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Neuroblastoma arises in early fetal 
development and its evolutionary duration 
predicts outcome

Verena Körber1, Sabine A. Stainczyk    2,3, Roma Kurilov4, Kai-Oliver Henrich2,3, 
Barbara Hero5, Benedikt Brors4, Frank Westermann    2,3  & Thomas Höfer    1 

Neuroblastoma, the most frequent solid tumor in infants, shows very 
diverse outcomes from spontaneous regression to fatal disease. When these 
different tumors originate and how they evolve are not known. Here we 
quantify the somatic evolution of neuroblastoma by deep whole-genome 
sequencing, molecular clock analysis and population-genetic modeling in 
a comprehensive cohort covering all subtypes. We find that tumors across 
the entire clinical spectrum begin to develop via aberrant mitoses as early as 
the first trimester of pregnancy. Neuroblastomas with favorable prognosis 
expand clonally after short evolution, whereas aggressive neuroblastomas 
show prolonged evolution during which they acquire telomere maintenance 
mechanisms. The initial aneuploidization events condition subsequent 
evolution, with aggressive neuroblastoma exhibiting early genomic 
instability. We find in the discovery cohort (n = 100), and validate in an 
independent cohort (n = 86), that the duration of evolution is an accurate 
predictor of outcome. Thus, insight into neuroblastoma evolution may 
prospectively guide treatment decisions.

Cancers result from the accumulation of oncogenic mutations1. Insights 
into tumor evolution—and, particularly, the temporal order of driver 
mutations—are beginning to support diagnosis and treatment2. Initially, 
age–incidence curves were used to estimate the number of rate-limiting 
mutations in carcinogenesis3,4. Recently, the order of driver mutations 
has been inferred from genome sequencing data5–9, and mathematical 
approaches based on population genetics have been used to recon-
struct the clonal evolution of cancers from the statistics of somatic 
variants2,10. Deep whole-genome sequencing (WGS) data are suited 
for such integrative analyses, because the allele frequencies of neutral 
somatic variants that hitchhike with driver mutations provide rich 
information on how drivers shape tumor growth7,11–13.

Tumors of early childhood provide a paradigm for cancer  
evolution in the context of development. A key question is how driver 

mutations subvert the normal development of the tissue of origin14,15. 
The most common solid tumor in infants, neuroblastoma, arises in 
the sympathetic nervous system. A striking feature of neuroblastoma 
is the wide spectrum of clinical outcomes, ranging from low-risk cases 
requiring light or no treatment to high-risk disease that remains fatal 
for ~50% of patients16. Characteristic mutations, including MYCN ampli-
fication, gain of telomere maintenance mechanisms (TMMs) and gains 
(17q) or losses (1p, 11q) of chromosomal segments, have been associ-
ated with high-risk disease17. Nevertheless, the prospective stratifi-
cation of patients into observation and different treatment groups 
remains a formidable challenge. In this Article, we study how neuro-
blastomas originate in development and evolve genetically and ask 
whether this understanding can provide insights into disease severity  
and outcomes.
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may erroneously cause a subset of subclonal mutations to be classified 
as clonal, we analyzed pairs of primary and relapse samples and found 
that the vast majority (85 ± 5%) of clonal SSNVs were present in both 
samples, indicating that sampling did not introduce a strong bias. 
Nevertheless, to estimate MRCA density conservatively we performed 
all subsequent computations with the measured densities corrected 
by a factor of 0.85. In the example tumor, the mean SSNV density of the 
MRCA was one SSNV per 5 million base pairs (bp).

Next, we asked whether clonal chromosomal gains occurred coin-
cident with, or ancestral to, the MRCA. To this end, we quantified SSNVs 
that were identical and clonal on two copies on trisomic and tetrasomic 
segments (termed amplified clonal SSNVs6; Fig. 2b). These mutations 
were acquired before a gain on the respective allele (Fig. 2c, dark green), 
and hence the number of these mutations correlates positively with the 
time at which the chromosomal gain occurred6,29. To make this timing 
measure independent of segment length, we use SSNV density. We 
compared these densities to those at the MRCA based on a negative 
binomial distribution of SSNVs across the genome (Methods). In the 
example tumor, nearly all gains had a mean density of one amplified 
clonal SSNV per 100 Mbp, which is significantly smaller (adjusted 
P < 0.01) than that of the MRCA (Fig. 2e). Hence, the molecular clock 
places these gains ancestral to the MRCA in an early common ancestor 
(ECA) of the tumor. The only exceptions were gains of Chr. 9 and 20q, 
which had a mutation density consistent with that of the MRCA and 
hence occurred later than the ECA. On those segments gained ancestral 
to the MRCA, the densities of amplified clonal SSNVs were statistically 
indistinguishable (Fig. 2e). Hence, near-triploidization occurred early 
and as a temporally confined event during the development of this 
tumor. Thereafter, further genetic evolution occurred before the clonal 
sweep from the MRCA commenced (Fig. 2f).

Two evolutionary classes of neuroblastoma
We timed the MRCAs for all tumor samples, and the ECAs associated 
with chromosomal gains. First, we validated these timing approaches by 
comparison of mutation densities in samples taken following primary 
diagnosis with those of relapsed neuroblastomas. As expected, timing 
of the ECA, defining the putative early origin of tumorigenesis, was 
conserved in all sample types (Extended Data Fig. 2b). By contrast, the 
timing of the MRCA, defining the origin of a tumor sample, was signifi-
cantly later in relapsed tumors, consistent with a bottleneck imposed 
by incomplete tumor resection or cytotoxic therapy (Supplementary 
Table 1) and, eventually, regrowth from a small number of surviving 
cells (Extended Data Fig. 2b,c). Interestingly, the MRCAs of metastases 
resected after initial diagnosis had SSNV densities indistinguishable 
from those of the primary tumors (Extended Data Fig. 2b,c), suggest-
ing that metastases had originated around the time when the tumor 
started to grow from its MRCA.

To infer the early evolution of tumors up to the MRCA, we focused 
on samples taken at initial diagnosis (primary tumors and metastases, 
n = 67 in the discovery cohort). Remarkably, mutation densities of the 
MRCA showed a bimodal distribution (Fig. 3a). This finding suggests 
that there are two classes of neuroblastoma, one where growth of 
the resected tumor commenced early (early-MRCA neuroblastoma) 
and another where it occurred later (late-MRCA neuroblastoma); for 
mutational signatures, see Extended Data Fig. 2d,e. Of note, although 
we estimated the mutation density of the MRCA conservatively (Meth-
ods), the dichotomy between early and late MRCA emerged robustly.

These data raise the question of whether late-MRCA tumors began 
to develop later or developed early and evolved for a longer period 
of time. To address this question in terms of the molecular clock, we 
analyzed SSNV densities on chromosomal/segmental gains in both 
tumor classes that defined an ECA. All 20 early-MRCA tumors had such 
gains (with 70% showing near-triploidization, 35% harboring segmental 
gains and 25% displaying both features; Fig. 3b). The respective muta-
tion densities timing chromosomal gains and MRCA were statistically 

Results
Mutation patterns in a comprehensive neuroblastoma cohort
We assembled a discovery cohort of deep (~80×) WGS data of 100 neu-
roblastomas (Supplementary Table 1), covering all clinical stages of 
the disease according to the International Neuroblastoma Staging 
System (Fig. 1a). Sixty-seven samples were derived from initial diagno-
ses (including seven from metastases) and 33 from relapsed tumors. 
Median age at primary diagnosis was 0.7 years for stages 1, 2 and 4S, 
3.5 years for stage 3 and 3.9 years for stage 4 (Extended Data Fig. 1a).

Median tumor purity was high (88%), which allowed for reliable 
estimation of tumor ploidy (Fig. 1b) as confirmed by direct meas-
urement of DNA index (Extended Data Fig. 1b). Tumors had base-
line ploidies between two and four, with 55, 33 and 12 samples being 
near-diploid, near-triploid and near-tetraploid, respectively. Each 
ploidy class contained tumors of all stages (Extended Data Fig. 1c). Rela-
tive to baseline ploidy, we detected in 96% of the tumors characteristic 
segmental (1q and 17q) or whole-chromosome (2, 7 and 17) gains, as well 
as segmental (1p, 11q) or whole-chromosome (11) losses (Extended Data 
Fig. 1d), all of which are probable drivers of neuroblastoma18–23. Based 
on tumor cell content and ploidy, the vast majority of these gains and 
losses were clonal and hence were present in the most recent common 
ancestor cell (MRCA) of the tumor (Fig. 1c). These data point to ane-
uploidy as an early feature of neuroblastoma.

The majority of tumors (69%) combined chromosomal gains or 
losses with candidate driver mutations23 at smaller genomic scale  
(Fig. 1d and Supplementary Tables 2–5), including focal gene amplifica-
tions (for example, MYCN, CDK4, ALK), structural rearrangements (for 
example, in TERT and ATRX), large deletions (for example, CDKN2A, 
ATRX), small insertions/deletions (indels; for example, in ATRX and NF1) 
and somatic single-nucleotide variants (SSNVs which, among other 
genes, occurred in ALK and those coding for components of MAPK 
pathways: HRAS, KRAS, NRAS and BRAF). Most commonly, these addi-
tional oncogenic drivers support telomere maintenance by alternative 
lengthening of telomeres (ALT), MYCN amplification or rearrangement 
in the TERT locus, which, collectively, are a molecular predictor of  
poor outcome24–26.

In contrast to driver mutations, neutral SSNVs and small indels 
are continuously accumulated and contain information on tumor 
evolution. Analysis of mutational signatures assigned the majority of 
SSNVs to clock-like signatures (SBS1, SBS5, SBS40). Overall the next 
most abundant signature was SBS18, associated with reactive oxygen 
species27 and frequently found in neuroblastoma28, followed by SBS3, 
associated with failure of homologous recombination in dividing cells 
(Fig. 1e). These signatures overall occurred at similar frequencies clon-
ally and in subclones (Extended Data Fig. 1e).

Neutral SSNVs distinguish sequential driver events
To understand when and how neuroblastomas evolve, we used neutral 
SSNVs as a molecular clock to time key events: (1) the emergence of the 
MRCA, from which the clonal sweep that defines the resected tumor 
emerges, and (2) the acquisition of clonal chromosomal gains (which 
may have occurred before or coincident with the MRCA). For each 
tumor, we computed the frequency distribution of somatic variants on 
all genomic segments of a given copy number. An example tumor, classi-
fied as near-triploid (Fig. 2a), had dominant copy numbers 2 and 3 and a 
smaller portion of segments at copy number 4—a typical configuration 
in neuroblastoma. On each copy number, we found a large clonal peak 
(Fig. 2b) comprising mutations occurring on a single chromosomal 
copy in each tumor cell. In addition, on copy numbers >2, we detected 
clonal mutations present on the two (and in some cases more) copies of 
a multiplied chromosome. Collectively, both single- and multiple-copy 
clonal SSNVs characterize the MRCA (Fig. 2c). Indeed, the density of 
clonal SSNVs was similar for the different copy numbers (Extended Data 
Fig. 2a), thus timing the MRCA by means of a molecular clock (Fig. 2d). 
To evaluate a potentially biasing effect of partial tumor sampling, which 
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Fig. 1 | Molecular subtypes and mutation spectrum of the discovery cohort. 
a, Clinical parameters and molecular characteristics. b, Tumor baseline ploidies 
and tumor cell content. Boxes show median, 25 and 75% percentiles and whiskers 
extend to the smallest and largest value within 1.5× interquartile range.  
Shown are n = 55 near-diploid, n = 33 near-triploid and n = 12 near-tetraploid 
tumors. c, Number of chromosomes harboring gains and losses ≥106 bp. Shown 

are mean and s.e. of the mean for n = 100 tumors. d, Copy number variants 
and small-scale mutations (SSNVs, small insertions/deletions, amplifications, 
homozygous deletions and structural rearrangements) in candidate driver genes. 
e, Exposures of mutational signatures (COSMIC v.3.1) per sample. Signatures 
SBS1, SBS5 and SBS40 were grouped into a single, clock-like mutations signature.
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indistinguishable in the vast majority (90%) of cases (Extended Data 
Fig. 3a shows an example), suggesting that aneuploidy was not fol-
lowed by acquisition of further clonal drivers in these tumors. In the 
remaining 10% of tumors, separate ECAs and MRCAs were timed but 
these were very close in regard to mutation density (0.04 SSNVs per 
Mb between ECA and MRCA; Extended Data Fig. 3b;), implying that 
they were temporally close events. Indeed, 95% of early-MRCA tumors 
lacked additional small-scale drivers while a single tumor harbored a 
MYCN amplification and a mutation in ALK. Hence early-MRCA tumors 
appear to be driven predominantly by aneuploidization.

By contrast, in the majority (55%) of the 47 late-MRCA tumors, we 
distinguished two well-separated events, ECA and MRCA (Fig. 3c, left), 
with average distance 0.24 ± 0.1 SSNVs per Mb. In about one-third of 
these cases, a single early near-triplodization event defined an ECA  
(Fig. 2); whereas, in the remaining two-thirds, smaller-scale chromo-
somal gains defined the ECA (Extended Data Fig. 3c). Hence, the major-
ity of late-MRCA tumors showed a signature of early gains followed 
by further genetic evolution to the MRCA. In the remaining 45% of 
late-MRCA cases, we could not reliably time a separate ECA (for exam-
ple, if very short fragments were gained or if gains were found at copy 
number >4) (Fig. 3c (right) and Extended Data Fig. 3d). Hence, for  
these tumors we cannot time an early genetic event which, however, 
leaves open the possibility that small-scale mutations, chromosomal 

losses or high-level amplifications (four or more copies), neither of 
which can be timed reliably, preceded the MRCA of the tumor. Consist-
ent with this hypothesis, the mutation densities of the MRCA in tumors 
without timeable ECA were nearly as high as in those with two distin-
guishable events (Extended Data Fig. 3e). Moreover, near-tetraploid 
tumors without timeable ECA showed evidence of sequential events. 
Here, we found a 2:0 allelic configuration in 11 of 12 near-tetraploid 
tumors with 1p loss, suggesting that 1p deletion preceded genome 
doubling. Overall, the ECA of late-MRCA tumors had mutation density 
indistinguishable from the MRCAs of early-MRCA tumors (Fig. 3d), sug-
gesting that the majority of late-MRCA tumors acquired aneuploidy as 
early as the early-MRCA tumors.

Finally, we analyzed the timing of gains in genome-wide events: 
near-triploidization of the genome or genome doubling. In all such 
tumors, the individual gains involved showed statistically indistin-
guishable timing, which is consistent with near-triploidization and 
genome doubling occurring as single catastrophic events (Extended 
Data Fig. 3f).

In sum, we find that the MRCAs in primary neuroblastoma fell into 
two evolutionary groups: in early-MRCA tumors, near-triploidization 
of the genome and/or gains of chromosomal arms or whole chromo-
somes coincided with the MRCA. Similarly, in more than one-half of 
late-MRCA tumors, an early ECA was defined by whole-chromosomal 
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or arm-level gains. Hence, these late-MRCA neuroblastomas originated 
at a time similar to early-MRCA examples but then showed prolonged 
genetic evolution.

Long evolution of neuroblastoma predicts unfavorable 
outcome
The early-MRCA class contained cases of stages 1, 2 and 4 S, typically 
having a prognosis, but only one case of stage 4 (Fig. 3a). Hence, we 
asked whether MRCA timing predicts outcome. Remarkably, early 
MRCA timing clearly identified cases with long event-free survival 
(Fig. 4a) and long overall survival (Fig. 4b). To further test this idea, 
we assembled an independent cohort of primary tumors and metas-
tases, which was enriched for tumors with WGS at the customary cov-
erage of 30× (n = 86; Supplementary Tables 6–10)22,25. We evaluated 
the timing of ECA and MRCA in each sample as described for the dis-
covery cohort. The mutation density of the MRCA showed the same 
bimodal pattern as in the discovery cohort (Fig. 4c). Moreover, the 
three main patterns of ECA and MRCA occurrence were identical to 
the discovery cohort: coincidence of chromosomal/segmental gains 
and MRCA in the early-MRCA class (Fig. 4d; compare with Fig. 3b); 
in the late-MRCA class, chromosomal/segmental gains defining an 
early ECA that substantially preceded either a late MRCA (Fig. 4e, 
left; compare with Fig. 3c, left) or a late MRCA without timeable ECA  
(Fig. 4e, right; compare with Fig. 3c, right). Thus, the validation cohort 

corroborates the scenarios of ECA and MRCA timing found in the  
discovery cohort.

In the validation cohort, MRCA timing was an accurate predic-
tor of both event-free and overall survival (Fig. 5a,b). Merging the 
two cohorts (n = 152 primary tumors and metastases, excluding one 
case lacking survival data), we confirmed this result (Fig. 5c,d). To 
compare MRCA timing with other predictors of survival, we consid-
ered clinical variables used worldwide (stage, age), gain of a TMM 
(which improves on the clinically used criterion, MYCN amplifica-
tion26) and a more recently proposed molecular predictor, the muta-
tion status of the RAS/p53 pathway25. Early MRCA timing emerged as 
the most informative predictor of event-free survival (Fig. 5); overall 
survival was best explained by both MRCA timing and mutations in the  
RAS/p53 pathway (Extended Data Fig. 4). In sum, survival analyses 
suggest that extended evolution up to the founding cell of the primary 
tumor predicts unfavorable outcome.

Genomic instability and telomere maintenance in late-MRCA 
tumors
Given that both early- and late-MRCA neuroblastomas begin to develop 
in the same time window (compare with Fig. 3d) but show markedly dif-
ferent durations of evolution and clinical outcome, we asked whether 
late-MRCA tumors have evolved further than early-MRCA exam-
ples simply by chance, or whether there are molecular factors that 
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predispose to ongoing evolution in the late-MRCA class. Characteristic 
oncogenic events (chromosomal or segmental gains or losses, TMMs) 
and standard prognostic features (stage and age at diagnosis) showed 

strong separation between the two classes of neuroblastoma (Fig. 6a). 
Early-MRCA tumors had predominantly whole-chromosome aneuploidy 
(for example, chromosomes 17 and 7), whereas arm-level aneuploidy 
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(including gains of 17q, 7q and 1q, as well as loss of 11q and 1p) was preva-
lent in the late-MRCA group. In late-MRCA tumors with timeable ECA, 
the vast majority of segmental gains that we could time were coinci-
dent with the ECA (Figs. 3c and 4e, dark green squares). Taken together,  
different processes underlie the early acquisition of aneuploidy in the two 
classes: mis-segregation of entire chromosomes in early-MRCA tumors 
vis-à-vis genomic instability in late-MRCA tumors (Fig. 6a).

Acquired TMMs were strongly enriched in the late-MRCA class 
(Fig. 6a); 12% of early-MRCA tumors but 81% of late-MRCA tumors 
gained telomere maintenance—via MYCN amplification, ALT or TERT 
rearrangement—in the combined discovery and validation cohorts 
(Fig. 6b). Due to their small size, these structural rearrangements 
cannot be timed using mutation densities and hence may have been 
acquired before the emergence of arm-level aneuploidy, together with 
aneuploidy or subsequently. Early timing of arm-level aneuploidy in 
more than one-half of the late-MRCA cases (that is, tumors with an 
ECA; left-hand panels in Figs. 3c and 4e) suggests that telomere main-
tenance was gained during a secondary event between ECA and MRCA 
in these cases, which mainly included ALT and TERT rearrangement. 
In the remaining cases, where arm-level aneuploidy was timed at the 
MRCA and no ECA was identifiable (right-hand panels in Figs. 3c and 
4e), telomere maintenance could also have been acquired in an onco-
genic event preceding the MRCA. Interestingly, those cases with MYCN 
amplification fell predominantly within this latter group (Fisher’s exact 
test, P = 0.006055, odds ratio = 3.9 (1.4, 11.6)), suggesting that MYCN 
amplification tends to occur earlier than ALT or TERT rearrangement. 
Indeed, MYCN-amplified tumors generally had an earlier MRCA than 
tumors with ALT or TERT rearrangement (Fig. 6c).

Collectively, these findings establish a link between genetic evo-
lution of neuroblastoma and the observation that neuroblastomas 
with extensive arm-level aneuploidy tend to carry a poor prognosis30. 
The typically late-emerging MRCA in these cases indicates that the 
underlying genomic instability predisposes these tumors to prolonged 
evolution, including the acquisition of TMMs.

Chromosomal gains occur during sympathetic neurogenesis
Finally, we asked whether our genetic insights into neuroblastoma 
development could be synthesized into an integrative model of tumor 
evolution. To this end, we devised population-genetic models and 

quantified key parameters by fitting the models to our measured data, 
including the time-dependent incidences of ECA and MRCA and the 
variant allele frequency (VAF) distribution of somatic variants. In addi-
tion, we required the models to reproduce the overall incidence of the 
disease in the human population. For this reason, we focused on neuro-
blastomas with poor prognosis (‘high-risk’, enriched in the late-MRCA 
class), which occur in around one in 105 children (the frequency of 
low-risk cases, enriched in the early-MRCA class, is not reliably known 
due to incomplete diagnosis31–34).

The models describe a proliferative population of putative cells 
of origin that are lost by either differentiation or cell death (Fig. 7). On 
average, µ SSNVs occur per cell division. A rare subset of mutations 
(including chromosomal gains/losses and smaller-scale events, such 
as SSNVs or localized MYCN amplification) will be oncogenic drivers 
and give rise to selected cell clones. As a minimal requirement for the 
evolution of a high-risk tumor, we accounted for two oncogenic events, 
defining ECA and MRCA, with mutation frequencies µ1 and µ2 per cell 
division. To determine these parameters, the model was fit to the 
experimental data using approximate Bayesian computation. Initially, 
we assumed that cells of origin are generated during fetal develop-
ment and then remain available for neuroblastoma development. 
This simple model consistently overestimated the overall incidence 
of high-risk disease (Fig. 8a). By contrast, a model in which putative 
cells of origin were available for only a limited time window (Fig. 8b) 
accurately reproduced both the overall incidence and dynamics of the 
emergence of ECA and MRCA (Fig. 8c–e and Extended Data Fig. 5a).

The inferred rate of SSNV acquisition (µ) was 3.2 ± 0.4 SSNVs per 
day, consistent with measurements of somatic mutation rate in the 
developing central nervous system (5.1 (1.5, 9.0; 95% confidence interval)  
SSNVs per day)35. The model further inferred that oncogenic driver 
events occurred on average once per 1 million cell divisions (geometric 
mean of µ1 and µ2), which is consistent with a global estimate of driver 
mutation rate of 3.4 × 10–5 per division in the human genome13, given 
that only a subset of all drivers will cause neuroblastoma. We used SSNV 
rate to calibrate the molecular clock against real time, which placed 
the ECA within the first trimester of pregnancy (Fig. 8c), at which time 
rapidly dividing sympathetic neuroblasts are developing36. This first hit 
(ECA) sustains a subclone in which the MRCA emerges due to a further 
oncogenic event (Extended Data Fig. 5b) which, in the majority of cases, 
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clones. Cells divide at rate λ and differentiate at rate δ; oncogenic mutations 
reduce the loss rate by a factor 1/r (first event) and 1/s (second event). Neutral 
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the ECA of the tumor) and µ2λ (corresponding to the second oncogenic event 
and defining the MRCA of the tumor). b, Population dynamics of normal 
neuroblasts (N), premalignant clones (harboring one oncogenic event, M1) 
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are defined in a. c, The model outlined in a,b yields a probability distribution 
for the time point at which the MRCA emerges (PMRCA(t)); likewise, it also yields 
a conditional probability for the time point at which the ECA emerged, given 
the mutation density in the MRCA (PECA(t|no. of SSNVsMRCA)). The parameters 

of both probability distributions can be estimated from the measured SSNV 
counts at ECA and MRCA across the cohort. d, Model of mutation accumulation 
during neuroblastoma growth. Neutral SSNVs are continuously acquired at rate 
µeff, defined as the number of neutral mutations per effective division (where 
one effective division produces two surviving daughter cells). By fitting the 
model to the measured VAF distribution, an estimate for µeff is obtained on the 
level of individual tumors (subsetting on cases with sufficient data quality and 
excluding tumors with evidence for subclonal selection during tumor growth). 
e, Estimation of division rate in actual time. The time between gastrulation and 
diagnosis (tD) consists of a premalignant time span, up to the emergence of the 
MRCA (t1), and the expansion of the tumor thereafter (t2). Assuming exponential 
tumor growth and approximately 109 tumor cells at diagnosis, this yields an 
estimate for the division rate per tumor for the subset used to estimate µeff.  
To obtain an estimate for the population level, these estimates are subsequently 
averaged across the cohort.
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occurred within the first year of life (Fig. 8d). The model fit of Fig. 8 was 
based on all SSNVs, because our data (Extended Data Figs. 1e and 2d) 
suggest that mutational processes may not change markedly during 
neuroblastoma evolution. To test the robustness of our inference, we 
also performed all analyses with the subset of clock-like SSNVs as input. 
The inferred rate of clock-like SSNV acquisition (µ) was 2.3 (1.2, 2.3; 80% 
credible interval) per division (corresponding to 2.2 ± 0.3 SSNVs per 
day). All other inferred parameters remained practically unchanged 
(Extended Data Fig. 5c,d). Hence, confining the analysis to clock-like 
mutations corroborates the real-time calibration of ECA and MRCA.

A further insight afforded by the population-genetic model is the 
extent of cell loss in the growing tumor. In general, only a subset of cell 
lineages will support growth by continued symmetric self-renewal of 
malignant cells whereas other lineages will terminate by either cell 
differentiation into nonproliferating states or cell death. We inferred 
the ratio of self-amplifying tumor cell divisions among all divisions 
from the subclonal tail of VAF distribution (Methods and ref. 37), find-
ing that only ~10% of tumor cell divisions result in growth of late-MRCA 
neuroblastomas that acquired TMMs (Fig. 8f,g). This inference is con-
sistent with the clinical observation of extensive cell death in such 
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fit; data, mutation densities of the MRCA from primary neuroblastomas with an 
acquired TMM, combining discovery and validation cohort; solid line, maximum-
likelihood estimates of data with error bars representing s.d. estimated by 
bootstrapping). b, Transient putative population of origin. c,d, Model fits to 
ECA (c) and MRCA (d) with transient population of origin, as in b accounts for 
the experimental data [green shaded areas, 95% posterior probability bounds; 
vertical lines and shaded areas, mean and 95% CI of the estimated end of the first 
trimester (12 weeks p.c.) and of the time of birth (38 weeks p.c.); data, mutation 
densities of ECA (dark green, n = 47) and MRCA (light green, n = 95) from primary 
neuroblastomas (tumors/metastases) with acquired TMM; solid lines, maximum-
likelihood estimates; error bars, s.d. estimated by bootstrapping]. e, Predicted 
transient expansion of putative cells of origin, agreeing with rapid proliferative 

phase of sympathetic neuroblasts (shaded area, 95% posterior probability; 
vertical line and shaded area, mean and 95% CI of the estimated end of the first 
trimester (12 weeks p.c.)). f, Estimated mutation rate per effective cell division, 
computed from primary tumors/metastases with MYCN amplification (amp.) 
(n = 11), TERT rearrangement (n = 2), ALT (n = 14) or no acquired TMMs (n = 15), 
using cases with highly accurate subclonal VAF distribution due to high  
tumor purity. Boxes represent median and 25 and 75% percentiles; whiskers 
extend to the smallest and largest values within 1.5× interquartile range.  
g,h, Estimated loss rate (relative to cell division, g) and cell division rate (h) in 
primary tumors and metastases analyzed in f (shown are n = 11 primary tumors 
with MYCN amplification, n = 2 primary tumors with TERT rearrangement, n = 14 
primary tumors with ALT and n = 15 primary tumors without acquired telomere 
maintenance). Boxes represent median and 25 and 75% percentiles; whiskers 
extend to the smallest and largest values within 1.5× interquartile range; λT, 
division rate during tumor growth; δT, loss rate during tumor growth.
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neuroblastomas. Moreover, the average cell division rate was lower 
in neuroblastomas with ALT than in those with MYCN amplification or 
TERT rearrangement (Fig. 8h), again in line with clinical observation; 
our estimated cell division rates agree quantitatively with those meas-
ured in neuroblastoma in vivo38. The fraction of self-renewing cell divi-
sions supporting tumor growth was inferred from VAF distribution also 
for tumors without acquired TMMs, all falling within the early-MRCA 
class, yielding a higher value of ~30% (Fig. 8g). Hence, cell loss appears 
to be a stronger selective pressure for late-MRCA neuroblastomas, the 
majority of which gain TMMs, than for early-MRCA neuroblastomas, 
which rarely acquire such mechanisms.

Discussion
In this paper we timed genetic events in the evolution of neuroblastoma 
using the molecular clock of SSNV accumulation and, inferring the rate 
of SSNV acquisition from the distribution of VAFs, related this clock 
to real time by factoring in the age at diagnosis. In two-thirds of cases 
we find that chromosomal gains implicated in the pathogenesis of the 
disease occurred early, and typically within the first trimester of preg-
nancy. With respect to further evolution, these cases fall into two dis-
tinct classes: in the early-MRCA class the early chromosomal gain event 
also marked clonal outgrowth of the resected tumor whereas in the 
late-MRCA class the tumors evolved further before clonal outgrowth 
commenced. Remarkably, in our cohort MRCA class is an accurate pre-
dictor of clinical outcome. This is true regardless of whether we could 
time an early chromosomal gain, and implies that neuroblastomas with 
a longer evolutionary history are more aggressive. Because the strong 
association between MRCA timing and outcome was also present with 
30× WGS, the utility of this predictor for patient stratification may be 
tested in clinical trials.

Our real-time inference shows that neuroblastomas across the 
entire clinical spectrum acquired aneuploidy within the first tri-
mester of pregnancy, when the adrenal medulla forms from sympa-
thetic neuroblasts. Moreover, matching disease incidence with the 
population-genetic model suggests that the initial oncogenic event 
is limited to this time window. The transcriptomes of neuroblasto-
mas most resemble those of sympathetic neuroblasts15,36. In this early 
window, neuroblasts are highly proliferative, which may make them 
vulnerable to aneuploidy. Finally, the observation that aneuploidy 
via near-triploidization is a temporally confined event is consistent 
with the long-standing hypothesis that this karyotype results from 
endoreduplication of the genome followed by tripolar cell division 
and selection of the fittest daughter cell39,40.

The molecular nature of early aneuploidy is associated with 
whether the tumor continues to evolve: neuroblastomas with 
whole-chromosome aneuploidy typically did not evolve further and 
were overall associated with favorable outcomes; in contrast, most 
tumors with early genomic instability had unfavorable outcomes. 
Continued evolution of such tumors has also been noted in a recent 
study taking multiregion biopsies41, emphasizing the potential of 
spatially resolved genetic and transcriptomic analysis42,43. We did not 
detect specific drivers of genomic instability: in particular, p53 func-
tion was not impaired genetically. However, with prevalent 17q gains, 
reduced expression of TP53 (located on 17p) relative to driver genes 
expressed on 17q (for example, BIRC5, IGF2-BP1 and BRIP1) may favor 
genomic instability44,45.

Accurate risk stratification in neuroblastoma remains a major 
concern. Our data suggest a link between diverse criteria—age at diag-
nosis, segmental versus whole-chromosome gains and losses and 
acquisition of TMM25,46—based on how neuroblastomas evolve. We 
find that a greater age at diagnosis is often linked to longer evolution 
of the tumor rather than later origin. Paradoxically, this implies that 
low-risk tumors reach detectable size earlier than high-risk. Indeed, 
we infer that low-risk tumors have a substantially lower fraction of 
tumor cell loss than high-risk tumors and hence should grow faster.  

Acquired TMMs should, consequently, provide a larger selective advan-
tage in the high-risk, late-MRCA group where they indeed are enriched. 
Hence, late-MRCA tumors may grow more rapidly only after gaining 
telomere maintenance (similar to IDH-wild-type glioblastomas7) and 
hence are diagnosed later. Interestingly, we detected five neuroblas-
tomas with amplified MYCN in the early-MRCA class, and, remark-
ably, all of these patients survived until the end of the observation 
periods (1,447–4,177 days), in contrast to the poor survival of patients 
with MYCN-amplified tumors in the late-MRCA group. Our findings  
suggest that MRCA timing may be worth considering as a parameter 
for patient stratification.
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Methods
Patient cohorts, tumor samples and ethical approval
Cohorts of primary and relapsed neuroblastoma tumors were ret-
rospectively analyzed. Tumor material was collected as part of the 
diagnostic workflow of the German Neuroblastoma trial by the Society 
for Pediatric Oncology and Hematology and collected in the Neuroblas-
toma tumor bank. All trials were approved by the Ethics Committee of 
the Medical Faculty, University of Cologne, and collection and use of 
all tumor tissue material was approved (registry nos. NB97, NB2004 
and NB2016). This study includes data of neuroblastoma tumors pre-
viously published in Hartlieb et al.24 and Peifer et al.26 The study by 
Hartlieb et al. also contains a subset of tumors from the St. Anna Kinder-
krebsforschung at the Children’s Cancer Research Institute in Vienna, 
Austria, as well as tumors analyzed in the registry trial INFORM47. The 
study office of the Neuroblastoma trial in Cologne provided clinical 
annotations and survival information. All patients or their legal guard-
ian approved the use of tumor material by signed informed consent. 
For analysis, all resected tumors were divided into four quadrants, 
all of which were evaluated histologically. MYCN status was assessed 
as a routine clinical marker for all tumors using fluorescence in situ 
hybridization. A cross-sectional slice of one quadrant was used for DNA 
extraction for WGS; the same quadrant was used for ploidy analysis, 
measuring the DNA index. DNA was isolated using phenol chloroform 
extraction from fresh-frozen tumor material. Control DNA was isolated 
from whole blood using the NucleoSpin Blood DNA extraction kit 
(Macherey-Nagel) according to the manufacturers’ instructions. Details 
of the included samples are provided in Supplementary Tables 1 and 6.

WGS
WGS workflows for the previously published data are described in  
ref. 24. For additional samples, high-coverage, WGS was performed 
on a patterned flowcell v.2.5 (150-bp, paired-end) with coverage of 
about 80× for the tumor and whole-blood control samples. All tumors 
had a histological tumor cell content of ≥60%. Sequencing libraries 
were prepared using the Truseq DNA Nano kit (Illumina) accord-
ing to the manufacturers’ instructions, and size selected using SPRI 
beads (Beckman Coulter Genomics). Alignment and variant calling 
was done using the One Touch Pipeline service of the German Can-
cer Research Center (DKFZ)48. Alignment was done using workflow 
v.1.2.73-1, available at Github (https://github.com/DKFZ-ODCF/
AlignmentAndQCWorkflows). In brief, sequences were aligned to 
the 1000 Genomes project assembly with decoy and PhiX contigs 
using BWA-MEM v.0.7.15 with option ‘-T 0’. Merging and duplication 
marking were performed using Sambamba v.0.6.5, and bam files were 
filtered using Samtools v.0.1.19. Calling of SSNVs, somatic Indels, copy 
number variations and SVs was done using inhouse workflows, avail-
able at https://github.com/DKFZ-ODCF/SNVCallingWorkflow, https://
github.com/DKFZ-ODCF/IndelCallingWorkflow, https://github.com/
DKFZ-ODCF/ACEseqWorkflow and https://github.com/DKFZ-ODCF/ 
SophiaWorkflow.

Estimates of tumor cell content were manually adjusted in one 
case (NBE40) following visual inspection of VAF distribution. Struc-
tural variants were excluded in the present study if they had a minimal 
event score of <5; focal amplifications were defined as regions with 
copy number ≥10; homozygous deletions were defined as regions 
with copy number <0.9. Deletions of (parts of) chromosomal arm 
1p were defined as p-terminal regions lost relative to 1q and, moreo-
ver, with copy number ≤1 in near-diploid, ≤2 in near-triploid or ≤3 in 
near-tetraploid tumors. In analogy, we annotated deletions of chromo-
some 11q if the copy number was ≤1 in near-diploid, ≤2 in near-triploid 
or ≤3 in near-tetraploid tumors, and if 11q was lost relative to 11p. For 
gains on chromosomes 1, 2, 7 and 17 we required the copy number to be 
higher than the (rounded) basal ploidy of the tumor. Partial gains on 1q, 
2p, 7q and 17q were defined as regions on the respective chromosomal 
arm that were gained relative to the other chromosomal arm.

Mutational signatures. Mutational signatures were learned de novo 
and thereafter decomposed into Cosmic mutational signatures v.3.1 
(ref. 49) (http://cancer.sanger.ac.uk/cosmic/signatures) using Sig-
ProfilerExtractor (v.1.1.1)50. Only signatures contributing to ≥5% of 
the mutations in at least one sample and, in addition, identified in 
at least 10% of samples, were considered. The contributions of these 
signatures to each sample were then re-estimated using the R pack-
age mmsig v.0.0.0.9000 (ref. 51) (setting strandbias=F, bootstrap=F, 
cos_sim_threshold=0.01, force_include=c(“SBS1”, “SBS5”)). For visuali-
zation, signatures SBS1, SBS5 and SBS40 were combined into a single, 
clock-like mutational signature.

Stratified analysis of clonal and subclonal mutations was  
p e r f o r m e d  by  c l a ss i f y i n g  m u t a t i o n s  a s  s u b c l o n a l  i f 

∑nvar
k=0 (

nvar + nref
k )pk (1 − p)nvar+nref < 0.05;p = ρ

ρCN+2(1−ρ)
, where ρ is esti-

mated tumor cell content, nvar and nref are the number of variant and 
reference reads, respectively, and CN is copy number.

Mutation timing. Estimation of numbers of amplified and 
non-amplified clonal mutations. We estimated mutation densities  
at partial and entire chromosomal gains, and at the MRCA of the  
tumor from the distribution of VAFs among clonal mutations. To this 
end we counted clonal mutations separately on each autosome,  
stratified by copy number (CN) state. Regions lacking a CN estimate 
were assigned to a specific CN state if the measured coverage  
ratio (CR) and B-allele frequency (BAF) matched the expected  
ratios within measurement error. Specifically, we required  

for each segment i, [ CNiρ+2(1−ρ)
πρ+2(1−ρ)

− 0.1] ≤ CRi ≤ [ CNiρ+2(1−ρ)
πρ+2(1−ρ)

+ 0.1]  and 

[ bi

CNi
− 0.05] ≤ BAFi ≤ [ bi

CNi
+ 0.05] , where CNi is the copy number of seg-

ment i, ρ the tumor cell content, π the average tumor ploidy and b the 
number of B-alleles. States with copy number >4 or of size ≤107 bp were 
excluded from the analysis because the statistics become ambiguous 
for short pieces and high CN states.

On each retained segment we estimated the number of clonal 
mutations, distinguishing clonal mutations present on a single allele 
(‘non-amplified clonal mutations’) from those present on multiple 
alleles (‘amplified clonal mutations’). To this end we applied a statistical 
framework52, distinguishing amplified clonal mutations acquired 
before a clonal gain and thus present on all A-alleles, or on all B-alleles 
at a given CN state, from non-amplified clonal mutations acquired 
either on the non-amplified allele or after clonal gain but before the 
MRCA and hence present on a single copy; the remaining mutations 
are subclonal. Accordingly, we expect to find clonal mutations at 
VAFs ∈ { 1

CN
, CN−b

CN
, b
CN
} in a pure sample, and at VAFs ∈ { ρ

ζ
, (CN−b)ρ

ζ
, bρ

ζ
} in 

an impure sample with tumor cell content ρ, where:

ζ = ρCN + 2 (1 − ρ) (1)

is the average copy number of a given locus in the sample. Because 
measured VAFs are randomly distributed around their true values, we 
fit a binomial mixture model to the clonal mutations. To avoid misclas-
sification of subclonal mutations as clonal, we neglected all variants 
with VAF < ρ

ζ
. By symmetry, this cutoff retains half of the non-amplified 

clonal mutations, introducing a subsequent correction factor of 2 
(equation (4)). Defining the weights w = (w1,wCN−b,wb) , for the 
non-amplified clonal and amplified clonal mutation peak, respectively, 
we computed the probability of measuring nvar, j variant reads and nref,j 
reference (nonvariant) reads at the position of the jth SSNV to:

P (nvar, j,nref, j|CN,ρ,w) = ∑
k∈{1,CN−b,b}

B (nvar, j;nvar, j + nref, j,
ρk
ζ )P(k|w), (2)

where B (nvar, j;nvar,i + nref,j,
ρk
ζ
) is the binomial probability for drawing 

nvar, j variant reads at sequencing depth nvar, j + nref, j  from the peak  
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comprising mutations that are clonal on k chromosomal copies.  
Defining a uniform prior probability, P(w), for the weights, we com-
puted, up to normalization, the posterior probability as:

P(w|{nvar, j,nref, j}Nj ,CN,ρ) ∝
N
∏
j=1

P (nvar, j,nref, j|CN,ρ,w)P (w) , (3)

where N is the total number of SSNVs under consideration. Clonal 
mutations were then assigned to distinct clonal peaks according to the 
weights at maximum a posteriori probability (MAP), yielding, on seg-
ment l, estimates for the number of clonal mutations on non-amplified 
chromosomes, n1,l, on amplified b alleles, nb,l (if b > 1) and on amplified 
a alleles (with copy number CN − b), nCN−b,l, according to:

n1,l = 2MAP (w1,l)Nl,nb,l = 2MAP (wb,l)Nl, andnCN−b,l = MAP (wCN−b,l)Nl.
(4)

Mutation timing. Timing MRCA and ECA. Mutation densities (SSNVs 
per bp) at the MRCA were estimated from the number of non-amplified 
clonal mutations and total size of the analyzed genome, g = ∑l gl   
(ref. 52). The number of mutations per copy that were acquired up to 
the MRCA is

nl =
n1,l + nCN−b,l(CNl − bl) + nb,lbl

CNl
. (5)

If tumor samples were well mixed, or tumors completely sampled, 
mutation densities at the MRCA could be directly estimated as nl/g. In 
practice, however, nl may consist of a set of true clonal mutations, 
acquired before tumor growth, and an additional set of mutations that 
appear as clonal in the tumor sample due to incomplete sampling. To 
correct for the latter, false-positive (FP), clonal mutations we compared 
primary and relapse samples from two such pairs available in our data-
set (NBE11/NBE66, NBE51/NBE78). The fraction of conservative clonal 
mutations in the primary sample that remained undetected in the 
relapse sample was 15 ± 5% and was taken as the fraction of FP. With this 
correction, the mutation count, mMRCA, and mutation density, m̃MRCA, 
at MRCA were estimated as:

mMRCA = ∑
l
nl (1 − FP) and m̃MRCA =

mMRCA
g , (6)

respectively. Lower and upper 95% confidence bounds for m̃MRCA were 
estimated by bootstrapping the genomic segments 1,000 times.

Next, we tested for each gained segment whether amplified clonal 
mutations were significantly less frequent than expected at the MRCA 
and, accordingly, assigned the segment to either the MRCA or an earlier 
time point (in the majority of cases the ECA; here we excluded a small 
number of segments in seven tumors with a higher density of amplified 
clonal mutations than the estimated mutation density at the MRCA, 
because such gains may be subclonal CN alterations erroneously classi-
fied as clonal). To this end, we modeled the number of mutations falling 
on each genomic segment with a negative binomial distribution, which 
accounts for overdispersion caused by heterogeneous mutation rates 
along the genome53. The probability that the gain of genomic segment 
l coincided with the MRCA is then computed as:

P (nk,l;k∈{b,CN−b}|gl, g,mMRCA) =
nk,l

∑
r=0

(
mMRCA + r − 1

mMRCA
)pr (1 − p)mMRCA , (7)

where:
p = mMRCA

mMRCA(1+
gl
g
)
.

Here, nk,l;k∈{b,CN−b} is the number of amplified clonal mutations on 
segment l and gl is the respective segment size. We corrected the 

P values obtained with equation (7) for multiple testing using Holm 
correction (false discovery rate ≤ 0.01) and, accordingly, assigned each 
segment to either the MRCA or an earlier time point.

Finally, we computed the mutation densities at ECAs from the 
segments with significance level α = 0.01 to:

m̃ECA =
∑l,padj,l≤0.01 nb,l + nCN−b,l
∑l,padj,l≤0.01 gl,b + gl,CN−b

. (8)

We then tested for each contributing segment whether its muta-
tion load conformed to the ECA according to a negative binomial dis-
tribution (in analogy to equation (7)) and computed lower and upper 
95% confidence bounds by bootstrapping, as before for the MRCA.

Mutation timing. Translation of mutation densities into estimated 
weeks p.c. We related mutation densities per haploid genome into 
weeks post conception (p.c.) by inferring SSNV rates per diploid 
genome and embryonic day (µλ) and mutation and division rates per 
day, using the measured VAF distributions and age at diagnosis as 
outlined in Real-time estimation of cell division rate (with similar results 
based on all SSNVs or only clock-like SSNVs). Because mutation calling 
was performed by comparing tumors against a matched blood control, 
mutation densities correlate with the time post gastrulation (at approx-
imately 2 weeks p.c.). Thus, the mutation density per haploid genome, 
m̃, relates to the time p.c., t, according to m̃ (t) = μλ

d
1

3.3×109
(t − 14days). 

The estimated time of birth was taken as 38 weeks after gastrulation 
(40 weeks p.c.).

Survival analysis
Survival analysis was performed using the R package survival v.3.1.12 
(ref. 54). We detected a clear bimodality in the histogram of SSNV density 
at the MRCA in the discovery cohort and took the upper bin border just 
before the minimum (0.05 SSNVs per Mb) as threshold to split tumors 
into groups of early or late MRCA. The same value was found appropri-
ate in the validation cohort.

Modeling neuroblastoma initiation
Modeling emergence of the MRCA. We modeled neuroblastoma 
initiation by sequential acquisition of driver mutations in two onco-
genic events, assuming that both events are infrequent and occurring 
in early neuroblasts with low probabilities, µ1 and µ2, during cell divi-
sions. We denote the selective advantage conferred by the driver muta-
tions acquired during the two events by r and s. Specifically, we assume 
that one or more first events generate a precancerous cell population 
in which a second event creates the MRCA. On this basis, we compute 
the time-dependent probability of the emergence of the MRCA. Neu-
roblasts initially expand rapidly, but how this cell population behaves 
subsequently, because sympathetic neurons differentiate from these 
precursors, is not known precisely. Hence, two possible scenarios were 
considered: (1) an initial phase of exponential growth of the neuroblast 
population is followed by a subsequent phase of differentiation, mod-
eled by exponential decay; and (2) an initial phase of exponential 
growth is followed by a subsequent phase of precursor homeostasis 
(for a related model of a two-step process of tumorigenesis, but in a 
homeostatic tissue, see ref. 55). The two phases are associated with 
distinct rates of cell division, λ1 and λ2, and loss, δ1 and δ2, where λ1 > δ1 
and λ2 ≤ δ2 (with equality in the case of precursor homeostasis).  
Thus the population dynamics of neural precursor cells, N(t), are 
described by:

N (t) = {
e(λ1−δ1)t, 0 ≤ t ≤ T

e(λ1−δ1)Te(λ2−δ2)(t−T), t > T,
(9)

where T denotes the time point at which the cell population peaks. Cells 
undergoing the first oncogenic event are generated at rates:
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μ1λ1N(t)dt, 0 ≤ t ≤ T

μ1λ2N(t)dt, t > T.
(10)

For simplicity, we take the selective advantage associated with the 
first oncogenic event into account during the contraction (or homeo-
stasis) phase and neglect it during the initial rapid expansion; this 
approximation is appropriate when the selective advantage of the first 
event is comparatively small, which is subsequently borne out by the 
parameter inference. Thus, M1 cells harboring the first mutation grow 
at rate λ1 − δ1 during tissue expansion and at rate λ2 − δ2/r during tissue 
contraction or homeostasis. Hence, depending on the actual value of 
r > 1, a clone harboring the first event may slowly shrink or expand for 
t > T. We now ask whether in this clone the second oncogenic event 
takes place that defines the MRCA of the tumor. The second event 
occurs at rate:

μ2λ1M1(t)dt, 0 ≤ t ≤ T

μ2λ2M1(t)dt, t > T.
(11)

Using the survival probability of the supercritical birth–death 
process, we have a cell undergoing the second oncogenic event survive 
with probability:

ν2,E = 1 −
δ1
s λ1

(12a)

during the expansion phase (E) and, provided that δ2
sλ2

< 1, with 
probability:

ν2,D = 1 −
δ2
sλ2

(12b)

during the decay or homeostatic phase (D). We are interested in the 
probability that at least one surviving cell underwent both oncogenic 
events, PMRCA. There are three possible cases: (1) both oncogenic events 
occur during precursor expansion, associated with probability  
PMRCA,1; (2) the first oncogenic event occurs during precursor expansion, 
the second during precursor contraction or homeostasis, associated with 
probability PMRCA,2 ; and (3) both oncogenic events occur during precursor 
contraction or homeostasis, associated with probability PMRCA,3. For each 
case we assumed that the number of cells with only the first event, M1, is 
small compared with the number of normal cells. We have:

PMRCA = {
PMRCA,1, t < T

1 − (1 − PMRCA,1) (1 − PMRCA,2) (1 − PMRCA,3) , t ≥ T
. (13)

We derive expressions for PMRCA,I, PMRCA,2 and PMRCA,3 in Supplemen-
tary Note 1a for the case of precursor expansion and decay, and in 
Supplementary Note 2a for the case of precursor expansion and homeo-
stasis. If precursor expansion is followed by decay, we find:

PMRCA,1(t) =
N(t)−1
∑
x=1

e−μ1(x−1) (1 − e−μ1 ) (1 − exp{−μ1μ2λ1TN(t)F
1 − δ1

λ1

}) , (14a)

PMRCA,2(t) = 1 − exp (−
μ1μ2λ1λ2ν2,DT

λ2 − δ2/r
N(T ) {e(λ2−δ2/r)(t−T) − 1}) , (14b)

PMRCA,3(t) = 1 − exp(−
μ1μ2λ22ν2,DN (T)

δ2 (
1
r
− 1)

{ e
(λ2−δ2)(t−T) − 1

λ2 − δ2
− e(λ2−

δ2
r
)(t−T) − 1

λ2 −
δ2
r

}) ,

(14c)

where F = ∫10ν2,I/ (ν2,Iz α)dz  and α = δ1−sλ1
δ1−λ1

. Alternatively, if precursor 
expansion is followed by homeostasis, PMRCA,2 and PMRCA,3 take the form 
(Supplementary Note 2a):

PMRCA,2(t) = 1 − exp(−
μ1μ2λ1ν2,DT

1 − 1
r

N (T) {eλ2(1−
1
r
)(t−T) − 1}) , (14d)

PMRCA,3(t) = 1 − exp(
μ1μ2λ2ν2,D
1 − 1

r

N (T) { 1 − e
λ2(1−

1
r
)(t−T)

λ2 (1 −
1
r
)

+ t − T}) . (14e)

Equations (14a–e) give the probability that a growing tumor clone 
has emerged up to time t for the distinct cases.

Modeling the ECA. The ECA is associated with the first oncogenic 
event, which may have occurred at variable time points before the 
MRCA. To time the ECA, we computed the conditional probability of 
having undergone the first oncogenic event before t1, given that the 
second oncogenic event occurred at t2, denoted by P(t1|t2). The acquisi-
tion of the second oncogenic event is proportional to the number of 
cells with the first event M1 (equation (11)). As denoted by M1 (t2|τ), the 
number of cells at t2 resulting from a first event at τ.P(t1|t2) can hence be 
expressed as:

P (t1|t2) =
∫t1
0M1 (t2|τ)dτ

∫t2
0M1 (t2|τ)dτ

=
∫t1
0M1 (t2|τ)dτ

M1(t2)
. (15)

Distinguishing the three cases for the timing of the second event 
relative to the first, as before, we find for precursor expansion followed 
by decay for two cases (Supplementary Note 1b). When the second 
event occurs in the exponential growth phase, then:

P (t1|t2) =
t1
t2
; t1 < t2 ≤ T. (16a)

This corresponds to the classical Luria–Delbrück model. Recalling 
that t = 0 marks the beginning of neuroblast expansion, the first muta-
tion happens, as expected, with uniform probability during exponential 
growth. When the second event occurs during the decay phase, the 
probability for the first event is uniform in the exponential phase and 
decreases in the decay phase according to:

P (t1|t2) =

Θ(T−t1)λ1δ2(1−
1
r
)t1+Θ(t1−T)[λ2+λ1Tδ2(1−1/r)−λ2eδ2(1−1/r)(T−t1)]

λ2+λ1Tδ2(1−1/r)−λ2eδ2(1−1/r)(T−t2)
;

t2 > T

(16b)

where Θ (⋅) is the Heavyside step function and, of course, 0 ≤ t1 < t2.  
For precursor expansion followed by homeostasis, P (t1|t2) reads  
(Supplementary Note 2b):

P (t1|t2) =
t1
t2
; t1 < t2 ≤ T (17a)

and:

P (t1|t2) =

Θ(T−t1)λ1t1(1−1/r)e
λ2(1−

1
r )(t2−T)+Θ(t1−T)[(λ1T(1−

1
r
)+1)eλ2(1−

1
r )(t2−T)−eλ2(1−

1
r )(t2−t1 )]

(λ1T(1−
1
r
)+1)eλ2(1−

1
r )(t2−T)−1

;

t2 > T.

(17b)

Relating model and data. To relate the model to the measured 
data, we translate time into mutation counts. Assuming that SSNVs 
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are accumulated at a constant rate, µ, per cell division, the expected  
mutation count per cell is Poisson-distributed with rate µλt.

Parameter estimation. We estimated the following parameters: peak 
size of the neuroblast population (N), relative loss rates in the growth 
and decay phases (δ1/λ1 and δ2/λ2, respectively), rate of SSNVs (µ) and 
rates of first and second oncogenic events (µ1 and µ2) and their selective 
advantages (expressed as r and ν2), using equations (9–17) and Approxi-
mate Bayesian Computation with Sequential Monte Carlo sampling 
(ABC–SMC) as implemented in pyABC56. We used a population size of 
1,000 parameter samples and prior probabilities as outlined in Sup-
plementary Table 11. Evaluation was abrogated after 25 SMC genera-
tions, or if ε ≤ 0.05. We used mutation density estimates at MRCA and 
ECA of high-risk tumors (primary tumors and metastases) as deter-
mined by equations (6) and (8) as input data. Tetraploidization in 
tetraploid tumors was not included as ECA because there were probably 
earlier events, such as Chr. 17q gains. The experimental incidences were 
computed as IMRCA,ev,i = ∑m̃MRCA,ev < i; i ∈ m̃MRCA,ev, where the subscript 
‘ev’ denotes the experimentally determined value. Uncertainties were 
estimated to ΔIMRCA,ev,i = ∑m̃MRCA,ev,l < i −∑m̃MRCA,ev,u < i; i ∈ m̃MRCA,ev , 
where m̃MRCA,ev,l and m̃MRCA,ev,u denote the lower and upper bounds of 
the 95% confidence interval of m̃MRCA,ev, respectively. Incidences and 
uncertainties of the ECA, IECA,ev,i were computed in analogy.

For each sampled parameter set we performed the following steps:

 (1) Sample for each tumor a time point of the MRCA, t2. To this end, 
sample a uniform number x between 0 and 10–5, thus account-
ing for the overall incidence of 10–5. Then, from equation (9), 
determine the time point at which Pt = x. To facilitate numerical 
computation, we approximated the sum in equation (13a) with 
an integral. To exclude second hits that do not confer a selective 
advantage during expansion, we required s = max (1, δ1

λ1(1−ν2,E)
) 

and adjusted ν2 accordingly.
 (2) Sample for each sampled time point t2 a neutral mutation count 

from a Poisson distribution with mean µt2 and determine 
mutation density by dividing with the haploid genome length of 
3.3 × 109, yielding m̃MRCA,sim.

 (3) Determine the simulated incidence of the MRCA at the 
experimentally determined mutation loads: 
IMRCA,sim,i = ∑m̃MRCA,sim < i; i ∈ m̃MRCA,ev.

 (4) Sample for each sampled t2 a time point of the ECA, t1. To this 
end, sample a uniform number x between 0 and 1; then, from 
equation (16) or (17) determine the time point at which 
P (t1|t2) = x.

 (5) Sample for each sampled t2 a neutral mutation count from a 
Poisson distribution with mean µt2 and divide by the haploid 
genome length of 3.3 × 109, yielding m̃ECA,sim.

 (6) Determine the simulated incidence of the ECA at the  
experimentally determined mutation loads: 
IECA,sim,i = ∑m̃ECA,sim < i; i ∈ m̃ECA,ev.

 (7) Determine the simulated incidence of the MRCA at age 10 years, 
IMRCA,sim,ten years using equation (9). This step was introduced to 
contrast the incidence at old ages with the clinically observed 
overall incidence of the order of 10−5, which we weighted by 
assuming an error of 10−4.

We computed the cost function, d, as

d = ∑
i∈mMRCA,ev

wi (
(IMRCA,sim,i−IMRCA,ev,i)

2

ΔI2MRCA,ev,i
)+

(IECA,sim,i−IECA,ev,i)
2

ΔI2ECA,ev,i
+ IMRCA,sim,ten years−10−5

(10−4)2
.

(18)

To enforce good fits to the initial phase of the incidence curve 
for better comparison of the contraction and homeostasis models of 
neural precursor dynamics, we chose weights

wi = {
10, if m̃MRCA ≤ 0.2/106

1, if m̃MRCA > 0.2/106
.

Ninety-five per cent posterior probability bounds for the 
model fits were estimated by simulating the model at each sam-
pled parameter set and cutting off 2.5% at each end of the simulated  
distribution.

To assess the robustness of the model, we performed an additional 
parameter estimation on clock-like mutations only. To this end, we 
multiplied mutation densities at MRCA and ECA by the fraction of 
mutations generated by clock-like mutational signatures (SBS1, SBS5 
and SBS40) and fit the model to the clock-like mutation densities.

Modeling mutation accumulation during tumor growth
Model. Denoting the rate at which tumor cells divide by λT and the loss 
rate by δT, we modeled the number of tumor cells, NT, with an exponen-
tial growth model, NT (t) = e(λT−δT)t. We assumed that some SSNVs are 
already present in the founder cell of the tumor and denote their num-
ber by nclonal ; these mutations are clonally propagated to the entire 
tumor and will thus be found at frequency f = 1. Additional SSNVs  
are acquired during tumor growth, and we denote their number by 
nsubclonal ; these mutations are present in a subset of the tumor only and 
will thus be found at f < 1. The VAF distribution of a neuroblastoma is 
hence a superposition of clonal and subclonal mutations accumulated 
before and during tumor growth, respectively.

To model the number of subclonal mutations, we used a model of 
neutrally evolving tumors that accounts for the stochastic expansion 
of neutral subclones while assuming exponential expansion of the 
tumor mass overall57. This model assumes that neutral mutations are 
acquired at all times at rate μλTNT (t) and drift stochastically according 
to a supercritical birth–death process, where58:

P1,i (λT,δT, t) = {
α(t), i = 0

(1 − α(t)) (1 − β (t))β (t)i−1 , i ≥ 1
(19)

where:

α (t) =
δT (e(λT−δT)t − 1)
λTe(λT−δT)t − δT

,β (t) =
λT (e(λT−δT)t − 1)
λTe(λT−δT)t − δT

.

Together, this yields the site frequency spectrum, S(i, µ), of sub-
clonal mutations:

S (i,μ) =
tend

∫
0

P1,i(λT,δT, tend − t)μλTNT (t)dt. (20)

The total number of subclonal mutations in a tumor is  
computed as;

nsubclonal =
NT(tend)
∑
i=1

S (i,μ) =
NT(tend)
∑
i=1

tend

∫
0

P1,i(λT,δT, tend − t)μλTNT (t)dt, (21)

where NT(tend) is the number of tumor cells at diagnosis. The number 
of mutations present in subclones of at least a and at most b cells is, in 
analogy to equation (21):

b
∑
i=a

S (i,μ) =
b
∑
i=a

tend

∫
0

P1,i(λT,δT, tend − t)μλTNT (t)dt. (22)

Because clone sizes a and b are large, we approximate the sum in 
equation (22) by an integral, yielding:
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b
∑
i=a

S (i,μ) ≈
b
∫
a

tend
∫
0
P1,i(λT,δT, tend − t)μλTNT (t)dtdi

=
tend
∫
0
μλTNT (t)

P1,b(λT ,δT ,tend−t)−P1,a(λT ,δT ,tend−t)
logβ(tend−t)

dt.
(23)

Relating model and data. To relate the model of mutation accumula-
tion to the measured VAF distribution, we modeled mutations on each 
copy number state separately. To this end, we denote by nf,k the number 
of mutations at frequency f on genomic segments with copy number 
state k. Note that f reports the fraction of mutated cells among all tumor 
cells whereas VAFs report the fraction of mutated alleles in the tissue 
sample. The two quantities can be converted into each other using the 
following relation:

VAF = fρ
ζ . (24)

where ζ is the average copy number of the sample as defined in equation 
(1). Clonal mutations are associated with frequency f = 1. The number 
of clonal mutations falling within genomic segments of copy number 
k,n1,k, is expected to scale with gk, the fraction of the genome at copy 
number k, according to

n1,k = nclonal
kgk

∑k kgk
. (25)

To relate true with measured VAFs, we assumed that the latter are 
binomially distributed around the former according to

B ( fρζ ,Ck) ,

where Ck ∝ Pois(Ĉk) is the sequencing coverage on a segment with copy 
number k, and ρ is tumor cell content.

Data selection. Because we model mutation accumulation with neutral 
tumor expansion, we included all tumors with well-defined subclonal 
tails and absence of subclonal selection. To this end, we visually 
inspected the VAF histograms and excluded 29 cases with poorly 
resolved subclonal tails. To identify subclonal selection we ran Mob-
ster12, excluding mutations on sex chromosomes and computing pseu-
doheterozygous VAFs, in the following termed ṼAF and defined as 50% 
of the mutated sample fraction, SF. The measured VAFs relate to SF 

according to VAF = k
ζ
SF, where k is the number of alleles carrying the 

mutation. It follows that ṼAF = ζ
2k
VAF. We excluded mutations with 

ṼAF < 0.1 from the fit and ran the Mobster setting autosetup = “FAST”. 
This resulted in an additional exclusion of nine cases for which Mobster 
suggested subclonal selection. Thus we selected 62 tumors with 
well-resolved subclonal VAF histograms and no evidence of subclonal 
selection for parameter inference (Supplementary Table 1).

Parameter estimation. We estimated nclonal, µ and δT/λT using ABC–SMC 
as implemented in pyABC56. We used a population size of 1,000 param-
eter samples and prior distributions as outlined in Supplementary 
Table 12. Termination criteria were the same as above (Modeling neu-
roblastoma initiation).

We stratified measured VAFs by copy number, excluding copy 
numbers >4 or present on, in total, <108 bp. For each copy number k, 
we merged mutations from the clonal VAF peaks constituted by ampli-
fied and non-amplified mutations (see Mutation timing for the defini-
tion of amplified and non-amplified clonal mutations). To this end, we 
first assessed the average coverage Ĉk from all mutations falling on 
segments with copy number k. Then, we classified mutations at copy 

number k as amplified clonal if Q
0.95
l−1

Ĉk
< VAFk ≤

Q0.95l

Ĉk
, where Q0.95l  is the 95% 

quantile of a binomial distribution with success probability ρl
ζ

 and where 
l is the B-allele count. These mutations were then merged with those 
of the non-amplified clonal peak by multiplying their frequencies by l

k
 

and adding them l times.
Finally, we computed the cumulative mutation counts of the meas-

ured data, Fk,ev(f) = ∑VAFk > f , where f runs from 0.05 to 1.00 in steps 
of size 0.05, and extrapolated the cumulative mutation counts to the 
whole genome with multiplication by ∑k gk

gk
. At a sampled parameter set 

for nclonal, µ and δT, the following steps were performed for each copy 
number state k included in the analysis:

 (1) Sample for each clonal mutation a sequencing coverage Ck 
according to Pois(Ĉk).

 (2) Sample for each clonal mutation a VAF according to equation 
(16).

 (3) Determine nf,k;f≠1 from equation (13), assuming a tumor size of 
109 cells at diagnosis, and evaluating equation (13) in bins of size 
0.05 at the lower limit:

nf,k;f≠1 ≈
(f+0.05)109

∑
i=f109

S (i,μ).

 (4) Sample for each subclonal mutation a sequencing coverage Ck 
according to Pois(Ĉk) and a VAF according to equation (16).

 (5) Compute the cumulative mutation counts, Fk,sim(f) = ∑VAFk > f , 
where f runs from 0.05 to 1.00 in steps of size 0.05.

The cost function is

d = ∑
k
∑
f
(Fk,sim − Fk,ev)

2 gk
∑k′ gk′

. (26)

Real-time estimation of cell division rate
In the previous sections we describe how we inferred the param-
eters for our models of neuroblastoma initiation and growth from 
mutation data. This yielded estimates for the rates at which cells 
are lost, as well as the rates at which neutral and oncogenic muta-
tions are acquired in units of cell divisions. To convert these esti-
mates to real time we estimated the actual cell division rate, using 
the age distribution at diagnosis and the approximate tumor size  
at diagnosis.

We reasoned that the time span between gastrulation and tumor 
diagnosis (tD) consists of two phases: premalignancy up to the forma-
tion of the MRCA and malignant growth of the tumor thereafter. Hence,

tD =
m̃MRCA
λμ

+ logNT(tD)
λ (1 − δ

sλ
)
, (27)

where we assume exponential tumor growth until diagnosis. Thus the 
cell division rate, λ, can be expressed as

λ = 1
tD

( m̃MRCA
μ + logNT(tD)

1 − δ
sλ

) . (28)

To estimate λ with equation (28), we combined the clinical informa-
tion with parameter estimates from our models as follows: we know tD 
(the age at diagnosis, A, plus approximately 250 days of embryogenesis 
after gastrulation) from the clinical data, and estimate that a tumor of 
a few cubic centimeters consists of the order of NT(tD) = 109 cells. As 
described below (Mutation timing and Modeling neuroblastoma initia-
tion), we also have estimates for mutation density at the MRCA, m̃MRCA, 
and for the SSNV rate per actual cell division and haploid genome, µ. 
Finally, we obtained an estimate for the effective rate of acquisition of 
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(neutral) SSNVs during tumor growth from the subclonal VAF histo-
grams of 62 tumors (compare with Modeling mutation accumulation 
during tumor growth), which is related to δ and s as

μeff =
μ

1 − δT/λT
= μ
1 − δ

sλ

. (29)

Substituting equation (29) in equation (28), we obtain for each of 
the 62 tumors (labeled with the index i) an estimate for the  

division rate with mean, ⟨λi⟩ =
1

2⟨μ⟩(Ai+250days)
(⟨2m̃MRCA,i⟩ + log 109 ⟨μeff,i⟩), 

and s.d. (standard deviation), σ (λi) =
1

2⟨μ⟩(Ai+250days)
 ( 2⟨m̃MRCA,i⟩+log 109⟨μeff,i⟩

2μ
σ  

⟨2μ⟩ + σ (2m̃MRCA,i) + σ (μeff,i) ) , in actual time. Note that factor 2  

accounts for the fact that µ and m̃MRCA,i measure mutation rate and 
density, respectively, per haploid genome. From equation (29), we also 

get an estimate of δT,i/λT,i with expectation ⟨ δT,i
λT,i

⟩ = 1 − 2⟨μ⟩
⟨μeff,i⟩

 and s.d. 

σ (δT,i/λT,i) =
σ{2μ}
⟨μeff,i⟩

+ 2⟨μ⟩
(⟨μeff,i⟩)

2 σ (μeff,i) . Fitting effective mutation rates 

to the VAF histograms of each of the selected 62 tumors individually 
hence yields tumor-specific division rates along with relative death 
rates, which we stratify by TMM.

Finally, one also obtains an estimate for the daily mutation rate 
during tumor initiation by computing μλT,i with associated uncertainty 
μΔλT,i + λT,iσ(μ), which relates molecular clock to real time. For this 
purpose, we average across the inferences from the 44 primary tumors/
metastasis, excluding 18 relapsed tumors among the 62 submitted for 
analysis.

Statistics and reproducibility
All statistical tests were computed with R (v.3.6.0 and v.4.0.0), and 
details (statistical tests and whether one- or two-sided, exact sample 
size, P values and test statistics) are specified in the respective figures 
and accompanying Source data. This is a retrospective analysis of tumor 
material that was collected as part of the diagnostic workflow of the 
German Neuroblastoma trial by the Society for Pediatric Oncology and 
Hematology and collected in the Neuroblastoma tumor bank. Hence, no 
statistical method was used to predetermine sample size. All analyzed 
tumors had a clear copy number profile, tumor cell content ≥25% and no 
hypermutation genotype; no data were excluded from the analyses. The 
experiments were not randomized. The investigators were not blinded 
to allocation during experiments and outcome assessment.

Software and packages
Analysis was performed with R (v.3.6.0 and v.4.0.0) and python v.3.6.1. 
We used the following R packages: openxlsx v.4.1.5, ggsignif v.0.6.0, 
ggbeeswarm v.0.6.0, gridExtra v.2.3, RColorBrewer v.1.1-2, HDInter-
val v.0.2.2, cdata v.1.1.8, moments v.0.14, Hmisc v.4.4-0, scales v.1.1.1, 
bedr v.1.0.7, circlize v.0.4.10, ggplot2 v.3.3.2 (ref. 59), Bioconductor 
v.3.15 (ref. 60), ggbio v.1.34.0 (ref. 61), ggpubr v.0.4.0, pammtools v.0.2.2 
(ref. 62), ComplexHeatmap v.2.5.1 (ref. 63), BSgenome.Hsapiens.UCSC.
hg19 v.1.4.3, MASS v.7.3-51.6 (ref. 64), GenomicRanges v.1.38.0 (ref. 65), 
reshape2 v.1.4.4 (ref. 66), mixtools v.1.2.0 (ref. 67), dplyr v.1.0.0, sur-
vminer v.0.4.8, survival68 v.3.1-12, wesanderson v.0.3.6, cowplot v.1.1.1, 
mobster12 v.1.0.0, CNAqc v.1.0.0 and mmsig51 v.0.0.0.9000; and the 
python packages SigProfilerMatrixGenerator69 v.1.1.26, SigProfiler-
Extractor50 v.1.1.1 and pyABC56 v.0.9.13.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Subsets of WGS and RNA sequencing data were part of previously  
published studies24,26. Data from these studies are deposited at the 

European Genome-Phenome Archive (https://www.ebi.ac.uk/ega/) 
under accession nos. EGAS00001004349 and EGAS00001001308. 
Additional WGS data generated for this study are available at 
the European Genome-Phenome Archive under accession nos. 
EGAS00001004990 and EGAS00001006533. In accordance with 
the laws of data protection, data are deposited under controlled 
access. Access can be granted by contacting Frank Westermann 
(f.westermann@kitz-heidelberg.de) and requires a data access agree-
ment; requests will be replied to within 4 weeks. Variant calls (SNVs, 
indels, SVs and copy number variations), mutational signatures, model 
fits and a summary of the mutation profile and modeling results for 
each tumor can be accessed at Mendeley (https://doi.org/10.17632/
m9pwjbm7c8.1)70. All remaining data are available in the Supplemen-
tary information. Source data are provided with this paper.

Code availability
All code developed for this study is available at https://github.com/
hoefer-lab/Neuroblastoma_evolution71.
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Extended Data Fig. 1 | Copy number changes and mutational signatures 
in primary and relapsed neuroblastomas of the discovery cohort. a, Age 
distribution at tumor diagnosis. b, Ploidy estimates based on WGS (inferred with 
ACEseq) and on DNA-index measurements (as measured by flow cytometry). 
Shown are 71 primary and relapsed tumors for which DNA-index was determined. 

c, Distribution of neuroblastoma stages among rounded ploidies. d, Overview 
of gains and losses across the tumor cohort. e, Comparison of mutational 
signatures (Cosmic v3) contributing to all SSNVs and to clonal and subclonal 
SSNVs (n = 100 primary and relapse tumors from the discovery cohort; Pearson’s 
correlation coefficients and two-sided P values are shown for each comparison).
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Extended Data Fig. 2 | Mutation densities at chromosomal gains in the 
discovery cohort. a, Mutation densities of non-amplified clonal mutations per 
genomic segment, stratified by copy number for tumor NBE15. Significance 
was tested with a two-sided Wilcoxon rank sum test/Mann–Whitney U-test 
(disomic: n = 15; trisomic: n = 6; tetrasomic: n = 3). Boxes show median, 25% and 
75% percentiles, whiskers extend to the smallest and largest value within 1.5x 
interquartile range. b, Estimated mutation densities at ECA and MRCA of primary 
tumors (ECA: n = 26; MRCA: n = 60), primary metastases (ECA: n = 2; MRCA: 
n = 7) and relapsed tumors/metastases (ECA: n = 30; MRCA: n = 33). Significance 

was tested with a two-sided Wilcoxon rank sum test/Mann–Whitney U-test and 
defining ** as P < 0.01 (exact P values are given in Source Data). c, Model scheme 
for neuroblastoma relapse corresponding to data in (b). d and e, Exposures of 
mutational signatures among clonal (d) and subclonal SSNVs (e). Signatures 
SBS1, SBS5 and SBS40 were combined into a single clock-like mutational 
signature. Bar heights correspond to the average among early-MRCA (top; n = 20 
primary tumors and metastases) and late-MRCA tumors (bottom; n = 47 primary 
tumors and metastases); error bars show standard error of the mean.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Examples of early evolution. a, Copy number profiles 
of an example tumor with near-triploid genome and without a timeable ECA. 
The color panels annotate genomic segments of equal copy number. Next to 
the copy number profile, the densities of non-amplified (green) and amplified 
(color-encoded) clonal mutations on segment of length ≥107 bp are shown, 
with the dashed line showing the kernel-density estimate of the distribution of 
non-amplified clonal mutations. Chromosomal segments of equal copy number 
were merged and Holm-corrected one-sided P values were computed based on 
a negative binomial distribution (**, padj < 0.01, exact P values are provided in 
Source Data). The bottom panel shows mutation densities at ECA and MRCA with 
95% confidence bounds estimated by bootstrapping. The horizontal lines show 
mutation densities on gained segments with 95% confidence bounds computed 
from χ2 distributions. b, Mutation densities at ECA and MRCA of early-MRCA 
tumors with (left) and without (right) timeable ECA. Solid lines represent 

maximum likelihood estimates and shaded areas represent 95% confidence 
intervals, as obtained by bootstrapping. c and d, As in (a) but for a near-diploid 
tumor with timeable ECA (c) and for a near-tetraploid tumor without timeable 
ECA (d). Holm-corrected one-sided P values were computed based on a negative 
binomial distribution (**, padj < 0.01, exact P values are provided in Source Data). 
e, Mutation densities at MRCA in early-MRCA (n = 20) and late-MRCA primary 
tumors (n = 47, thereof n = 26 with ECA and n = 21 without ECA). f, Fraction of 
polysomic chromosomes in near-triploid (n = 33) and near-tetraploid (n = 12) 
tumors that were generated in a single oncogenic event. As a control, the fraction 
of disomic chromosome whose mutation density matched with the MRCA is 
shown for near-diploid tumors (n = 55). In (e) and (f), boxes show median, 25 and 
75% percentiles, whiskers extend to the smallest and largest value within 1.5x 
interquartile range.
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Extended Data Fig. 4 | Analysis of overall survival. Multivariate analysis of overall survival with Cox-regression considering MRCA timing, acquired mechanisms of 
telomere maintenance, stage, age at diagnosis and mutation status in the RAS/P53 pathway. Shown are mean hazard ratio, 95% confidence intervals and p-values for 
each variable (two-sided Wald test).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Neuroblastoma initiation during progenitor 
expansion. a, Two-dimensional projections of the posterior probability 
distribution of the model parameters (considering neuroblastoma initiation in a 
transient population of early neuroblasts). b, Predicted expansion of neuroblasts 
(grey) and the selected subclone upon acquisition of the first oncogenic event 
(dark green) in a model of transient neuroblast expansion. Colored areas show 
the 95% posterior probability bounds (estimated from simulations using 1,000 
samples from the posterior probability distribution). Vertical line and shaded 
area give mean and 95% CI for the estimated time of birth (computed from n = 62 
primary tumors). c, Comparison of parameter estimates if fitting the model to 

all SSNVs or to SSNVs generated by a clock-like mutational process only. For the 
latter, mutant densities were adjusted by the fraction of SSNVs explained by SBS1, 
SBS5 or SBS40. For each parameter, median and 80% credible intervals  
are shown (estimated from n = 1000 samples of the posterior distribution).  
d, Comparison between the estimated time point at which the MRCA (left, 
n = 95 primary tumors/metastases with TMM) and the ECA (right, n = 47 primary 
tumors/metastases with TMM) emerged if using all SSNVs or if using SSNVs that 
were generated by a clock-like process only. Time is measured in weeks post 
conceptionem (p.c.).
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