Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics of sexually dimorphic adipose distribution in humans

Abstract

Obesity-associated morbidity is exacerbated by abdominal obesity, which can be measured as the waist-to-hip ratio adjusted for the body mass index (WHRadjBMI). Here we identify genes associated with obesity and WHRadjBMI and characterize allele-sensitive enhancers that are predicted to regulate WHRadjBMI genes in women. We found that several waist-to-hip ratio-associated variants map within primate-specific Alu retrotransposons harboring a DNA motif associated with adipocyte differentiation. This suggests that a genetic component of adipose distribution in humans may involve co-option of retrotransposons as adipose enhancers. We evaluated the role of the strongest female WHRadjBMI-associated gene, SNX10, in adipose biology. We determined that it is required for human adipocyte differentiation and function and participates in diet-induced adipose expansion in female mice, but not males. Our data identify genes and regulatory mechanisms that underlie female-specific adipose distribution and mediate metabolic dysfunction in women.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of obesity and WHRadjBMI genetic risk.
Fig. 2: Genes identified by TWAS.
Fig. 3: Regulatory network of female WHRadjBMI.
Fig. 4: Effects of the rs1534696 allele on human primary adipocytes.
Fig. 5: SNX10-mediated inhibition of adipogenesis.

Similar content being viewed by others

Data availability

Previously published gene expression and GWAS data that were used in this study can be accessed via the GTEx Consortium (https://gtexportal.org/home/biobank), CommonMind consortium (https://www.nimhgenetics.org/resources/commonmind), UKBB (https://pan.ukbb.broadinstitute.org/downloads) and GIANT Consortium (https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files). 15-state chromHMM data from adipose nuclei were obtained at https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/E063_15_coreMarks_dense.bed.gz. Other data include RepeatMasker hg38 repeat data, hg38 phastCons conservation and the GRCh38 and GRCh37 genome assemblies (https://hgdownload.soe.ucsc.edu/downloads.html#human). Baseline annotations used for calculating LDSC-SEG tissue-specific gene enrichment can be found at https://github.com/bulik/ldsc. Comparison MPRA data from Ulirsch et al.25 can be obtained on request from the Sankaran lab. Comparison data from Khetan et al.49 can be found at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145643. Sequencing data generated in this study can be found in the NCBI Sequence Read Archive via the BioProject accession code PRJNA847334. Tables that contain data generated in this study, including LDSC-SEG enrichment for obesity and WHR, xCell cell type proportion estimations, obesity and WHRadjBMI-associated genes identified in the paper, variants tested in the MPRA, with enhancer activity levels and significance status, transcription factor motif enrichment data, significant LipocyteProfiler features, SNX10 shRNA knockdown and SNX10 mouse data, have been uploaded to the Open Science Framework in a repository entitled ‘Genetics of sexually dimorphic adipose distribution in humans’ (https://osf.io/cesvr/).

Code availability

Unless otherwise specified in Methods, all code used to generate the figures and data included in this study are available at https://github.com/grace-hansen/.

References

  1. Alexopoulos, N., Katritsis, D. & Raggi, P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis 233, 104–112 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Canoy, D. Distribution of body fat and risk of coronary heart disease in men and women. Curr. Opin. Cardiol. 23, 591–598 (2008).

    Article  PubMed  Google Scholar 

  3. Bergman, R. N. et al. Why visceral fat is bad: mechanisms of the metabolic syndrome. Obesity 14, 16S–19S (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Censin, J. C. et al. Causal relationships between obesity and the leading causes of death in women and men. PLoS Genet. 15, e1008405 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pulit, S. L. et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet. 28, 166–174 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in 700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cannon, M. E. et al. Open chromatin profiling in adipose tissue marks genomic regions with functional roles in cardiometabolic traits. G3 (Bethesda) 9, 2521–2533 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hoffman, G. E. et al. CommonMind Consortium provides transcriptomic and epigenomic data for schizophrenia and bipolar disorder. Sci. Data 6, 180 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Merrick, D. et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364, eaav2501 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Palmer, B. F. & Clegg, D. J. The sexual dimorphism of obesity. Mol. Cell. Endocrinol. 402, 113–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Chooi, Y. C., Ding, C. & Magkos, F. The epidemiology of obesity. Metabolism 92, 6–10 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Paeratakul, S., Lovejoy, J. C., Ryan, D. H. & Bray, G. A. The relation of gender, race and socioeconomic status to obesity and obesity comorbidities in a sample of US adults. Int. J. Obes. 26, 1205–1210 (2002).

    Article  CAS  Google Scholar 

  18. Borgeraas, H. Association of time of obesity onset with comorbidities in treatment‐seeking men and women with severe obesity. Obes. Sci. Pract. 4, 427–436 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grarup, N. et al. Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat. Genet. 50, 172–174 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dubern, B. et al. Mutational analysis of melanocortin-4 receptor, agouti-related protein, and alpha-melanocyte-stimulating hormone genes in severely obese children. J. Pediatr. 139, 204–209 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Fall, T. & Ingelsson, E. Genome-wide association studies of obesity and metabolic syndrome. Mol. Cell. Endocrinol. 382, 740–757 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Justice, A. E. et al. Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nat. Genet. 51, 452–469 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ulirsch, J. C. et al. Systematic functional dissection of common genetic variation affecting red blood cell traits. Cell 165, 1530–1545 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Joslin, A. C. et al. A functional genomics pipeline identifies pleiotropy and cross-tissue effects within obesity-associated GWAS loci. Nat. Commun. 12, 5253 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Melnikov, A., Zhang, X., Rogov, P., Wang, L. & Mikkelsen, T. S. Massively parallel reporter assays in cultured mammalian cells. J. Vis. Exp. 17, 51719 (2014).

    Google Scholar 

  29. Xu, Z., Yu, S., Hsu, C.-H., Eguchi, J. & Rosen, E. D. The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II is a critical regulator of adipogenesis. Proc. Natl Acad. Sci. USA 105, 2421–2426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Small, K. S. et al. Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat. Genet. 50, 572–580 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Seo, J. B. et al. Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor γ expression. Mol. Cell. Biol. 24, 3430–3444 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu, C. & Cheng, S.-Y. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors. J. Mol. Endocrinol. 44, 143–154 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Guo, L., Li, X. & Tang, Q.-Q. Transcriptional regulation of adipocyte differentiation: a central role for CCAAT/enhancer-binding protein (C/EBP) β. J. Biol. Chem. 290, 755–761 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Cao, J., Ma, Y., Yao, W., Zhang, X. & Wu, D. Retinoids regulate adipogenesis involving the TGFβ/SMAD and Wnt/β-catenin pathways in human bone marrow mesenchymal stem cells. Int. J. Mol. Sci. 18, 842 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Batchvarova, N., Wang, X. Z. & Ron, D. Inhibition of adipogenesis by the stress-induced protein CHOP (Gadd153). EMBO J. 14, 4654–4661 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fox, K. E. et al. Depletion of cAMP-response element-binding protein/ATF1 inhibits adipogenic conversion of 3T3-L1 cells ectopically expressing CCAAT/enhancer-binding protein (C/EBP) α, C/EBP β, or PPARγ2. J. Biol. Chem. 281, 40341–40353 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Terrados, G. et al. Genome-wide localization and expression profiling establish Sp2 as a sequence-specific transcription factor regulating vitally important genes. Nucleic Acids Res. 40, 7844–7857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huss, J. M., Torra, I. P., Staels, B., Giguère, V. & Kelly, D. P. Estrogen-related receptor α directs peroxisome proliferator-activated receptor α signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol. Cell. Biol. 24, 9079–9091 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Casado, M., Vallet, V. S., Kahn, A. & Vaulont, S. Essential role in vivo of upstream stimulatory factors for a normal dietary response of the fatty acid synthase gene in the liver. J. Biol. Chem. 274, 2009–2013 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Yeo, C. R. et al. SGBS cells as a model of human adipocyte browning: a comprehensive comparative study with primary human white subcutaneous adipocytes. Sci. Rep. 7, 4031 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yu, K. et al. Activating transcription factor 4 regulates adipocyte differentiation via altering the coordinate expression of CCATT/enhancer binding protein β and peroxisome proliferator-activated receptor γ. FEBS J. 281, 2399–2409 (2014).

    Article  CAS  Google Scholar 

  42. Xue, J. C., Schwarz, E. J., Chawla, A. & Lazar, M. A. Distinct stages in adipogenesis revealed by retinoid inhibition of differentiation after induction of PPARgamma. Mol. Cell. Biol. 16, 1567–1575 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fulco, C. P. et al. Systematic mapping of functional enhancer–promoter connections with CRISPR interference. Science 354, 769–773 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Laber, S. et al. Discovering cellular programs of intrinsic and extrinsic drivers of metabolic traits using LipocyteProfiler. Preprint at bioRxiv https://doi.org/10.1101/2021.07.17.452050 (2021).

  46. Pontzer, H. et al. Metabolic acceleration and the evolution of human brain size and life history. Nature 533, 390–392 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lynch, V. J. et al. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep. 10, 551–561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Khetan, S. et al. Functional characterization of T2D-associated SNP effects on baseline and ER stress-responsive β cell transcriptional activation. Nat. Commun. 12, 5242 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qin, B., He, M., Chen, X. & Pei, D. Sorting nexin 10 induces giant vacuoles in mammalian cells. J. Biol. Chem. 281, 36891–36896 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Ye, L. et al. Osteopetrorickets due to Snx10 deficiency in mice results from both failed osteoclast activity and loss of gastric acid-dependent calcium absorption. PLoS Genet. 11, e1005057 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Teriokhin, A. T., Budilova, E. V., Thomas, F. & Guegan, J.-F. Worldwide variation in life-span sexual dimorphism and sex-specific environmental mortality rates. Hum. Biol. 76, 623–641 (2004).

    Article  PubMed  Google Scholar 

  53. Mauvais-Jarvis, F. et al. Sex and gender: modifiers of health, disease, and medicine. Lancet 396, 565–582 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Oliva, M. et al. The impact of sex on gene expression across human tissues. Science 369, https://doi.org/10.1126/science.aba3066 (2020).

  55. Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  CAS  Google Scholar 

  56. Berrandou, T.-E., Balding, D. & Speed, D. LDAK-GBAT: fast and powerful gene-based association testing using summary statistics. Am. J. Hum. Genet. 110, 23–29 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Ongen, H., Buil, A., Brown, A. A., Dermitzakis, E. T. & Delaneau, O. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 32, 1479–1485 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Siva, N. 1000 genomes project. Nat. Biotechnol. 26, 256 (2008).

    Article  PubMed  Google Scholar 

  59. Xu, S. et al. Use ggbreak to effectively utilize plotting space to deal with large datasets and outliers. Front. Genet. 12, 774846 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sinnott-Armstrong, N. et al. A regulatory variant at 3q21.1 confers an increased pleiotropic risk for hyperglycemia and altered bone mineral density. Cell Metab. 33, 615–628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Eguchi, J. et al. Transcriptional control of adipose lipid handling by IRF4. Cell Metab. 13, 249–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Novo Nordisk Foundation (challenge grant NNF18OC0033754 to M.A.N.), Novo Nordisk Foundation grant NNF21SA0072102 to M.C., the National Institutes of Health (grants R01HL128075, P30DK020595 and R01HL119577 to M.A.N., grant R01AR064793 to R.A.B., grant UM1126185 to M.C. and training grant T32HL007381 to A.C.J) and the American Heart Association (grant 20PRE35210899 to G.T.H.). We thank A. Candles for support with the paper.

Author information

Authors and Affiliations

Authors

Contributions

G.T.H., M.A.N. and Y.I.L. conceived of the initial TWAS approach to finding genes associated with obesity and WHRadjBMI. Y.I.L. supervised the genetic correlation, LDSC-SEG and TWAS analyses. A.C.J. and G.A.H. performed the MPRA with assistance and direction from D.R.S. L.Y. performed the mmΔSnx10Adipoq mouse generation, HFD administration and DEXA scanning with supervision from R.A.B., L.Y., F. Sahebdel and K.K. F. Sultana and K.K. performed the SNX10 shRNA experiments with supervision and training from R.A.B. A.G.T. and D.R.S. performed the luciferase assays to confirm the regulatory activity of Alu elements. I.A., Z.T.W., L.Z. and D.R.S. performed the CRISPR-mediated deletion of Alu elements. Z.T.W. and N.J.S. analyzed the CRISPR data. S.M.S. and S.L. performed the ABC and LipocyteProfiler analyses with supervision from M.C. G.T.H. performed the genetic correlation, LDSC-SEG, TWAS, MPRA and motif analyses. G.T.H. drafted the manuscript and figures with editorial assistance from M.A.N.

Corresponding authors

Correspondence to Grace T. Hansen, Liang Ye, Ricardo A. Battaglino or Marcelo A. Nóbrega.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 UKBB GWAS summary statistics at SNX10 locus, triglycerides.

Plots represent UK biobank GWAS summary statistics for quantile-binned blood triglyceride levels, separated by sex. x- axis represents genomic position; y axis represents -log10(p) for association with trait. Color of points represents linkage with rs1534696. Female N = 315,133, male N = 315,133.

Extended Data Fig. 2 UKBB GWAS summary statistics at SNX10 locus, HDL cholesterol.

Plots represent UK biobank GWAS summary statistics for quantile-binned HDL cholesterol levels, separated by sex. x- axis represents genomic position; y axis represents -log10(p) for association with trait. Color of points represents linkage with rs1534696. Female N = 315,133, male N = 315,133.

Extended Data Fig. 3 Enhancer-modulating variants by allele.

Normalized activity level of all 58 enhancer-modulating variants. y axis represents normalized activity level; x axis represents allele. enhancer-modulating variants are labeled by rsid and by female WHRadjBMI TWAS gene from which they were identified (see MPRA methods). Data are colored by expression (darker=more highly expressed allele).

Extended Data Fig. 4 Enrichment of significant MPRA enhancers in active adipose chromHMM marks.

y axis represents number of rsids per adipose nuclei chromHMM category; x axis represents chromHMM category; grouping represents MPRA variant type (significant/nonsignificant). p-values represents chi-square testing of observed values to values expected by chance.

Extended Data Fig. 5 Functional validation of MPRA variants.

This plot shows luciferase activity (luciferase/Renilla) averages in 3T3-L1 preadipocytes for four technical replicates (n = 4) and average ± SEM of these four technical replicates for the control and each variant construct. Significant increase in luciferase activity between each construct and control was measured using a one-tailed paired t-test. * p < 0.05, ** p < 0.01, *** p < 0.001. Exact p-values are reported in the luciferase data available in the repository. Data are colored by MPRA significance status.

Extended Data Fig. 6 CRISPR/cas9-mediated deletion of Alu-associated MPRA enhancers.

These plots show significantly down- and up-regulated genes subsequent to deletion of MPRA-identified enhancers (rs4955430 and rs6446275) contained within an Alu element, and a nonsignificant MPRA variant also located within an Alu element. Genomic deletions ranged from 585 to 1,300 bp (see Supplementary table 7), and each deletion was assessed in triplicate. Significance is derived from edgeR modeling and FDR correction, and defined astwo-sided p < 0.05 and q < 0.05. Box plot whiskers represent minimum (1st percentile) and maximum (99th percentile) expression, box bounds represent first quartile (25th percentile and 75th percentile), and center line represents median of data (50th percentile). Exact p-values are reported in the CRISPR data available in the repository. Data are colored by rs1534696 genotype.

Extended Data Fig. 7 Correlation of SNX10 expression with adipocyte markers.

Numbers represent Pearson’s r values. Genes included are mature adipocyte markers PLIN1, LEP, FABP4, and ADIPOQ, adipocyte progenitor marker ICAM1, and multipotent progenitor marker DPP4. Samples are all those included in GTEx v8 subcutaneous adipose (n = 581).

Extended Data Fig. 8 Metabolic and anthropometric attributes of mmΔSnx10Adipoq mice and control littermates.

* indicates p < 0.01. All statistical tests are two-sided Student’s t-tests between sex-genotype groups. F-control n = 12 mice, F-KO n = 5, M-control n = 34 M-KO n = 6 in all tests. Box plot whiskers represent minimum (1st percentile) and maximum (99th percentile) of data, box bounds represent first quartile (25th percentile and 75th percentile), and center line represents median of data (50th percentile). a) Mass of body fat of mmΔSnx10Adipoq mice and littermate controls by sex. b) Femur length of mmΔSnx10Adipoq mice and littermate controls by sex. c) Lean mass of mmΔSnx10Adipoq mice and littermate controls by sex. d) Lean percent of mmΔSnx10Adipoq mice and littermate controls by sex. Data are colored by sex and SNX10 genotype. Fat weight:Mean FC = 19.6, mean FKO = 7.50, mean MC = 19.0, mean MKO = 20.9. FKO vs MKOt=5.90, df=4, CI = 7.33-19.5. Lean weight:Mean FC = 20.3, mean FKO = 17.8, mean MC = 25.4, mean MKO = 26.5. FKO vs MKO t = 8.48,df=4,CI = -5.45-11.1. Lean body fat percent:Mean FC = 49.7, mean FKO = 72.2, mean MC = 56.3, mean MKO = 55.0. FKO vs MKO) t = -6.27,df=4,CI = -24.1–10.4. Femur length:Mean FC = 1.6, mean FKO = 1.5, mean MC = 1.7, mean MKO = 1.7. FKO vs MKO t = 1.75,df=4,CI = -0.0810-0.436.

Extended Data Fig. 9 DEXA scans of mmΔSnx10Adipoq mice and control littermates.

DEXA composition scans of all mice after high-fat diet. Scans are organized by genotype status and sex. F-control N = 6, F-KO N = 5, M-control N = 3, M-KO N = 6.

Extended Data Fig. 10 Identification of enriched adipogenesis motif in Khetan et al.

Figure is made from Khetan et al-identified motifs in the same mannrs as Fig. 3e of this article. Enrichment of a partial DR1 motif at ~55 bp from the start of Alu elements, seen in our MPRA of female WHRadjBMI-associated loci, is also seen in their MPRA identifying enhancers associated with type 2 diabetes in pancreatic beta cells.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9.

Reporting Summary

Supplementary Tables

Supplementary tables, including primers and guides for the CRISPR, luciferase and SNX10 experiments.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, G.T., Sobreira, D.R., Weber, Z.T. et al. Genetics of sexually dimorphic adipose distribution in humans. Nat Genet 55, 461–470 (2023). https://doi.org/10.1038/s41588-023-01306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01306-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing