-wide association analysis summary statistics are available from the downloads page of the Cardiovascular Disease Knowledge Portal (https://cvd.hugeamp.org/). Raw and processed next-generation sequencing data have been deposited at the NCBI Gene Expression Omnibus under accession no. GSE225336. The GRCh37 data are publicly available at https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/. The GRCh38 data are publicly available at https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/. The Genotype-Tissue Expression v.8 datasets are publicly available at https://www.gtexportal.org/home/datasets. All other data are contained in the article and its supplementary information or are available upon reasonable request from the corresponding authors. Source data are provided with this paper.

Code availability

The code used to download, quality-control and train the machine learning models is available at https://github.com/broadinstitute/ml4h under an open-source BSD license.

References

  1. Del Monte-Nieto, G., Fischer, J. W., Gorski, D. J., Harvey, R. P. & Kovacic, J. C. Basic biology of extracellular matrix in the cardiovascular system, part 1/4: JACC Focus Seminar. J. Am. Coll. Cardiol. 75, 2169–2188 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. aus dem Siepen, F. et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur. Heart J. Cardiovasc. Imaging 16, 210–216 (2015).

    PubMed  Google Scholar 

  3. Frangogiannis, N. G. & Kovacic, J. C. Extracellular matrix in ischemic heart disease, part 4/4: JACC Focus Seminar. J. Am. Coll. Cardiol. 75, 2219–2235 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. Díez, J., González, A. & Kovacic, J. C. Myocardial interstitial fibrosis in nonischemic heart disease, part 3/4: JACC Focus Seminar. J. Am. Coll. Cardiol. 75, 2204–2218 (2020).

    PubMed  PubMed Central  Google Scholar 

  5. Bing, R. et al. Imaging and impact of myocardial fibrosis in aortic stenosis. JACC Cardiovasc. Imaging 12, 283–296 (2019).

    PubMed  PubMed Central  Google Scholar 

  6. Nguyen, T. P., Qu, Z. & Weiss, J. N. Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils. J. Mol. Cell. Cardiol. 70, 83–91 (2014).

    CAS  PubMed  Google Scholar 

  7. Ling, L.-H. et al. Diffuse ventricular fibrosis in atrial fibrillation: noninvasive evaluation and relationships with aging and systolic dysfunction. J. Am. Coll. Cardiol. 60, 2402–2408 (2012).

    PubMed  Google Scholar 

  8. Chen, Z. et al. Myocardial tissue characterization by cardiac magnetic resonance imaging using T1 mapping predicts ventricular arrhythmia in ischemic and non-ischemic cardiomyopathy patients with implantable cardioverter-defibrillators. Heart Rhythm 12, 792–801 (2015).

    PubMed  Google Scholar 

  9. Kong, P., Christia, P. & Frangogiannis, N. G. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci. 71, 549–574 (2014).

    CAS  PubMed  Google Scholar 

  10. Mewton, N., Liu, C. Y., Croisille, P., Bluemke, D. & Lima, J. A. C. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 57, 891–903 (2011).

    PubMed  Google Scholar 

  11. Diao, K.-Y. et al. Histologic validation of myocardial fibrosis measured by T1 mapping: a systematic review and meta-analysis. J. Cardiovasc. Magn. Reson. 18, 92 (2017).

    Google Scholar 

  12. Petersen, S. E. et al. UK Biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Reson. 18, 8 (2015).

    Google Scholar 

  13. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Messroghli, D. R. et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J. Cardiovasc. Magn. Reson. 19, 75 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. Rogers, T. et al. Standardization of T1 measurements with MOLLI in differentiation between health and disease—the ConSept study. J. Cardiovasc. Magn. Reson. 15, 78 (2013).

    PubMed  PubMed Central  Google Scholar 

  16. Puntmann, V. O., Peker, E., Chandrashekhar, Y. & Nagel, E. T1 mapping in characterizing myocardial disease: a comprehensive review. Circ. Res. 119, 277–299 (2016).

    CAS  PubMed  Google Scholar 

  17. Liu, C.-Y. et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 62, 1280–1287 (2013).

    PubMed  Google Scholar 

  18. Roy, C. et al. Age and sex corrected normal reference values of T1, T2 T2* and ECV in healthy subjects at 3T CMR. J. Cardiovasc. Magn. Reson. 19, 72 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Treibel, T. A. et al. Extracellular volume quantification in isolated hypertension—changes at the detectable limits? J. Cardiovasc. Magn. Reson. 17, 74 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes2020. Diabetes Care 43, S14–S31 (2020).

  21. Stevens, P. E. et al. Evaluation and management of chronic kidney disease: synopsis of The Kidney Disease: Improving Global Outcomes 2012 clinical practice guideline. Ann. Intern. Med. 158, 825–830 (2013).

    PubMed  Google Scholar 

  22. Arnett, D. K. et al. ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation 140, e563–e595 (2019).

    PubMed  PubMed Central  Google Scholar 

  23. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Pirruccello, J. P. et al. Analysis of cardiac magnetic resonance imaging in 36,000 individuals yields genetic insights into dilated cardiomyopathy. Nat. Commun. 11, 2254 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Waller, A. P. et al. GLUT12 functions as a basal and insulin-independent glucose transporter in the heart. Biochim. Biophys. Acta 1832, 121–127 (2013).

    CAS  PubMed  Google Scholar 

  26. Heidecker, B. et al. The gene expression profile of patients with new-onset heart failure reveals important gender-specific differences. Eur. Heart J. 31, 1188–1196 (2010).

    CAS  PubMed  Google Scholar 

  27. Jiménez-Amilburu, V., Jong-Raadsen, S., Bakkers, J., Spaink, H. P. & Marín-Juez, R. GLUT12 deficiency during early development results in heart failure and a diabetic phenotype in zebrafish. J. Endocrinol. 224, 1–15 (2015).

    PubMed  Google Scholar 

  28. Linden, K. C. et al. Renal expression and localization of the facilitative glucose transporters GLUT1 and GLUT12 in animal models of hypertension and diabetic nephropathy. Am. J. Physiol. Renal Physiol. 290, F205–F213 (2006).

    CAS  PubMed  Google Scholar 

  29. Sharma, S. et al. SOD2 deficiency in cardiomyocytes defines defective mitochondrial bioenergetics as a cause of lethal dilated cardiomyopathy. Redox Biol. 37, 101740 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vivien, C. J. et al. Vegfc/d-dependent regulation of the lymphatic vasculature during cardiac regeneration is influenced by injury context. NPJ Regen. Med. 4, 18 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. Perrucci, G. L., Rurali, E. & Pompilio, G. Cardiac fibrosis in regenerative medicine: destroy to rebuild. J. Thorac. Dis. 10, S2376–S2389 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Kelwick, R., Desanlis, I., Wheeler, G. N. & Edwards, D. R. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol. 16, 113 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. Chen, P. et al. MYH7B variants cause hypertrophic cardiomyopathy by activating the CaMK-signaling pathway. Sci. China Life Sci. 63, 1347–1362 (2020).

    PubMed  Google Scholar 

  34. Alexander, J. & Kowdley, K. V. HFE-associated hereditary hemochromatosis. Genet. Med. 11, 307–313 (2009).

    PubMed  Google Scholar 

  35. Ramsay, A. J., Hooper, J. D., Folgueras, A. R., Velasco, G. & López-Otín, C. Matriptase-2 (TMPRSS6): a proteolytic regulator of iron homeostasis. Haematologica 94, 840–849 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Roselli, C. et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat. Genet. 50, 1225–1233 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Heijman, J., Ghezelbash, S., Wehrens, X. H. T. & Dobrev, D. Serine/threonine phosphatases in atrial fibrillation. J. Mol. Cell. Cardiol. 103, 110–120 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lubbers, E. R. & Mohler, P. J. Roles and regulation of protein phosphatase 2A (PP2A) in the heart. J. Mol. Cell. Cardiol. 101, 127–133 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramirez, A. H. et al. Novel rare variants in congenital cardiac arrhythmia genes are frequent in drug-induced torsades de pointes. Pharmacogenomics J. 13, 325–329 (2013).

    CAS  Google Scholar 

  40. Zhu, N. et al. Pim-1 kinase phosphorylates cardiac troponin I and regulates cardiac myofilament function. Cell. Physiol. Biochem. 45, 2174–2186 (2018).

    CAS  PubMed  Google Scholar 

  41. Pan, W. et al. Structural insights into ankyrin repeat-mediated recognition of the kinesin motor protein KIF21A by KANK1, a scaffold protein in focal adhesion. J. Biol. Chem. 293, 1944–1956 (2018).

    CAS  PubMed  Google Scholar 

  42. Alexanian, M. et al. A transcriptional switch governs fibroblast activation in heart disease. Nature 595, 438–443 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiao, Y. et al. Hippo pathway deletion in adult resting cardiac fibroblasts initiates a cell state transition with spontaneous and self-sustaining fibrosis. Genes Dev. 33, 1491–1505 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wight, T. N. The ADAMTS proteases, extracellular matrix, and vascular disease: waking the sleeping giant(s)! Arterioscler. Thromb. Vasc. Biol. 25, 12–14 (2005).

    CAS  PubMed  Google Scholar 

  45. Hirohata, S. et al. Punctin, a novel ADAMTS-like molecule, ADAMTSL-1, in extracellular matrix. J. Biol. Chem. 277, 12182–12189 (2002).

    CAS  PubMed  Google Scholar 

  46. Wang, X. et al. Critical role of ADAMTS2 (a disintegrin and metalloproteinase with thrombospondin motifs 2) in cardiac hypertrophy induced by pressure overload. Hypertension 69, 1060–1069 (2017).

    CAS  PubMed  Google Scholar 

  47. Willeford, A. et al. CaMKIIδ-mediated inflammatory gene expression and inflammasome activation in cardiomyocytes initiate inflammation and induce fibrosis. JCI Insight 3, 97054 (2018).

    PubMed  Google Scholar 

  48. Ling, H. et al. Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J. Clin. Invest. 119, 1230–1240 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ebeid, D. E. et al. PIM1 promotes survival of cardiomyocytes by upregulating c-Kit protein expression. Cells 9, 2001 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Muraski, J. A. et al. Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat. Med. 13, 1467–1475 (2007).

    CAS  PubMed  Google Scholar 

  51. Torlasco, C. et al. Role of T1 mapping as a complementary tool to T2* for non-invasive cardiac iron overload assessment. PLoS ONE 13, e0192890 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Song, X. et al. Cardiovascular and all-cause mortality in relation to various anthropometric measures of obesity in Europeans. Nutr. Metab. Cardiovasc. Dis. 25, 295–304 (2015).

    CAS  PubMed  Google Scholar 

  53. Voskoboinik, A. et al. Relation of alcohol consumption to left ventricular fibrosis using cardiac magnetic resonance imaging. Am. J. Cardiol. 123, 460–465 (2019).

    PubMed  Google Scholar 

  54. Fernández-Solà, J. Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nat. Rev. Cardiol. 12, 576–587 (2015).

    PubMed  Google Scholar 

  55. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. Puyol-Antón, E. et al. Automated quantification of myocardial tissue characteristics from native T1 mapping using neural networks with uncertainty-based quality-control. J. Cardiovasc. Magn. Reson. 22, 60 (2020).

    PubMed  PubMed Central  Google Scholar 

  57. Huang, G., Liu, Z., Pleiss, G., van der Maaten, L. & Weinberger, K. Q. Convolutional networks with dense connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 44, 8704–8716 (2022).

    PubMed  Google Scholar 

  58. Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention (eds Navab, N. et al.) 234–241 (Springer, 2015).

  59. Deng, J. et al. ImageNet: a large-scale hierarchical image database. In Proc. 2009 IEEE Conference on Computer Vision and Pattern Recognition (eds Flynn, P. & Mortensen, E.) 248–255 (IEEE, 2009).

  60. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://doi.org/10.48550/arXiv.1412.6980 (2017).

  61. Petersen, S. E. et al. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. J. Cardiovasc. Magn. Reson. 19, 18 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. Inker, L. A. et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 367, 20–29 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Stone, N. J. et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63, 2889–2934 (2014).

    PubMed  Google Scholar 

  64. Grundy, S. M. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 73, 3168–3209 (2019).

    PubMed  Google Scholar 

  65. Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46, 1734–1739 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Boughton, A. P. et al. LocusZoom.js: interactive and embeddable visualization of genetic association study results. Bioinformatics 37, 3017–3018 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Loh, P.-R. et al. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat. Genet. 47, 1385–1392 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pirruccello, J. P. et al. Deep learning of left atrial structure and function provides link to atrial fibrillation risk. Preprint at medRxiv https://doi.org/10.1101/2021.08.02.21261481 (2021).

  72. Khurshid, S. et al. Deep learning to predict cardiac magnetic resonance-derived left ventricular mass and hypertrophy from 12-lead ECGs. Circ. Cardiovasc. Imaging 14, e012281 (2021).

    PubMed  PubMed Central  Google Scholar 

  73. Aguet, F. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Google Scholar 

  74. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Quinlan, A. R. BEDTools: the Swiss-Army tool for genome feature analysis. Curr. Protoc. Bioinformatics 47, 11.12.1–11.12.34 (2014).

    PubMed  Google Scholar 

  81. Hansen, K. D., Irizarry, R. A. & Wu, Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13, 204–216 (2012).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions made by the UKB participants without whom this work would not have been possible, as well as the following financial support: National Institutes of Health (NIH) grant no. T32HL007604 to V.N.; NIH grant nos. 1R01HL092577 and K24HL105780, American Heart Association (AHA) grant no. 18SFRN34110082, Foundation Leducq grant no. 14CVD01 and MAESTRIA grant no. 965286 to P.T.E.; a Scholar award from the Sarnoff Cardiovascular Research Foundation and NIH grant no. K08HL159346 to J.P.P.; NIH 1R01HL139731, NIH R01HL157635, and AHA grant no. 18SFRN34250007 to S.A.L.; AHA Postdoctoral fellowship no. 18SFRN34110082 to L.-C.W.; and NIH grant no. 5T32HL007208-42 to M.C.H. Some of the artwork incorporated into Fig. 5a was created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

V.N., J.W.C., P.T.E. and S.A.L. conceived the study. M.D.R.K. and P.D.A. downloaded and prepared the cMRI data. V.N., M.D.R.K., P.D.A. and J.W.C. performed the quality control. M.D.R.K. trained the machine learning models. V.N., M.D.R.K. and P.D.A. performed the main analyses. M.C.H. performed the in vitro experiments. V.N., M.D.R.K., P.D.A., J.W.C., M.C.H., P.T.E. and S.A.L. wrote the paper. J.P.P., L.-C.W., V.N.M., S.H.C., S.K., S.F.F., M.N., C.R., K.N., A.A.P. and P.B. contributed to the analysis plan or provided critical revisions.

Corresponding authors

Correspondence to Patrick T. Ellinor or Steven A. Lubitz.

Ethics declarations

Competing interests

M.D.R.K., P.D.A., S.F.F. and P.B. are supported by grants from Bayer and IBM with regard to applying machine learning in cardiovascular disease. P.B. serves as a consultant for Novartis and Prometheus Biosciences and is employed by Flagship Pioneering as of 4 January 2023. C.R. is supported by a grant from Bayer to the Broad Institute, which is focused on the development of therapeutics for cardiovascular disease. S.A.L. is employed by Novartis Institutes for Biomedical Research as of 18 July 2022. S.A.L. received sponsored research support from Bristol Myers Squibb, Pfizer, Bayer, Boehringer Ingelheim, Fitbit and IBM, and has previously consulted for Bristol Myers Squibb, Pfizer, Bayer, Blackstone Life Sciences and Invitae. P.T.E. receives sponsored research support from Bayer, Novartis, MyoKardia and Quest. L.-C.W. receives sponsored research support from IBM to the Broad Institute. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Richard Redon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–29.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–18.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nauffal, V., Di Achille, P., Klarqvist, M.D.R. et al. Genetics of myocardial interstitial fibrosis in the human heart and association with disease. Nat Genet 55, 777–786 (2023). https://doi.org/10.1038/s41588-023-01371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01371-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing