Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome assembly and genetic dissection of a prominent drought-resistant maize germplasm

Abstract

In the context of climate change, drought is one of the most limiting factors that influence crop production. Maize, as a major crop, is highly vulnerable to water deficit, which causes significant yield loss. Thus, identification and utilization of drought-resistant germplasm are crucial for the genetic improvement of the trait. Here we report on a high-quality genome assembly of a prominent drought-resistant genotype, CIMBL55. Genomic and genetic variation analyses revealed that 65 favorable alleles of 108 previously identified drought-resistant candidate genes were found in CIMBL55, which may constitute the genetic basis for its excellent drought resistance. Notably, ZmRtn16, encoding a reticulon-like protein, was found to contribute to drought resistance by facilitating the vacuole H+-ATPase activity, which highlights the role of vacuole proton pumps in maize drought resistance. The assembled CIMBL55 genome provided a basis for genetic dissection and improvement of plant drought resistance, in support of global food security.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The drought-resistant phenotypes and genome assembly of CIMBL55.
Fig. 2: Gene synteny analysis in CIMBL55 and B73.
Fig. 3: Identification of genetic variants and their associations with drought resistance.
Fig. 4: SV-related alterations in DNA methylation.
Fig. 5: ZmRtn16 positively contributes to drought resistance in maize.
Fig. 6: ZmRtn16 interacts with ZmVHA-A and E3 and facilitates ZmVHA functions.

Similar content being viewed by others

Data availability

All genomic data mentioned in this paper are available at NCBI under the project of PRJNA765111, including the CIMBL55 genome sequence (JAJHUH000000000) and the raw sequencing data used for the assembly (PacBio, illumina, Bionano, Hi-C) and DNA methylation analysis (BS-seq) of CIMBL55, B73, Mo17, wild type (LH244) and zmdrd1 mutants (SRP338635). Source data are provided with this paper. Supplementary figures and source data are available at Figshare (https://doi.org/10.6084/m9.figshare.21709943)72.

Code availability

We deposited customized scripts in the following GitHub repository (https://github.com/ttian627/CIMBL55_genome_assembly) and Zenodo (https://doi.org/10.5281/zenodo.7523457)73.

References

  1. Gupta, A., Rico-Medina, A. & Cano-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Hu, H. & Xiong, L. Genetic engineering and breeding of drought-resistant crops. Annu Rev. Plant Biol. 65, 715–741 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Ashraf, M. Inducing drought tolerance in plants: recent advances. Biotechnol. Adv. 28, 169–183 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Godfray, H. C. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Daryanto, S., Wang, L. & Jacinthe, P. A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 11, e0156362 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Smith, C. W., Betran J., Runge E. C. A. (eds.). Corn: Origin, Technology, and Production, 99–132 (John Wiley & Sons, 2004).

  7. Schnable, P. S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Mahmoud, M. et al. Structural variant calling: the long and the short of it. Genome Biol. 20, 246 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jiao, Y. et al. Improved maize reference genome with single-molecule technologies. Nature 546, 524–527 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun, S. et al. Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat. Genet. 50, 1289–1295 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Hufford, M. B. et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655–662 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, N. et al. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat. Genet. 51, 1052–1059 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Lin, G. et al. Chromosome-level genome assembly of a regenerable maize inbred line A188. Genome Biol. 22, 175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, C. et al. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nat. Commun. 11, 17 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Haberer, G. et al. European maize genomes highlight intraspecies variation in repeat and gene content. Nat. Genet. 52, 950–957 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, X. et al. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 48, 1233–1241 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Mao, H. et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat. Commun. 6, 8326 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, S. et al. Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biol. 21, 163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, X. et al. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol. Breed. 28, 511–526 (2010).

    Article  Google Scholar 

  20. Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Tang, H. et al. Synteny and collinearity in plant genomes. Science 320, 486–488 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, D., Hunt, M. & Tsai, I. J. Inferring synteny between genome assemblies: a systematic evaluation. BMC Bioinform. 19, 26 (2018).

    Article  Google Scholar 

  23. Woodhouse, M. R. et al. Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homologs. PLoS Biol. 8, e1000409 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tian, T. et al. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 45, W122–W129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He, Z. et al. The maize ABA receptors ZmPYL8, 9 and 12 facilitate plant drought resistance. Front Plant Sci. 9, 422 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huai, J. et al. Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep. 27, 1861–1868 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Wei, K. & Pan, S. Maize protein phosphatase gene family: identification and molecular characterization. BMC Genom. 15, 773 (2014).

    Article  Google Scholar 

  28. Liu, S. et al. Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet. 9, e1003790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin, J. et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45, D1040–D1045 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Goel, M., Sun, H., Jiao, W. B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20, 277 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kronenberg, Z. N. et al. High-resolution comparative analysis of great ape genomes. Science 360, eaar6343 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cao, Y. et al. Natural variation of an EF-hand Ca(2+)-binding-protein coding gene confers saline-alkaline tolerance in maize. Nat. Commun. 11, 186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kang, J. Y., Choi, H. I., Im, M. Y. & Kim, S. Y. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14, 343–357 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fujita, Y. et al. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17, 3470–3488 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu, H. et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl Acad. Sci. USA 103, 12987–12992 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fujita, M. et al. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39, 863–876 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Tran, L. S. et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16, 2481–2498 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kanno, T. et al. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr. Biol. 14, 801–805 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Huettel, B. et al. Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis. EMBO J. 25, 2828–2836 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, X. et al. Reticulon proteins modulate autophagy of the endoplasmic reticulum in maize endosperm. eLife 9, e51918 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, Y. S. & Strittmatter, S. M. The reticulons: a family of proteins with diverse functions. Genome Biol. 8, 234 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cipriano, D. J. et al. Structure and regulation of the vacuolar ATPases. Biochim. Biophys. Acta 1777, 599–604 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gaxiola, R. A., Palmgren, M. G. & Schumacher, K. Plant proton pumps. FEBS Lett. 581, 2204–2214 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Li, Y., Zeng, H., Xu, F., Yan, F. & Xu, W. H(+)-ATPases in plant growth and stress responses. Annu. Rev. Plant Biol. 73, 495–521 (2022).

    Article  PubMed  Google Scholar 

  47. Bak, G. et al. Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5-bisphosphate. Plant Cell 25, 2202–2216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Batelli, G. et al. SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol. Cell. Biol. 27, 7781–7790 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, H. et al. RNAi-directed downregulation of vacuolar H(+) -ATPase subunit a results in enhanced stomatal aperture and density in rice. PLoS ONE 8, e69046 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, X. et al. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnol. J. 18, 1271–1283 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinforma., https://doi.org/10.1002/0471250953.bi0410s25 (2009).

    Article  Google Scholar 

  54. Xiong, W., He, L., Lai, J., Dooner, H. K. & Du, C. HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. Proc. Natl Acad. Sci. USA 111, 10263–10268 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Campbell, M. S. et al. MAKER-P: a tool kit for the rapid creation, management and quality control of plant genome annotations. Plant Physiol. 164, 513–524 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marcais, G. et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Quinlan, A. R. BEDTools: the swiss-army tool for genome feature analysis. Curr. Protoc. Bioinforma. 47, 1–34 (2014).

    Article  Google Scholar 

  62. Chen, S. et al. Paragraph: a graph-based structural variant genotyper for short-read sequence data. Genome Biol. 20, 291 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Xi, Y. & Li, W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinform. 10, 232 (2009).

    Article  Google Scholar 

  64. Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Crisp, P. A. et al. Variation and inheritance of small RNAs in maize inbreds and F1 hybrids. Plant Physiol. 182, 318–331 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Ding, S., Zhang, B. & Qin, F. Arabidopsis RZFP34/CHYR1, a ubiquitin E3 ligase, regulates stomatal movement and drought tolerance via SnRK2.6-mediated phosphorylation. Plant Cell 27, 3228–3244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, H. et al. Firefly luciferase complementation imaging assay for protein–protein interactions in plants. Plant Physiol. 146, 368–376 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Krebs, M. et al. Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc. Natl Acad. Sci. USA 107, 3251–3256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Qin, F. et al. Supplementary information for 'Genome assembly and genetic dissection of a prominent drought-resistant maize germplasm', https://doi.org/10.6084/m9.figshare.21709943 (2023).

  73. Tian, T. et al. Perl scripts used in ‘genome assembly and genetic dissection of a prominent drought-resistant maize germplasm’. Zenodo. https://doi.org/10.5281/zenodo.7523457 (2023).

Download references

Acknowledgements

We thank the great technical support of generating and propagating the transgenic maize provided by the staff in the Center of Crop Functional Genomics and Molecular Breeding at CAU. This research was supported by the Beijing Outstanding Young Scientist Program (BJJWZYJH01201910019026), the National Key Research and Development Program of China (2021YFD1200703), the National Natural Science Foundation of China (31625022, 32171940) and Chinese Postdoctoral Science Foundation (2019M660874, 2021T140714).

Author information

Authors and Affiliations

Authors

Contributions

F.Q. designed and supervised the study and revised the manuscript. T.T. and S.W. analyzed the data, performed the experiments and drafted the manuscript. S.Y. identified the genetic variants in 30 maize accessions. Z.Y. generated the zmdrd1-ko plants. Y.W. and H.G. provided phenotypes for CIMBL55, B73 and Mo17 in fields. S.L. assisted in the candidate gene association analysis. S.Z. assisted in all the greenhouse experiments. X.Y. and C.J. provided maize materials and important suggestions for the work. All the author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Feng Qin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Klaus Mayer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–12.

Supplementary Data

Statistical supporting data of Supplementary Figs. 1, 6, 8, 10, 11.

Source data

Source Data Figs. 2–6

Statistical source data.

Source Data Fig. 6

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, T., Wang, S., Yang, S. et al. Genome assembly and genetic dissection of a prominent drought-resistant maize germplasm. Nat Genet 55, 496–506 (2023). https://doi.org/10.1038/s41588-023-01297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01297-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research