Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cancer genomics

Mathematical modeling of neuroblastoma associates evolutionary patterns with outcomes

A new study deciphers the origin and evolution of childhood neuroblastoma using genome sequencing data, mathematical models and statistical inference, showing how neuroblastoma evolution is an accurate predictor of outcome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clonal evolution model for neuroblastoma development and evolution.

References

  1. Nowell, P. C. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Körber, V. et al. Nat. Genet. https://doi.org/10.1038/s41588-023-01332-y (2023).

  3. Brodeur, G. M. Nat. Rev. Cancer 3, 203–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Turajlic, S., Sottoriva, A., Graham, T. & Swanton, C. Nat. Rev. Genet. 20, 404–416 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Sansregret, L. & Swanton, C. Cold Spring Harb. Perspect. Med. 7, a028373 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alexandrov, L. B. et al. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Spiteri, I. et al. Ann. Oncol. 30, 456–463 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Caravagna, G. et al. Nat. Methods 15, 707–714 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gao, J. & Pickett, H. A. Nat. Rev. Cancer 22, 515–532 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Beaumont, M. A., Zhang, W. & Balding, D. J. Genetics 162, 2025–2035 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Otto, S. P. & Day, T. A Biologist’s Guide to Mathematical Modeling in Ecology and Evolution (Princeton Univ. Press, 2011).

  12. Bishop, C. M. Pattern Recognition and Machine Learning (Springer Nature, 2006).

  13. Topol, E. J. Nat. Med. 25, 44–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Beerenwinkel, N., Schwarz, R. F., Gerstung, M. & Markowetz, F. Syst. Biol. 64, e1–e25 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Caravagna, G. et al. Nat. Genet. 52, 898–907 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author acknowledges funding from the Italian Foundation for Cancer Research (AIRC) under MFAG 2020, ID 24913 project, PI Giulio Caravagna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Caravagna.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caravagna, G. Mathematical modeling of neuroblastoma associates evolutionary patterns with outcomes. Nat Genet 55, 530–531 (2023). https://doi.org/10.1038/s41588-023-01358-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01358-2

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer