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Genetic immune escape landscape in 
primary and metastatic cancer

Francisco Martínez-Jiménez    1,2,5,6 , Peter Priestley3,6, Charles Shale3, 
Jonathan Baber3, Erik Rozemuller4 & Edwin Cuppen    1,2 

Studies have characterized the immune escape landscape across primary 
tumors. However, whether late-stage metastatic tumors present differences 
in genetic immune escape (GIE) prevalence and dynamics remains unclear. 
We performed a pan-cancer characterization of GIE prevalence across six 
immune escape pathways in 6,319 uniformly processed tumor samples. To 
address the complexity of the HLA-I locus in the germline and in tumors, we 
developed LILAC, an open-source integrative framework. One in four tumors 
harbors GIE alterations, with high mechanistic and frequency variability 
across cancer types. GIE prevalence is generally consistent between primary 
and metastatic tumors. We reveal that GIE alterations are selected for in 
tumor evolution and focal loss of heterozygosity of HLA-I tends to eliminate 
the HLA allele, presenting the largest neoepitope repertoire. Finally, 
high mutational burden tumors showed a tendency toward focal loss of 
heterozygosity of HLA-I as the immune evasion mechanism, whereas, in 
hypermutated tumors, other immune evasion strategies prevail.

Cancer immune escape is the process whereby tumor cells prevent their 
elimination by the immune system1,2. Tumors acquire this capacity as a 
response to the accumulation of tumor-specific alterations, which may 
be presented—in the form of neoepitopes—by the major histocompat-
ibility complex class I (MHC-I). Escape from immune system recognition 
often involves tumor-specific genomic alterations in immune-related 
pathways, a process named genetic immune escape (GIE).

GIE alterations operate through different mechanisms, includ-
ing partial or complete abrogation of neoepitope presentation3 or 
suppression of proapoptotic signals from the surrounding immune 
cells4. Therefore, identification of GIE events across human cancers 
is key to understanding the interplay between cancer cells and the 
immune system, as well as to enable effective precision medicine based 
on immunotherapy.

Previous studies have performed cancer type-specific molecular 
profiling of GIE events and their phenotypic implications in several 
cancer types, including non-small-cell lung cancer5,6 (NSCLC) and 
colorectal carcinoma7, among others8,9. Others have performed an 

extensive analysis of loss of heterozygosity (LOH) of HLA-I across 
thousands of tumor samples10. However, a pan-cancer analysis of 
the prevalence and impact of diverse GIE events is currently lacking. 
In addition, the focus of these studies was to portray GIE in early 
stage primary tumors, whereas the changes induced by exposure 
to treatment and by the metastatic bottleneck have not been com-
prehensively addressed.

One of the main challenges to perform such analyses lies in the 
extraordinary diversity of the HLA-I locus, with >15,000 different 
sequences of the HLA-A, HLA-B and HLA-C genes reported to date11. This 
extensive polymorphism hampers the identification of tumor-specific 
somatic alterations, prompting the development of tools that specifi-
cally identify LOH of HLA-I (ref. 12) or HLA-I somatic mutations13 from 
whole-exome sequencing (WES) and whole-genome sequencing (WGS) 
data. However, none of these tools provides an integrative characteriza-
tion of the HLA-I tumor status in both the germline and the tumor, which 
includes HLA-I typing, allelic imbalance, LOH of HLA-I and somatic 
mutation annotation.
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paired samples as input. LILAC also allows for detection of novel 
human leukocyte antigen (HLA) alleles and provides allele-specific 
and sample-level, quality control measurements (Fig. 1b and Supple-
mentary Note 1).

We first assessed LILAC’s HLA-I typing robustness by indepen-
dently calculating the germline and tumor HLA-I two-field-calling 
agreement across 6,279 patients, including 4,439 patients from the 
Hartwig16 dataset and 1,839 from the PCAWG17 cohort. LILAC showed 
the highest agreement compared with two state-of-the-art HLA typing 
tools, Polysolver13 and xHLA18 (Fig. 1c, Extended Data Fig. 1a and Sup-
plementary Data 1). The Hartwig dataset showed higher normal-tumor 
agreement for all tools, possibly due to the higher sequencing cover-
age and read quality of this dataset. In a three-way comparison, LILAC 
also displayed the highest overlap with the predictions from the other 
tools across both datasets (Extended Data Fig. 1b,c). Moreover, LILAC’s 
HLA-I typing performance on three family trios with diverse genetic 
ancestries showed a perfect agreement with previously reported HLA-I 
types (Fig. 1d). Next, we demonstrated WES applicability by running 
LILAC on the TRACERx100 lung cohort, where it showed a 98.16% 
agreement with the HLA-I types originally reported in the publication12 
(Fig. 1e). Finally, we evaluated LILAC HLA-I typing sensitivity in a set of 
95 samples with challenging HLA-I types—including 10 from tumor 
biopsies—with an independent orthogonal and clinically validated 
HLA-I typing approach (Supplementary Note 1). LILAC showed a perfect 
100% two-field agreement across the 564 alleles, higher than Polysolver 
(93.09%) and xHLA (98.94%) agreements (Fig. 1f and Supplementary 
Data 1). To conclude, LILAC reported nine somatic mutations in seven 

In the present study, we present a pan-cancer landscape of the 
GIE prevalence in primary (represented by the PCAWG (pan-cancer 
analysis of whole genomes) cohort) and unmatched metastatic patients 
(represented by the Hartwig cohort). Furthermore, to address the 
complexity of the HLA-I locus, we developed LILAC, an open-source 
integrative framework that characterizes the HLA-I locus, including 
its tumor status from WGS data. We applied LILAC and a universal 
tumor-processing pipeline to establish a comprehensive portrait of 
GIE events and their positive selection landscape across six different 
pathways associated with an immune evasion phenotype: the HLA-I 
locus, the antigen presentation machinery, interferon (IFN)-γ signaling 
pathway, the programmed cell death ligand 1 (PD-L1) immune check-
point, the costimulatory signaling by the CD58 receptor and epigenetic 
immune escape driven by SETDB1 (Fig. 1a and Supplementary Table 1). 
We also studied how the tumor mutational burden (TMB) and other 
genomic and environmental features influence the prevalence of GIE 
alterations, providing insights into tumorigenesis and its interplay 
with the immune system.

Results
Inference of HLA-I tumor status with LILAC
Inference of the correct HLA-I tumor status is fundamental to identify-
ing GIE alterations (Fig. 1a), to estimate the neoepitope repertoire and 
burden and to predict the response to immune checkpoint inhibitors14,15 
(ICIs). We have developed LILAC, a framework that performs HLA-I typ-
ing for the germline of each patient, as well as determining the status 
of each of those alleles in the tumor using WGS data on tumor-normal 
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Fig. 1 | Inference of HLA-I tumor status with LILAC. a, Representation of the 
six immune escape pathways considered in the present study alongside their 
associated genes (adapted from ‘MHC class I and II pathways’, by BioRender.
com). The genes considered for each immune escape pathway are depicted in 
gray. b, Left, workflow of the Hartwig tumor analytical pipeline integrating LILAC. 
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reports (partially created with BioRender.com). QC, quality control; BaseQual., 
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of the tumor biopsies evaluated. All of them were perfectly matched 
by the orthogonal approach (Supplementary Data 1).

HLA allele-specific, tumor copy number (CN) determination is key 
to identify LOH of HLA-I genes in tumors, a well-established mecha-
nism of immune evasion10,12. LILAC annotates allele-specific ploidy 
levels of each HLA-I allele based on the purity-corrected local tumor 
CN estimations and the number of fragments assigned to each allele 
(Supplementary Note 1). WGS data provide adequate resolution to 
annotate purity-adjusted minor and major allele ploidy in the HLA-I 
locus (Extended Data Fig. 1d,e). Moreover, we quantified LILAC’s agree-
ment with LOHHLA12 in the TRACERx100 lung WES cohort. LILAC and 
LOHHLA estimates displayed a global 90% agreement (Fig. 1g and Sup-
plementary Data 1). Importantly, high tumor purity samples showed 
considerably better concordance than low-purity samples (96.08% 
in samples with tumor purity ≥0.3, 75.51% when tumor purity <0.3), 
reflecting increased challenges for genome-wide CN loss calling in 
low-purity WES samples. Finally, the three tumor samples harboring 
LOH of HLA-I, according to our framework and evaluated by the orthog-
onal approach, displayed a strong allelic imbalance in the experimental 
validation (Supplementary Data 1).

GIE prevalence across cancer types
We then combined LILAC with the Hartwig tumor analytical cancer 
WGS pipeline16,19 to annotate GIE events across 6 pathways strongly 
associated with immune escape (Fig. 1a and Supplementary Table 1) 
across 6,319 uniformly processed WGS samples20, including 1,880 pri-
mary patients from PCAWG and 4,439 patients with metastases from 
Hartwig (Fig. 2a, Extended Data Fig. 2a, Supplementary Table 2 and 
Supplementary Note 1). In total, these patients were classified into 58 
cancer types, which included 30 tumor types with sufficiently high 
representativeness (that is, number of patients ≥15) in the metastatic 
cohort, 27 in the primary dataset and 20 cancer types with sufficient 
representation in both datasets (Fig. 2b, Extended Data Fig. 2b,c and 
Supplementary Table 2).

GIE prevalence showed high mechanistic and frequency variability 
across primary and metastatic cancer types (Fig. 2c,d, top panels and 
Supplementary Data 2). The median proportion of patients harboring 
GIE alterations per cancer type was 0.27 for the metastatic cohort and 
0.20 for primary tumors, both showing highly dispersed distributions 
(±0.15 s.d. and ±0.19 s.d. in metastatic and primary tumors, respec-
tively). In certain cancer types, such as pancreatic neuroendocrine 
(PANET, metastatic), diffuse large B-cell lymphoma (DLBCL, metastatic) 
and kidney chromophobe cancer (KICH, primary), GIE was present in 
>50% of patient samples (65%, 55% and 74%, respectively) whereas in 
others, such as lung neuroendocrine (LUNET, metastatic), GIE was an 
extremely rare event. Overall, one in four patients (26% in metastatic 
and 24% in primary) presented GIE alterations based on the six inves-
tigated pathways (Fig. 2c,d, bottom panels).

The most frequent GIE alteration was partial loss of the HLA-I locus 
(including both LOH of HLA-I and homozygous deletions of HLA-I genes 
that were grouped as LOH of HLA-I for simplicity), which was present 
in 783 (18%) of metastatic and 319 (17%) of primary cancer patients, 
followed by IFN-γ inactivation (4% in metastatic and 3% in primary) 
and alterations in the antigen presentation pathway (4% in metastatic 
and 3% in primary). CD58 inactivation was the least frequent immune 
escape event present in only 16 metastatic and 8 primary patients. 
The high GIE rates of KICH and PANET were exclusively due to LOH of 
HLA-I (Fig. 2e), whereas other cancer types displayed a wider range 
of GIE mechanisms (Fig. 2f). Of note, we did not observe a significant 
mutual exclusivity between LOH of HLA-I and other GIE events in can-
cer types with sufficient representation of multiple GIE mechanisms 
(Supplementary Data 2). This suggests that certain tumors may require 
complementary GIE alterations, such as concurrent alterations that 
disrupt HLA-I-mediated neoepitope presentation and CD58 loss21, to 
effectively escape immune surveillance.

High agreement between primary and metastatic GIE rates
We next sought to investigate whether there was a GIE prevalence dif-
ference between early stage primary and late-stage metastatic tumors. 
Comparison by tumor type across the 20 cancer types with sufficient 
representation showed a broad agreement between both stages  
(Fig. 3a). Although nine cancer types showed a certain degree of meta-
static enrichment (log2(odds ratio) (log2(OR)) > 0.5; Fig. 3a,b), only in 
prostate carcinoma (PRAD) and thyroid cancer (THCA) was this differ-
ence statistically significant (Fisher’s exact test corrected P < 0.01). The 
significant enrichment in these two cancer types might be connected to 
the substantial genome transformation at the metastatic transition20.

Breaking down pathway-specific differences revealed that THCA 
metastatic enrichment is the result of increased LOH of HLA-I inci-
dence, whereas the discrepancies in PRAD are the result of a widespread 
enrichment across several pathways (Fig. 3b). In general, LOH of HLA-I 
showed a nonsignificant trend toward metastatic enrichment across 
seven of the nine metastatic-enriched cancer types. None of the cancer 
types showed a significantly higher GIE incidence in primary tumors.

Positive selection of HLA-I alterations
We next examined to what extent somatic alterations in HLA-I genes 
(that is, HLA-A, HLA-B and HLA-C) were positively selected during tumo-
rigenesis.

First, a pan-cancer-grouped HLA-I analysis revealed a nonsyno-
nymous:synonymous substitution (dN:dS) ratio >1 for nonsense, splice 
site and truncating variants in both the metastatic and the primary 
datasets (Fig. 4a), indicating that these genes are subject to positive 
selection. Next, pan-cancer and gene-specific dN:dS ratios showed 
that HLA-A and HLA-B, but not HLC-C, are positively selected and are 
mostly enriched in truncating variants but not in missense mutations 
(Fig. 4b,c). Finally, gene and cancer type-specific analysis showed 
that HLA-A and HLA-B were deemed as drivers across several cancer 
types, including metastatic colorectal, NSCLC and DLBCL as well as the 
pan-cancer cohorts (Fig. 4d,e and Supplementary Data 3).

Somatic point mutations and small indels (insertions and dele-
tions) of HLA-I genes were evenly distributed along their sequences 
(Fig. 4f and Extended Data Fig. 3a). The main exception was the 
recurrent HLA-A Lys210 frameshift indel (chromosome 6 at position 
29911899), which was observed in six mismatch repair-deficient 
(MMRd) metastatic tumors. This genomic region overlaps with a 
(C)7 homopolymer repeat, which probably explains its susceptibility 
for the observed base indel. No enrichment for mutations in amino 
acids involved in the peptide binding was observed. Such uniform 
distribution was in agreement with previous observations22 and  
with the expected profile in tumor-suppressor genes dominated by 
inactivating variants23.

LOH of HLA-I trims the repertoire of HLA-I-presented epitopes in 
HLA-I heterozygous individuals. Therefore, to further shed light on 
the tumorigenic role of LOH of HLA-I, we developed a randomization 
strategy that pinpoints cancer types where the LOH of HLA-I rates were 
significantly higher than the expected, given their background LOH 
rates using three genomic resolutions (that is, nonfocal LOH including 
all LOH events spanning >75% of the chromosome arm length, focal 
LOH for those events <75% of the chromosome arm and highly focal 
LOH for LOH events <3 Mb). In spite of the global correlation with back-
ground genome-wide LOH rates (Extended Data Fig. 3b), our analyses 
revealed higher-than-expected rates of LOH of HLA-I across several 
cancer types in both the metastatic and the primary datasets (G-test 
goodness of fit q value <0.1; Fig. 4d,e and Supplementary Data 3).  
PANET (Fig. 4g) and KICH (Extended Data Fig. 3c) showed nonfocal 
LOH of HLA-I enrichment. Others, such as metastatic cervix carcinoma  
(Fig. 4h), metastatic colorectal cancer (Fig. 4i) or primary DLBCL, 
showed focal or highly focal LOH of HLA-I patterns. Furthermore, 
33 patients with nonsynonymous mutations of HLA-I genes (20% of 
the total 159 patients with mutations in HLA-I genes) displayed the 
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concurrent loss of the alternative allele by LOH, potentially leading to 
complete inactivation of the HLA gene.

Finally, we did not observe any biallelic deletion of the entire HLA-I 
locus (Supplementary Data 3), suggesting that homozygous deletions 
within the HLA-I might be constrained by purifying selection, featuring 
the importance of expressing a minimal amount of HLA-I molecules to 
avoid immune-alerter signals24.

Differences between focal and nonfocal LOH of HLA-I
Our results suggest that LOH of HLA-I is a positively selected genomic 
event in certain tumor types. However, it remains unclear whether 

these losses target a specific allele and whether both focal and nonfo-
cal LOH of HLA events display similar selective patterns. To address 
these questions, we assessed whether LOH of HLA-I tends to involve 
the allele(s) with the highest neoepitope ratio (that is, higher number 
of predicted neoepitopes compared with the alternative allele; Fig. 5a).

We observed a positive association between the neoepitope ratio 
and the frequency of the allele with highest neoepitope repertoire to 
be lost in both the metastatic and the primary cohorts (Fig. 5b,c). This 
trend was significantly different from a neutral scenario where both 
alleles are equally likely to be lost independently of their neoepitope 
repertoire (Kolmogorov–Smirnov test metastatic P = 2.47 × 10−5 
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Fig. 1a. f, Analogous representation for, from top-left in a clockwise direction, 
metastatic DLBCL, primary DLBCL, primary COREAD and metastatic UCEC 
tumors. amp., amplification; del., deletion; pres., presentation; reg., regulation. 
The remaining cancer-type acronyms are displayed in b.
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and primary P = 2.24 × 10−7). Remarkably, the association between 
neoepitope ratio and the loss frequency became stronger when 
selecting for focal LOH of HLA-I events (Fig. 5d,e; P = 1.71 × 10−9 and 
P = 1.17 × 10−10 for metastatic and primary, respectively). However, it 
was indistinguishable from a neutral scenario for nonfocal LOH of 
HLA-I (Fig. 5f,g; P = 0.32 and P = 0.99 for metastatic and primary, respec-
tively), showing that nonfocal LOH of HLA-I does not select for the allele 
with the highest neoepitope repertoire and that its high recurrency 
in several cancer types may be associated with other selective forces 
operating on chromosome 6.

Furthermore, the majority of focal LOH of HLA-I events were CN 
neutral (81% in metastatic tumors and 70% in primary), which was con-
siderably higher than for nonfocal events (65% in metastatic and 35% 
in primary), providing further support for the notion that the loss of 
neoepitope repertoire, and not gene dosage, is the main driving force 
behind focal LOH of HLA-I.

Positive selection of GIE alterations beyond HLA-I
Alterations in other pathways beyond the HLA-I locus may also lead 
to immune escape. Hence, we explored signals of positive selection 
across 18 genes associated with 5 immune escape pathways (pathways 
2–6 in Fig. 1a).

Grouped pan-cancer analysis of the dN:dS ratio in these pathways 
(covering a total of 16 genes, excluding those with an oncogenic mecha-
nism based on CN amplification; Methods) revealed a >1 ratio for non-
sense, splice site and truncating variants in both the metastatic and the 
primary datasets (Fig. 6a), which was indicative of positive selection.

Refining the analysis for specific genes and cancer types 
revealed that two genes from the antigen presentation pathway 

(that is, B2M and CALR) displayed recurrent patterns of inactivat-
ing mutations and focal biallelic deletions across several tumor 
types, as well as in the pan-cancer cohorts (Fig. 6b–d). Moreover, 
higher-than-expected frequencies of focal biallelic deletions for 
several IFN-γ pathway genes, including JAK1, JAK2 and IRF2, were 
also observed. CD58 also harbored a higher-than-expected number 
of nonsynonymous mutations and homozygous deletions in DLBCL 
and the pan-cancer primary cohort. Finally, the chromatin modifier 
SETDB1 was recurrently focally amplified in multiple cancer types, 
including metastatic NSCLC (Fig. 6e) and primary breast cancer. Full 
results are available in Supplementary Data 3.

GIE association with cancer genomic features
We next investigated whether, aside from cancer-type intrinsic dif-
ferences, there were other cancer genomic and environmental fea-
tures associated with GIE prevalence. Thus, we performed a cancer 
type-specific univariate logistic regression of 99 tumor genomic fea-
tures and 366 driver genes against the presence of GIE events (excluding 
nonfocal LOH of HLA-I) across 38 cancer types (Supplementary Note 3).  
Moreover, to control for associations that may be secondary to 
increased mutation and CN variant (CNV) background rates, we filtered 
out significant associations that were found in our GIE simulations 
(Supplementary Note 3).

Overall, 35 genomic features and 5 driver genes showed a statisti-
cally significant association with GIE in at least one cancer type (Fig. 7a 
and Extended Data Fig. 4a). Even after controlling for background muta-
tion rates, TMB and patient’s neoepitope load were strongly associated 
with GIE events in DLBCL, pancreas carcinoma and skin melanoma  
(q value < 0.05, log2(OR) > 0.0 and simulated GIE prevalence ≤2%; Fig. 7a  

a
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and Extended Data Fig. 4a–c). It is interesting that clonal TMB and clonal 
neoepitope load showed a strong positive association with GIE, whereas 
subclonal TMB and neoepitope load showed a modest correlation 
(Fig. 7a–c), highlighting the relevance of mutation cellularity in trig-
gering immune responses. Finally, fusion-derived neoepitopes were 
significantly associated with GIE in DLBCL and NSCLC (Fig. 7a), which 
emphasizes the importance of considering noncanonical sources of 
neoepitopes beyond small nonsynonymous variants in coding regions.

Exposure to certain endogenous and exogenous mutational pro-
cesses have been correlated with increased immunogenicity25 and 
response to ICIs26,27. After controlling for molecular age and excluding 
non-GIE exclusive associations (that is, associations also observed 
in the GIE simulations) several mutational processes showed sig-
nificant association with GIE incidence (Fig. 7a and Extended Data  
Fig. 4a). First, MMRd mutational processes were broadly associated 
with increased GIE incidence. Similarly, exposure to the APOBEC fam-
ily of cytidine deaminases was strongly associated with GIE in multiple 
cancer types, including breast carcinomas (Fig. 7d and Extended Data 
Fig. 4d). Last, the mutation burden associated with several exoge-
nous mutational processes, such as ultraviolet light in skin melanoma  
(Fig. 7e and Extended Data Fig. 4e) and platinum treatment in NSCLC 

(Fig. 7f and Extended Data Fig. 4f), was also significantly linked to an 
increased incidence of GIE events in these cancer types.

We also identified other tumor genomic features that were 
correlated with GIE. For instance, in colorectal cancers, which 
also include some patients with anal cancer, human papillomavi-
rus DNA integration was positively associated with GIE incidence  
(Fig. 7a). Moreover, high-immune infiltration, as determined by several 
RNA-sequencing-based deconvolution measurements (Supplemen-
tary Note 3), was significantly linked with higher GIE incidence in this 
cancer type (Fig. 7g and Extended Data Fig. 4g), which is in agreement 
with previous reports7.

Certain driver alterations, beyond the GIE pathways considered 
in the present study, also showed a strong association with GIE events. 
Specifically, CASP8, KMT2D, RPL22 and TGFBR2 alterations tended to 
co-occur with GIE in patients with colorectal cancer. Of note, CASP8 
(ref. 13) and TGFBR2 (ref. 28) alterations have previously been linked 
to immune surveillance escape.

Finally, other factors, such as the HLA-I supertype, the germline 
HLA-I divergence, patient chronological age or exposure to previ-
ous treatments, including immunotherapy, failed to attain signifi-
cant association with GIE (or the association was also observed in the 
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simulated GIE). All the screened molecular features alongside their 
cancer type-specific significance coefficients are available in Sup-
plementary Data 4.

The selected immune evasion mechanisms depends on TMB
An increase in mutational load leads to the generation of neoepitopes 
susceptible to recognition as neoantigens by the adaptive immune 
system. Therefore, we investigated the relationship between the 
frequency of GIE alterations (excluding nonfocal LOH of HLA-I) and 

the TMB across 20 evenly distributed TMB buckets (Methods). We 
first observed that GIE frequency steadily increased with the TMB  
(Fig. 8a; observed GIE) and that this trend was not fully explained by 
an increased background mutation and CNV rate (Fig. 8a; simulated 
GIE). More specifically, as the TMB increases, the observed GIE fre-
quency deviates from the expected frequency given by the GIE simula-
tions. This is particularly noticeable for (ultra)hypermutated tumors, 
which showed a GIE incidence two- to threefold higher than the simu-
lations. This trend was still consistent after controlling for the cancer 
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type (Extended Data Fig. 5a) and mutation clonality (Extended Data  
Fig. 5b). Using the burden of predicted neoepitopes based on the 
germline HLA-I profile as baseline also revealed an almost uniformly 
increasing distribution across the neoepitope buckets, which becomes 
sharper and higher than expected after the 17th bucket (Fig. 8b).

It is interesting that, in the bucket grouping samples with 
~10–13 mutations per Mb, which is the minimal threshold regularly 
used as a response to ICIs, we observed an average GIE frequency of 
0.30 ± 0.03 s.d. Similarly, in the group of samples between 26 and 
36 mutations per Mb, mostly including hypermutated tumors, the 
average frequency was 0.42 ± 0.06 s.d., whereas beyond ~95 mutations 

per Mb (considered to be ultra-hypermutated tumors29) we identified 
GIE alterations in >70% of samples (0.72 ± 0.06 s.d.). Our results thus 
showed that an important fraction of patients eligible for ICIs harbored 
tumor alterations that may hinder recognition and/or elimination by 
the immune system.

We then analyzed the relationship between the TMB and the 
presence of specific GIE alterations across the six immune escape 
pathways included in the present study. Overall, the observed fre-
quency distributions across these pathways were remarkably different  
(Fig. 8c and Extended Data Fig. 5c). In fact, different types of HLA-I 
alterations showed a distinctive frequency distribution along the 
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Fig. 8 | Immune evasion mechanisms and TMB. a, Top, number of bucket-
assigned (white bars with a black contouring line) and GIE-positive (pink bars 
with pink contouring line) samples across 20 evenly distributed TMB buckets 
using the entire cohort (n = 6,319). Bottom, representation of observed (pink) 
and simulated (gray) GIE frequency across these buckets. For the observed 
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total number of samples classified into each bucket (from the top panel). For 
the simulated GIE values, average (gray triangle) and s.d. (vertical bars and 

shaded gray area) values are computed from 100 GIE simulations using the total 
number of samples assigned into each bucket. b, Analogous representation 
but using predicted neoepitopes as baseline for the buckets. Bottom, number 
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TMB buckets. Nonfocal LOH of HLA-I was primarily present in low-TMB 
tumors, whereas focal LOH of HLA-I showed a clear enrichment for 
mid and high TMB tumors, peaking around ~10–20 mutations per 
Mb (average frequency of 0.22 ± 0.04 s.d.) and displaying an inverted 
U-shaped distribution. Finally, mutations in HLA-I genes were more 
frequent in hypermutated tumors (that is, from ~26 mutations per Mb 
to 36 mutations per Mb). Similarly, alterations in the antigen presenta-
tion machinery and the IFN-γ pathway were predominantly found in 
hypermutated tumors (Extended Data Fig. 5c). The remaining pathways 
did not show any clear TMB preference, probably due the lower preva-
lence of these alterations in our dataset. Finally, using the number of 
predicted neoepitopes as baseline revealed consistent distributions 
(Fig. 8d and Extended Data Fig. 5d).

Discussion
In the present study, we have characterized the prevalence and impact 
of GIE alterations involved in six major pathways across thousands of 
uniformly processed primary and metastatic tumors from fifty-eight 
cancer types. Moreover, we addressed the complexity of identifying 
tumor-specific HLA-I alterations by developing LILAC.

Our results revealed that, on average, one in four patients bears 
a GIE event, primarily as a result of LOH of HLA-I. However, GIE inci-
dence and the targeted pathways showed high diversity across cancer 
types. Importantly, the fact that we did not observe mutual exclusiv-
ity between GIE alterations targeting different pathways suggests 
that multiple GIE alterations may concur to effectively avoid immune 
surveillance.

Remarkably, our analyses also showed that the frequency of GIE 
alterations in metastatic patients are comparable to their primary 
counterparts across most cancer types. This result is also supported 
by independent studies6,30, denoting that early stages of tumorigenesis 
have already acquired the capacity to escape from immune system 
recognition.

Immune escape alterations were often positively selected during 
tumor evolution. Specifically, loss-of-function mutations in HLA-A and 
HLA-B, as well as multiple genes from other immune escape pathways, 
displayed higher-than-expected frequencies across several cancer 
types. Nevertheless, HLA-C did not show a significant enrichment in 
inactivating variants which may imply that its expression is needed 
to avoid natural killer-mediated immunity31 and that the neoepitope 
repertoire of this gene is generally lower compared with HLA-A and 
HLA-B. Finally, we also observed higher-than-expected LOH of HLA-I 
rates across multiple cancer types.

Related to this, focal and nonfocal LOH of HLA-I undergo diver-
gent mechanisms of selection. Focal LOH of HLA-I was primarily a 
CN-neutral event that tended to target the HLA allele with the larg-
est neoepitope repertoire, indicating an active role in immune eva-
sion. On the contrary, we did not observe such allelic preference for 
nonfocal LOH of HLA-I, suggesting that alternative selective forces, 
such as DAXX haploinsufficiency32, are operating in these large-scale 
chromosome 6 events.

Multiple tumor intrinsic and extrinsic features displayed a signifi-
cant association with increased GIE incidence. However, in our cohort, 
a patient’s exposure to previous cancer therapies, including immuno-
therapies, did not attain a significant association with GIE frequency, 
indicating that the efficacy of GIE alterations may be compromised 
when dealing with the strong immune pressure released by ICIs.

The tumor mutation and neoepitope burden influenced both the 
GIE frequency and the targeted GIE pathway. Although focal LOH of 
HLA-I was the most frequent mechanism in mid and high TMB tumors, 
the loss of certain HLA-I alleles was apparently not sufficient to cope 
with the neoepitope load of (ultra)hypermutated tumors, where a 
nontargeted GIE mechanism, such as antigen presentation abroga-
tion, is probably needed. However, we cannot rule out the fact that 
such differences may also be partially shaped by mutation and CNV 

rate differences across cancer types. It is important to mention that 
the GIE escalation as the TMB increases was not entirely attributed to 
the underlying increase in background mutation rate, particularly in 
hypermutated tumors. Although the modeling of background GIE rates 
could be sensitive to the selected randomization strategy, our results 
are supported by independent studies based on orthogonal analytical 
approaches30, evidencing the robustness of our conclusions.

The present study considered a collection of highly confident GIE 
alterations across six well-characterized, immune-related pathways. 
However, in our dataset, three of four patients did not harbor GIE 
events, highlighting the need to characterize other mechanisms of 
immune evasion. These may involve not only alternative molecular 
pathways such as the HLA-II (ref. 33), but also other types of alterations 
such as germline variants34 and epigenetic modifications5,35. Finally, 
tumor extrinsic factors such as clonal hematopoiesis, tumor-associated 
microbiome or the tissue architecture may also play an important role 
in tumor immune evasion. We expect that the combination of cancer 
genomics with high-resolution characterization of the tumor microen-
vironment will aid in further understanding of the interplay between 
tumor evolution and the immune system.
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Methods
Data collection and processing
The Hartwig Medical Foundation sequences and characterizes the 
genomic landscape for a large number of patients with metastases. A 
detailed description of the consortium and the whole patient cohort has 
been given in detail in Priestley et al.16. In the present study, the Hartwig 
cohort included 4,784 metastatic tumor samples from 4,468 patients.

The Hartwig patient samples have been processed using the 
Hartwig analytical pipeline5 (https://github.com/hartwigmedical/
pipeline5) implemented in Platinum (v.1.0) (https://github.com/
hartwigmedical/platinum). Briefly, Platinum is an open-source pipeline 
designed for analyzing WGS tumor data. It enables a comprehensive 
characterization of tumor WGS samples (for example, somatic point 
mutations and indels, structural variants, CN changes) in one single run.

Hartwig samples that failed to provide a successful pipeline out-
put, potential nontumor samples, with purity <0.2, with TMB < 50 SNVs/
indels, lacking sufficient informed consent for the present study or 
without enough read coverage to perform two-field HLA typing (Sup-
plementary Note 1) were discarded. Similarly, for patients with multiple 
biopsies, we selected the tumor sample with the most recent biopsy 
date and, if this information did not exist, we selected the sample with 
the highest tumor purity. However, some Hartwig patients had biopsies 
from different primary tumor locations. In these cases, we kept at least 
one sample from each primary tumor location and, when there were 
multiple samples from the same primary tumor location, we applied 
the aforementioned biopsy date and tumor purity-filtering criteria. A 
total number of 4,439 Hartwig samples were whitelisted and used in 
the present study (Extended Data Fig. 2a and Supplementary Table 2).

Preprocessed RNA-sequencing (RNA-seq) data by ISOFOX (https://
github.com/hartwigmedical/hmftools/tree/master/isofox) were avail-
able for 1,864 Hartwig samples and were consequently used in the 
immune infiltration deconvolution analysis.

Patient clinical data were obtained from the Hartwig database. 
Cancer-type labels were harmonized to maximize the number of sam-
ples that had tumor types comparable with the PCAWG dataset (Sup-
plementary Table 2).

The PCAWG cohort consisted of 2,835 patient tumors and access 
for raw sequencing data for the PCAWG-US was approved by the 
National Institutes of Health (NIH) for the dataset General Research 
Use in The Cancer Genome Atlas (TCGA) and downloaded via the dbGAP 
download portal. Raw sequencing access to the non-US PCAWG sam-
ples was granted via the Data Access Compliance Office (DACO). A 
detailed description of the consortium and the whole patient cohort 
has been given in Campbell et al.17.

The samples were fully processed using the same cancer analytical 
pipeline applied to the Hartwig cohort (BWA38 v.0.7.17, GATK39 v.3.8.0, 
SAGE16 v.2.2, GRIDSS40 v.2.9.3, PURPLE16 v.2.53 and LINX41 v.1.17). This 
enabled a harmonized analysis and eliminated the potential biases 
introduced by applying different methodological approaches. Samples 
that failed to provide a successful pipeline output, with a tumor purity 
<0.2, potential nontumor samples, blacklisted by the PCAWG original 
publication17 or without enough read coverage to perform two-field 
HLA typing were discarded. Similarly, for patients with multiple sam-
ples, we selected the first according to the aliquot ID alphabetical order. 
A total number of 1,880 were whitelisted and used in the present study 
(Extended Data Fig. 2a and Supplementary Table 2). For more details 
about the re-processing of the PCAWG dataset and the technical valida-
tion see Martínez-Jiménez et al.20.

Preprocessed gene level expression data were downloaded for 
1,118 samples from the International Cancer Genome Consortium 
(ICGC) portal (https://dcc.icgc.org/releases/PCAWG/transcriptome/
gene_expression/tophat_star_fpkm_uq.v2_aliquot_gl.tsv.gz). ENSEMBL 
identifiers were mapped to HUGO symbols. Of these samples, 930 
belonged to biopsies selected for the present study and were therefore 
used for the RNA analysis in PCAWG samples.

The most recent clinical data were downloaded from the PCAWG 
release page (https://dcc.icgc.org/releases/PCAWG) on August 2021. 
Cancer-type labels were harmonized to maximize the number of sam-
ples that had tumor types comparable with the Hartwig dataset (Sup-
plementary Table 2).

LILAC
All information relative to LILAC’s algorithm, implementation and 
validation is described in Supplementary Note 1.

Definitions of GIE alterations
We searched in the literature for somatic genomic alterations that 
are robustly and recurrently associated with immune evasion. We 
stratified the reported alterations into six major pathways (Fig. 1a and 
Supplementary Table 1):

 (1) The HLA-I: somatic alterations in the HLA-A, HLA-B and HLA-C 
genes have been extensively reported as a mechanism for im-
mune evasion across several cancer types9,10,12,22. We considered 
LOH of HLA-I, homozygous deletions and somatic nonsynony-
mous mutations on these genes as immune evasion alterations. 
We defined LOH for HLA-A, HLA-B and HLA-C as those cases with 
a minor allele ploidy <0.3 and a major allele ploidy >0.7 accord-
ing to LILAC annotation. We also relied on LILAC mapping of so-
matic mutations into HLA-A, HLA-B and HLA-C alleles to report 
samples with nonsynonymous alterations. Finally, we also used 
LILAC allele-specific tumor CN estimations to annotate samples 
with homozygous deletions of HLA-A, HLA-B and HLA-C genes. 
A gene was homozygous deleted in a sample if the estimated 
minimum tumor CN of the gene was <0.5.

 (2) The antigen presentation pathway: several studies have 
reported the immunomodulatory effect of somatic inactiva-
tion of genes involved in the antigen presentation machinery 
(see Supplementary Table 1 for gene-specific references). 
The most recurrent alteration is B2M inactivation, but there 
are other genes involved in antigen presentation and antigen 
presentation activation, the inactivation of which has been 
linked to increased immune evasion, including CALR, TAP1, 
TAP2, TAPBP, NLRC5, CIITA and RFX5. We defined inactivation 
events as monoallelic and biallelic clonal loss-of-function 
mutations (frameshift variant, stop gained, stop lost, splice 
acceptor variant, splice donor variant, splice region variant 
and start lost), biallelic clonal nonsynonymous mutations not 
included in the former group (for example, missense muta-
tions) and homozygous deletions. A gene was homozygous 
deleted in a sample if the estimated minimum tumor CN of 
the gene was <0.5.

 (3) The IFN-γ pathway: IFN-γ is a cytokine with known proap-
optotic and immune booster capacities. Hence, it has been 
reported that tumors frequently leverage somatic alterations 
targeting IFN-γ receptors and downstream effectors to evade 
immune system surveillance (see Supplementary Table 1 for 
gene-specific references). More specifically, we considered 
that inactivation events (see above for specifics of which type 
of alterations are included) in JAK1, JAK2, IRF2, IFNGR1, IFNGR2, 
APLNR and STAT1 have been probed to have the ability to pro-
vide an immune evasion phenotype.

 (4) The PD-L1 receptor: the PD-L1 receptor, encoded by the CD274 
gene, plays a major role in suppressing the adaptive immune 
system. It has been reported how overexpression of PD-L1 in 
tumor cells leads to impaired recruitment of immune effec-
tors42. We therefore considered CD274 CN amplification as a 
genetic mechanism of immune evasion. We defined a CD274 CN 
amplification event as samples with CD274 minimum tumor CN 
>3× the average sample ploidy.
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 (5) The CD58 receptor: the CD58 receptor, encoded by CD58, 
plays an essential role in T-cell recognition and stimulation. It 
has been extensively reported that CD58 alterations in B-cell 
lymphomas lead to immune evasion21. Moreover, a recent study 
identified CD58 loss as one of the major effectors of impaired 
T-cell recognition43. Consequently, we considered inactivation 
events (see above) in CD58 as alterations able to provide an im-
mune escape phenotype.

 (6) Epigenetic driven immune escape: it has been recently reported 
how SETDB1 amplification leads to epigenetic silencing of 
tumor intrinsic immunogenicity44. SETDB1 amplification was 
recurrently found across several cancer types and was therefore 
considered in the present study as a mechanism of immune eva-
sion. We defined a SETDB1 CN amplification event as samples 
with SETDB1 minimum tumor CN >3× the mean sample ploidy.

A summary table with all 21 considered genes, their associated 
pathway, references and their type of somatic alterations is presented 
in Supplementary Table 1.

GIE mutual exclusivity
To assess whether LOH of HLA-I events were mutually exclusive with 
other GIE events, we performed two statistical tests. First, we per-
formed a left-sided Fisher’s exact test comparing two groups of anno-
tations (LOH of HLA-I and other GIE events) in a cancer type-specific 
manner. Second, for each cancer type, we compared the number of 
samples bearing both LOH of HLA-I and other GIE events with the 
expected given by 10,000 randomization, using the observed altera-
tion frequency of both groups in the specific cancer type (LOH of HLA-I 
and other GIE alterations). The significance was computed using an 
empirical one-sided P value (that is, number of randomizations with 
co-occurring events lower than the real observed value divided by the 
total number of randomizations).

Primary and metastatic GIE prevalence
The prevalence of a pathway alteration for a particular cohort was 
calculated as the number of samples with at least one alteration in the 
pathway divided by the total number of cohort samples. The presence 
of a genetic immune alteration in a given sample was annotated if there 
was at least one pathway with an alteration in that sample.

For the primary versus metastatic comparison, we performed a 
tumor type-specific Fisher’s exact test comparing pathway-specific 
and global escaped status prevalence across the two cohorts. P values 
were adjusted with a multiple-testing correction using the Benjamini–
Hochberg procedure (α = 0.05).

Positive selection: somatic point mutations and indels
Positive selection analysis based on somatic point mutation and small 
indels was performed using dNdScv and the hg19 reference genome. 
The analysis was performed in a cohort-specific, cancer-type and 
pan-cancer manner across the two datasets. The analysis was restricted 
to datasets with sufficient representativeness (that is, number of sam-
ples ≥15). Global grouped dN:dS ratios of the HLA-I (HLA-A, HLA-B and 
HLA-C) and the 16 non-HLA-I genes potentially targeted by mutations 
(that is, excluding SETDB1 and CD274 because their immune escape 
phenotype is associated with CN gains; Supplementary Table 1) were 
calculated in a pan-cancer manner using the gene_list attribute of the 
dndscv function.

We used the geneci() function of dNdScv to estimate the 
pan-cancer and gene-specific dN:dS ratios, which include confidence 
intervals (CIs), of the HLA-I genes.

Positive selection: CNAs
We devised a statistical test to assess positive selection in LOH, 
homozygous deletion (HD) and CN amplification (AMP) events. LOH 

was defined as those genomic regions where the minor allele ploidy of 
this gene was <0.3 and the major allele ploidy >0.7. HD was defined as 
those regions with estimated minimum CN < 0.5. Similarly, AMP events 
were defined as those genomic regions with the minimum tumor CN 
>3× the mean sample ploidy.

For a particular type of genomic event overlapping with a gene, this 
test compares the number of observed samples bearing the alteration 
with the expected number after whole-genome randomization. More 
specifically, these are the steps followed:

 (1) Let us first denote E as the type of query alteration (that is, LOH, 
HD or AMP), S as a group of samples (usually samples from the 
same cancer type and same dataset) and Gs as the genomic scale 
(that is, nonfocal for segment lengths >75% chromosome arm, 
focal for segments <75% of the chromosome arm and highly 
focal for segments <3 Mb).

 (2) For every sample Si in {S1,S2,…ST} we first gather the number and 
length of observed (Oi) segments targeted by E within that Gs. 
Only E events overlapping with autosomes are considered in the 
present study. Samples that do not harbor any event of type E 
within that Gs are ignored.

 (3) Next, for every sample Si we performed 10 independent rand-
omizations (Ri1, Ri2, … Ri10) of the Oi events, by randomly shuffling 
these events E along the autosomes. For this, we used the shuffle 
function from pybedtools45 with the following parameters 
(genome=‘hg19’, noOverlapping=True, excl=‘sexual_chomo-
somes’, allowBeyondChromEnd=False). In certain samples, with 
an extremely high segment load (Oi > 10,000) or with mean 
ploidy of ~1 (that is, monoploid genome), the noOverlapping flag 
was set to False because the randomization would not converge.

 (4) We then binned the autosomes into 28,824 bins of 100 kb 
and counted for each bin kj {k1, … k28,842} the total number of 
observed events OTj as the sum of observed events O1k, … OTK 
overlapping with that bin across all S samples.

 (5) Similarly, for each Rith (R1, … R10) randomization and each bin 
kj{k1,… k28,842}, we counted the total number of simulated events 
as the sum of events—in that ith randomization and overlapping 
with that bin across all samples in S.

 (6) We then performed a bin-specific comparison of the OTk with 
the average number of simulated events RTK across the ten 
simulations and performed a statistical test of significance us-
ing a G-test goodness of fit. As chromosome starting bins were 
highly depleted in the simulated group (RTK), we also computed 
the global simulated mean across all bins kj{k1, … k28,842}, and 
used this as the expected number of events for the statistical 
significance assessment.

 (7) The P values were adjusted (that is, converted to q values) with 
a multiple-testing correction using the Benjamini–Hochberg 
procedure (α = 0.05).

 (8) For each gene, overlapping with one or with multiple kj bins, 
we used the minimal adjusted P-value significance of the 
bin(s) overlapping with the genomic location of the specific 
gene-coding sequence. Therefore, by definition, two genes 
sharing the same bins would have a similar q value. We used EN-
SEMBL v.88 to perform the annotation of gene exonic regions 
to hg19 genomic coordinates.

We observed that LINE insertions near the HLA-I locus (LINE activa-
tion site at chr6:29,920,000) in some esophageal cancer samples had 
an incorrect CN estimation due to multiple insertions originating from 
almost the same site in the same sample. Consequently, these samples 
were not considered in the HLA-I homozygous deletion analysis.

Distribution of mutations in HLA-I genes
LILAC mapped the HLA-A, HLA-B and HLA-C somatic mutations detected 
by SAGE into the inferred HLA-I alleles (see LILAC section). LILAC 
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provides the consequence type and coding sequence position of HLA-I 
alterations, which was used to display the distribution of mutations 
across the HLA-I coding sequence. The 34 amino acids involved in 
peptide presentation were gathered from our neoepitope prioritiza-
tion pipeline (see below). Pfam HLA-A, HLA-B and HLA-C domains were 
manually downloaded from the Pfam36 website.

Tumor-specific neoepitopes
The methodology for the identification and prioritization of 
neoepitopes is extensively described in Supplementary Note 2.

Calculation and randomization of neoepitope ratio
We wanted to evaluate whether LOH of HLA-I tends to select the HLA-I 
allele with highest neoepitope repertoire. Let us first introduce the 
neoepitope allele ratio (nr). Given an HLA-I gene, G, we defined nr as 
GA1/2 = GA1/(GA1 + GA2), where GA1/2 is the number of predicted neoepitopes 
of allele 1 and allele 2, respectively. For each patient tumor sample, the 
assignment of allele number (that is, allele 1 or allele 2) was randomly 
performed. Then, we followed the next steps:

 (1) For each patient sample with LOH of HLA-I we calculated the nr 
across the HLA-I genes targeted by the LOH. Homozygous HLA-I 
cases were not considered, because their nr is by definition 0.5.

 (2) We then grouped the nr into eight buckets: (0.0–0.35), (0.35, 
0.4), (0.4, 0.45), (0.45, 0.5), (0.5, 0.55), (0.55, 0.6), (0.6, 0.65) and 
(0.65, 1.0). Consequently, each bucket included n allele pairs 
with an nr within the bound limits.

 (3) Next, we performed 100 bootstraps by randomly subsampling 
75% of the total number of available allele pairs in the bucket.

 (4) For each bootstrap iteration ith (i ∈ 1, … 100) and each bucket 
we estimated the frequency of allele 1 loss (FA1_loss) as the number 
of cases with allele 1 loss compared with the total number of 
cases in that bucket. Similarly, we computed the expected 
frequency (FA1exp) by randomly assigning LOH events to the 
allele 1 (background probably of 0.5).

 (5) We then computed the bucket-specific average and s.d. of FA1loss 
and FA1exp values across the 100 bootstraps.

 (6) Finally, we performed a Kolmogorov–Smirnov test to compare 
the observed distribution with the expected given random 
distribution of the LOH events.

This test was applied to LOH of HLA-I, focal LOH of HLA-I and nonfo-
cal LOH of HLA-I events across the metastatic (Hartwig) and primary 
(PCAWG) datasets.

GIE and tumor genomic features
Check Supplementary Note 3 for a full description of the methods for 
this section.

GIE and TMB association
We aggregated the two datasets, metastatic and primary, to increase 
the robustness of this analysis. We then defined 20 evenly arranged 
buckets (10 for the cancer type-specific analyses) of the log10(TMB) 
scale, starting from the 1st percentile and ending in the 99th percentile 
values. Next, each sample with a log10(TMB) = Stmb, was allocated to 
the ith (i ∈ 1, … 20) bucket such as log10(TMB)i−1 < Stmb ≤ log10(TMB)i. 
Samples with an Stmb greater than the last bucket threshold (that is, 
log10(TMB)20) were allocated into the last bucket. The number of muta-
tions in each bucket was displayed as the number of mutations per 
megabase by dividing the total number of mutations by 3,000 (that 
is, approximated number of human genome megabases). Finally, the 
GIE frequency (GIEfreq) of the ith bucket was defined as the number of 
GIE samples in the ith bucket divided by the total number of available 
samples in that bucket.

To enable calculation of the uniformity in GIE frequency 
among samples in the same TMB bucket, we performed n (where 

n = 1,000) bootstraps of the 50% of samples allocated to each bucket.  
We then calculated the average and s.d. of the GIEfreq across  
the bootstraps.

A similar approach was conducted to analyze the relationship 
between the predicted neoepitope load and GIE frequency. The num-
ber of neoantigens of each bucket was estimated as 1% (ref. 46) and 5% 
(ref. 47) of the total predicted neoepitopes assigned to that bucket 
threshold.

For the simulated GIE control, we estimated the average and s.d. 
across the 100 simulated GIE iterations for each TMB bucket.

Statistics and reproducibility
Sample sizes were determined by the availability of samples with suf-
ficient quality from the two datasets included in the present study 
(PCAWG and Hartwig). Sample-exclusion criteria are thoroughly 
described in Methods, Supplementary Note 1 and the original publi-
cation describing the harmonized cohort20.

The statistical tests and randomization strategies used in each 
specific analysis are described in Methods and the figure legends. 
Unless otherwise specified, the scipy48 (v.1.5.3) library from python 
v.3.6.9 was used to carry out the statistical tests.

All the code and data to reproduce the analyses presented in the 
present article have been deposited in public repositories as described 
in Data availability and Code availability.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The Hartwig dataset used in the present study is freely available 
for academic use from the Hartwig Medical Foundation through 
standardized procedures and request forms that can be found at 
https://www.hartwigmedicalfoundation.nl/en/applying-for-data. 
This includes raw sequencing data (.bam files and unmapped reads 
for hg19 reference genome) as well as the processed data through 
the latest version of the Hartwig tumor-processing pipeline. The 
re-processed PCAWG data using the Hartwig Medical Foundation 
pipeline (for hg19 reference genome) have also been made available 
for academic purposes. The ICGC part of the PCAWG dataset17 can 
be accessed now through the ICGC platform (https://dcc.icgc.org/
releases/PCAWG/Hartwig), following their standard access control 
mechanisms originally put in place. Similarly, users with authorized 
access can download the re-processed TCGA portion of the PCAWG 
dataset at https://icgc.bionimbus.org/files/5310a3ac-0344-458a-
88ce-d55445540120. We refer to the accompanying publication20, 
including the description of the entire primary and metastatic 
cohort, for further information about the technical aspects of the 
re-processing of the PCAWG dataset. Raw sequencing data of the 
high-resolution HLA typing performed by GenDx can also be down-
loaded via European Genome-phenome Archive (http://www.ebi.
ac.uk/ega) under accession no. EGAD00001008643. HLA-I typing, 
sample-specific GIE events and processed data are now shared as 
Supplementary Data and Supplementary Tables.

Code availability
The Hartwig analytical processing pipeline is available at https://
github.com/hartwigmedical/pipeline5 and implemented in Platinum 
(https://github.com/hartwigmedical/platinum). LILAC’s source code 
is available at https://github.com/hartwigmedical/hmftools/tree/
master/lilac. The source code of the neoepitope prioritization pipeline 
is available at https://github.com/hartwigmedical/hmftools/tree/
master/neo. The source code to reproduce the figures and analysis 
of the manuscript is available at https://github.com/UMCUGenetics/
Genetic-Immune-Escape.
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Extended Data Fig. 1 | LILAC’s validation. a) HLA-I typing tumor and germline 
agreement in PCAWG. Venn diagrams representing the overlap of germline 
samples with perfect 2-field HLA-I allotype match in b) Hartwig and c) PCAWG. 
d) Left, copy number of minor and major alleles of HLA-A, HLA-B and HLA-C in 
Hartwig dataset. Right, proportion of samples with integer minor and major 

copy number (copy number <=0.3 or >=0.7) of HLA-I genes (orange) compared 
to the average of 1,000 randomly selected genes (gray) in the Hartwig cohort 
(N=4,439). e) analogous for PCAWG samples (N=1,880). Box-plots: center line, 
median; box limits, first and third quartiles; whiskers, lowest/highest data points 
at first quartile minus/plus 1.5× IQR. N, number of samples.
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Extended Data Fig. 2 | GIE in primary and metastatic tumors. a) Workflow of 
the sample processing pipeline used in this study in Hartwig (left) and PCAWG 
(right). Each rectangle represents a processing step. The resulting number of 
selected samples for this study are displayed at the bottom. Sample-exclusion 
criteria for LILAC is described in Supp. Note 1. b) number of metastatic (Hartwig) 

samples across cancer types that lack sufficient representation in the primary 
(PCAWG) dataset. c) Analogous representation for primary (PCAWG) samples. 
Vertical dashed lines (N>= 15 samples) represent the threshold of samples to 
consider a cohort as sufficiently populated.
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Extended Data Fig. 3 | Positive selection of HLA-I genes. a) Needle plots 
representing the pan-cancer distribution of somatic mutations along the HLA-A, 
HLA-B and HLA-C protein sequences in the primary (PCAWG) dataset. Mutations 
are colored according to the consequence type. Rectangles represent the Pfam 
domains. b) Correlation of LOH of HLA-I rates (y-axis) with the mean genome-
wide LOH rates (x-axis) across the metastatic (left) and primary (right) datasets. 
Each dot represents a cancer type. Horizontal lines represent genome-wide LOH 
standard deviation across samples from each cancer type. The regression and 

95% confidence intervals of the linear regression are represented as a solid line 
and the adjacent shaded area, respectively. Confidence intervals are calculated 
using 1,000 bootstraps. P-values are obtained from a two-sided test of no-
correlation. c) Distribution of non-focal LOH events along the autosomes in the 
primary kidney chromophobe cancer cohort. X-ticks represent the chromosomal 
starting position. Dashed horizontal lines represent the expected mean after 
randomization. Vertical dashed lines highlight the HLA-I genomic location. CDS 
pos, coding sequence position. Std., standard deviation.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | GIE association with cancer genomic features.  
a) Heatmap displaying the association of genomic features with GIE frequency 
across cancer types. Significant associations that can not be explained by higher 
background mutation rate are highlighted by a red border line. Significant 
associations found in >2% of the GIE simulations are highlighted by a black border 
line. b) Comparison of the TMB between samples bearing GIE alterations and 
non-GIE samples in diffuse large B-cell lymphoma (DLBCL). Left boxplot, using 
observed GIE events. Right using simulated GIE events. c) Similar comparison for 
neoepitope burden in skin melanoma. d) Comparison of the APOBEC mutational 
exposure between samples bearing simulated GIE alterations and wild-type  
(no simulated GIE) in breast cancer in one randomly selected simulation.  

e) Analogous for ultraviolet light (UV) associated double base substitutions 
(DBSs) in skin melanoma and f ) for platinum treatment associated DBSs in  
non-small cell lung cancer (NSCLC). g) Comparison of immune infiltration 
estimates from Davoli et al.37 between samples bearing simulated GIE alterations 
and wild-type (no simulated GIE) in colorectal cancer. Boxplots: center line, 
median; First section out from the centerline contains 50% of the data. The  
next sections contain half the remaining data until we are at the outlier level.  
Each level out is shaded lighter. N, number of samples. P-values of the boxplots 
are calculated using a two-sided Mann–Whitney U test. One of the 100 
simulations was randomly selected for all the simulated GIE boxplots. SBS,  
single base substitution.
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Extended Data Fig. 5 | Immune evasion mechanisms and TMB. a) Analogous 
to Fig. 7a, but restricted to (from left to right) non-small cell lung cancer, breast 
cancer and colorectal cancer patients. Top panels represent the total number 
of bucket-assigned (white bars with a black contouring line) and GIE-positive 
(pink bars with pink contouring lines) samples across the ten evenly arranged 
TMB buckets. bottom panel, representation of observed (pink) and simulated 
(gray) GIE frequency across these buckets. For the observed GIE values, average 
(represented as pink dots) and standard deviation (std, vertical error bars and 
shaded pink area) values are computed using 1,000 bootstraps from the total 
number of cancer type samples classified into each bucket (from the top panel). 
For the simulated GIE values, average (gray triangle) and standard deviation 
(std, vertical bars and shaded gray area) values are computed from 100 GIE 

simulations using the total number of cancer type samples assigned into each 
bucket. b) Analogous to panel a) but using the entire cohort (N=6,319) and 
twenty evenly arranged buckets as well as clonal TMB (left) and subclonal TMB 
(right) as baseline. c) Equivalent to panel a) but using the entire cohort (N=6,319) 
and twenty evenly arranged buckets and grouping GIE events according to the 
assigned GIE pathway. Label number represents the assigned immune escape 
pathway (from Fig. 1a) d) Similar to panel c) but using the number of predicted 
neoepitopes as baseline for the buckets. Bottom labels, number of estimated 
neoantigens as a relative percentage (1% and 5%) of the number of predicted 
neoepitopes in the bucket. N, number of samples. Muts/Mb, mutations per 
megabase. ICI, immune checkpoint inhibitor.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection

Data analysis Somatic mutation data of the CPCT, DRUP and WIDE projects were kindly shared by Hartwig on 6 February 2020 withan update received on 4 
Februari 2022. 
 
The PCAWG samples were reanalyzed with the Hartwig somatic variant calling pipeline (https://github.com/hartwigmedical/pipeline5) which 
was hosted on the Google Cloud Platform using Platinum (v1.0) (https://github.com/hartwigmedical/platinum). This pipeline uses the 
following software packages: 
BWA (v0.7.17): read mapping 
GATK (v3.8.0) Haplotype Caller: calling germline variants in the reference sample 
SAGE (v2.2): somatic SMNVs and indels calling  
GRIDSS (v2.9.3): simple and complex structural variant calling  
PURPLE (v2.53): combines B-allele frequency (BAF) from AMBER (v3.3), read depth ratios from COBALT (v1.7), and structural variants from 
GRIDSS to estimate copy number profiles, variant allele frequency (VAF) and variant clonality. PURPLE also determines sample gender based 
on sex chromosome ploidy.  
LINX (v1.17): interpretation of simple mutations and structural variants 
CHORD (v1.0): detection of Homologus Repair deficiency.  
 
Unless otherwise specified the scipy (v.1.5.3) library from python v3.6.9 was used to carry out the statistical tests.  
The Hartwig analytical processing pipeline is available at (https://github.com/hartwigmedical/pipeline5) and implemented in Platinum 
(https://github.com/hartwigmedical/platinum). LILAC’s source code is available at (https://github.com/hartwigmedical/hmftools/tree/master/
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lilac). The source code of the neoepitope prioritization pipeline is available at https://github.com/hartwigmedical/hmftools/tree/master/neo. 
The source code to reproduce the figures and analysis of the  manuscript is available at https://github.com/UMCUGenetics/Genetic-Immune-
Escape.  
 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The Hartwig dataset used in this study are freely available for academic use from the Hartwig Medical Foundation through standardized procedures and request 
forms that can be found at https://www.hartwigmedicalfoundation.nl/en/applying-for-data/. This includes raw sequencing data (.bam files and unmapped reads, in 
hg19 reference genome) as well as the processed data through the latest version of the Hartwig tumor processing pipeline.   
 
The re-processed PCAWG data using Hartwig Medical Foundation pipeline (for hg19 reference genome) have also been made available for academic purposes. The 
ICGC part of the PCAWG dataset can be accessed now through the ICGC platform (https://dcc.icgc.org/releases/PCAWG/Hartwig), following their standard access 
control mechanisms originally put in place. Similarly, users with authorized access can download the TCGA portion of the PCAWG dataset at https://
icgc.bionimbus.org/files/5310a3ac-0344-458a-88ce-d55445540120.   
 
Raw sequencing data of the high-resolution HLA typing performed by GenDx can also be downloaded via European Genome-phenome Archive (http://
www.ebi.ac.uk/ega/) under accession number EGAD00001008643.  
 
HLA-I typing, sample-specific GIE events and processed data is now shared in the supplementary data and suplementary tables. 

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Consistent gender proportions were observed across all cancer types except for thyroid adenocarcinomas, which had higher 
male representation in the metastatic cohort (metastatic: 72% male, 28% female; primary: 25% male, 75% female). 

Population characteristics The Hartwig cohort includes late-stage adult (>18 years old) cancer patients recruited across Dutch hospitals. Patients had 
frequently recived pre-biopsy treatment. The PCAWG cohort primarily include adult and early-stage cancer patients that in 
most cases have not recived any treatment prior to tumor biopsy. We refer to the Hartwig (doi: 10.1038/s41586-019-1689-y) 
and PCAWG (doi: 10.1038/s41586-020-1969-6.) flagship papers for further description of patient's population, recruitment 
and ethics oversight.   

Recruitment  Patient recruitment was originally performed by the clinical institutions and hospitals. This study did not play any role in 
patient recruitment.  

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We requested the data for all possible samples from the Hartwig and PCAWG cohorts.  
The Hartwig cohort included 4782 metastatic tumor samples from 4572 patients.  
The PCAWG cohort consisted of 2835 tumor samples from unique patients.  
After substantial filtering based on quality control (see data exclusions) we used a total of 6,319 tumor samples,  including 1,880 primary  
patients from PCAWG and 4,439 metastatic patients from Hartwig cohort. 
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Data exclusions A selection of samples for all analyses was made based on several criteria. To exclude duplicate samples from the same patient for the 

Hartwig cohort, we selected the tumor sample with the most recent biopsy date, and if this information did not exist we selected the sample 
with the highest tumor purity. However, some patients had biopsies from different primary tumor locations (likely independent or secondary 
tumors). In these cases, we kept at least one sample from each primary tumor location, and when there were multiple samples from the same 
primary tumor location, we applied the aforementioned biopsy date and tumor purity filtering criteria. For the PCAWG cohort, we processed 
one tumor sample per donor and tumor sample IDs are included in Supp. Table 2 of the manuscript. As with Hartwig QC filter criteria, samples  
with  a tumor purity lower than 20% were removed as somatic variant calling was less reliable for these samples. PCAWG samples that were 
gray- or blacklisted by the PCAWG consortium were also removed (see https://dcc.icgc.org/releases/PCAWG/donors_and_biospecimens). For 
both cohorts, we only kept samples with >=50 SNVs/indels (likely no tumor cells present in the sample), and removed an additional set of 
samples for several reasons including failed variant calling, insufficient informed consent for use of the WGS data, unnatural SV landscape, 
and one duplicate PCAWG patient (DO217844) that was also included in the Hartwig cohort. Finally, samples with insufficient coverage and 
quality of the HLA-I locus according to LILAC were also discarded.  After strict QC filtering, the PCAWG whitelisted cohort includes 1,880 
samples and this dataset will be made available for the cancer research community via the PCAWG resource page. The metadata for every 
sample including those selected for analyses is detailed in supplementary table 2. 
See also the accompanying publication https://www.biorxiv.org/content/10.1101/2022.06.17.496528v1 for more details about the dataset.

Replication The source data and the source code used in this study are publicly available for academic purposes to ensure the reproducibility of the 
analysis conducted in this stud

Randomization Patients from both datasets (Hartwig and PCAWG) were independently recruited by clinical institutions and hospitals. Patients from the 
Hartwig Medical Foundation cohort represent late-stage cancer patients while PCAWG patients are primarily early-stage untreated cancer 
patients. This study did not play any role in patient's recruitment and randomization into experimental groups.

Blinding This study did not play any role in patient's recruitment .

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 
quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic 
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For 
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a 
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and 
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and 
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample 
cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, 
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 
describe the data and its source.
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Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 

calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in 
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, 
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.
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Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or 
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, 
export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 
provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex. 
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall 
numbers in this Reporting Summary. Please state if this information has not been collected.  Report sex-based analyses where 
performed, justify reasons for lack of sex-based analysis.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
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Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.
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Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).
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Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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