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Multi-ancestry transcriptome-wide 
association analyses yield insights into 
tobacco use biology and drug repurposing

Most transcriptome-wide association studies (TWASs) so far focus on 
European ancestry and lack diversity. To overcome this limitation, we 
aggregated genome-wide association study (GWAS) summary statistics, 
whole-genome sequences and expression quantitative trait locus (eQTL) 
data from diverse ancestries. We developed a new approach, TESLA 
(multi-ancestry integrative study using an optimal linear combination of 
association statistics), to integrate an eQTL dataset with a multi-ancestry 
GWAS. By exploiting shared phenotypic effects between ancestries and 
accommodating potential effect heterogeneities, TESLA improves power 
over other TWAS methods. When applied to tobacco use phenotypes, TESLA 
identified 273 new genes, up to 55% more compared with alternative TWAS 
methods. These hits and subsequent fine mapping using TESLA point to 
target genes with biological relevance. In silico drug-repurposing analyses 
highlight several drugs with known efficacy, including dextromethorphan 
and galantamine, and new drugs such as muscle relaxants that may be 
repurposed for treating nicotine addiction.

Cigarette smoking is a major heritable risk factor for human diseases. 
The availability of large datasets has enabled a breakthrough in the 
genetics of smoking addiction, with >400 loci discovered to date1. 
Although some of these associations point to genes and pathways of 
known biological importance, including the nicotinic receptor and 
dopaminergic signaling pathway genes1, the underlying mechanisms 
for most of the identified loci are unknown. On top of this, the genetic 
architecture of tobacco use outside of European populations remains 
understudied. In the present study, we combined GWAS datasets total-
ing 1.3 million individuals: 1.2 million from the GWAS and Sequencing 
Consortium of Alcohol and Nicotine use (GSCAN) and 150,000 diverse 
ancestries from the Trans-Omics Precision Medicine (TOPMed)2 to 
further empower gene discovery and elucidate the genetic architecture 
of smoking behavior.

Dissecting the mechanisms of GWAS hits for tobacco use is crucial 
to understand the etiology of nicotine addiction and related disease 
outcomes. TWAS approaches (for example, FUSION3, TIGAR4, PrediX-
can5 and UTMOST6) use eQTLs to predict gene expression levels in 
silico, which the method then uses to identify genes associated with 

the phenotype of interest. Various TWAS methods have been widely 
applied to different complex traits to understand the functional con-
sequences of regulatory variations7–9.

TWAS in its original form requires GWAS and eQTL data to be from 
matched ancestries. Direct integration of eQTLs with GWAS data from 
nonmatched ancestries (for example, integrating European-derived 
eQTLs with non-European GWASs) was shown to have suboptimal 
power10. The results may also be difficult to interpret because causal 
variants underlying GWAS hits or eQTLs may differ between ances-
tries. An alternative strategy is to use ancestry-matched eQTL data 
from disease-relevant tissues and perform TWAS separately for each 
ancestry (which we call MATCH-TWAS). MATCH-TWAS may be difficult 
or even impossible to implement in practice because eQTL data may not 
be broadly available for disease-relevant tissues in non-European ances-
tries. In addition, because most causal variants have been observed 
to be consistent across ancestries11–13, MATCH-TWAS can suffer from 
substantial power loss by using only the GWAS data from the matched 
ancestry, due simply to smaller sample size. Another possible strategy 
is to ignore ancestral differences and perform TWAS using GWAS fixed 
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To achieve this goal, we developed a new method, TESLA, which exploits 
shared phenotypic effects across ancestries and accommodates 
between-ancestry genetic effects, and consistently improves power 
over existing methods. We identify many more gene-level associations 
than alternative methods, such as MATCH-TWAS and FE-TWAS. We also 
performed fine mapping, enrichment and drug-repurposing analyses 
for TWAS hits to learn new biology and gain clinical insights related to 
tobacco use phenotypes.

Results
Method overview
For all presentations, we call the genetic effects on GWAS phenotypes 
‘phenotypic effects’ and the effect of gene expression the ‘eQTL effect’. 
TWAS was originally developed to integrate eQTL and GWAS datasets 
derived from matched ancestries5. Specifically, it first builds gene 
expression prediction models using eQTL datasets that measure both 
gene expression levels and genotypes and obtains weights on eQTL 
SNPs (wj). The eQTL weights are then used to calculate a weighted sum 
of phenotypic effect estimates (which we denote as bj for the effect 
of variant j) for gene-level association tests. When adapting TWAS to 
integrate European eQTL data with non-European GWAS data, power 
loss was observed empirically10, but the theoretical reason behind the 
power loss was not well established.

In the present study, we propose a proportionality condition under 
which trans-ancestry TWAS attains its optimal power. Specifically, the 
proportionality condition states that TWAS has optimal power if the 
phenotypic effects and eQTL weights from the gene expression predic-
tion model are proportional to each other. This condition is satisfied 
when the eQTL SNPs influence phenotypes via their regulatory effects, 

effect (FE) or random effect (RE) meta-analysis results combining differ-
ent ancestries (FE-TWAS and RE-TWAS). FE-TWAS and RE-TWAS do not 
fully leverage ancestral differences in phenotypic effect sizes and link-
age equilibrium (LD) patterns, which also leads to suboptimal power.

Given the lack of sizable eQTL datasets from disease-relevant 
tissues in a matched ancestry, it is important to develop methods 
to optimally integrate an existing eQTL dataset from a given ances-
try (European or any ancestry) in a multi-ancestry meta-analysis.  

GWAS summary statistics from 61 studies n = 1,300,000
(GSCAN EUR n = 1,200,000; TOPMed EUR n = 51,700; AMR n = 19,700; AFR n = 28,700; ASIAN n = 5,400)

SmkInit (56 studies); SmkCes (56 studies); CigDay (48 studies); AgeInit (44 studies)
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Fig. 1 | Schematic description of the TESLA method. TESLA uses meta-
regression to model phenotypic effect estimates as functions of the PCs of 
genome-wide allele frequencies from each cohort. For a given gene expression 
prediction model generated from an eQTL dataset, we use TESLA to more 

accurately estimate phenotypic effects, then use them to perform TWASs and 
attain optimal power. We also performed fine mapping and enrichment analysis 
using the TESLA results (which we call eTESLA).

Table 1 | TESLA identified substantially more loci and new 
loci than FE-TWASs, RE-TWASs and EURO-TWASs using 
GTEx data and PrediXcan weights

Genes identified across all the tissues

Trait TESLA FE-TWAS RE-TWAS EURO-TWAS

SmkInit 3,066 (908, 
193)

2,916 (852, 
168)

218 (84, 12) 2,729 (795, 
132)

SmkCes 476 (155, 19) 414 (136, 16) 33 (19, 4) 428 (144, 16)

CigDay 840 (276, 46) 793 (248, 29) 482 (143, 31) 793 (229, 26)

AgeInit 93 (50, 15) 64 (38, 8) 8 (7, 3) 29 (21, 2)

Total 4475 (1,389, 
273)

4187 (1,274, 
221)

741 (147, 50) 3979 (1,189, 
176)

Genes with two-sided TWAS P values <2.5 × 10−6 were deemed statistically significant. A 
gene × trait association was considered new if it was >1 × 106 bp away from previously reported 
GWAS hits. The number of gene × trait associations, the number of unique gene × trait 
associations (that is, the gene × trait association that appears in multiple tissues are counted 
only once) and new associations are shown for each TWAS method. The numbers in 
parentheses are unique gene and new gene counts, respectively

http://www.nature.com/naturegenetics


Nature Genetics | Volume 55 | February 2023 | 291–300 293

Article https://doi.org/10.1038/s41588-022-01282-x

that is, SNPj
wj⟶ Expression

c
⟶Phenotype, where wj is the eQTL effect 

of SNP j from the gene expression prediction model and c is the effect 
of genetically regulated gene expressions on the phenotypes. The 
phenotypic effect of variant j satisfies βj = wjc. When the eQTL and 
GWAS data come from the same ancestry and the phenotypic and eQTL 
effect heterogeneities between studies are modest, the proportionality 
condition is expected to hold. However, when integrating non-European 
GWASs with European eQTL datasets, this proportionality condition 
can be violated and the power for TWASs is suboptimal because the set 
of causal variants and their phenotypic effects may differ across dif-
ferent ancestries. Motivated by this proportionality condition, we 
developed an improved TWAS method, TESLA, that optimally inte-
grates a given eQTL dataset with a multi-ancestry GWAS. TESLA consists 
of three key steps.

First, TESLA models phenotypic effects across ancestries using 
meta-regression, which takes phenotypic effect estimates, stand-
ard deviations and genome-wide allele frequency principal compo-
nents (PCs, as a proxy for ancestry) as input. We estimate ancestry 
using genetic PC analysis on per-study allele frequencies, although 
other methods may also be used. When no PC is included, the model 

is equivalent to a fixed-effects meta-analysis; when one or more PCs 
are included, the meta-regression coefficients quantify the extent of 
SNP effect heterogeneity as a function of ancestry. For example, in the 
present study, the first PC separates cohorts of individuals with recent 
African–American ancestries (Supplementary Fig. 4). The regression 
coefficient for the first PC will estimate how much the phenotypic 
effect varies between samples of African and non-African ancestry. 
This model jointly analyzes different ancestries, which maximizes the 
sample size and improves the phenotypic effect estimates. To account 
for the unknown extent of phenotypic effect heterogeneities, we fit 
multiple different meta-regression models with varying numbers of 
PCs. The method synthesizes the phenotypic effect estimates from 
different meta-regression models in the third step for TWASs.

Next, for each fitted model, we estimate phenotypic effects in 
the ancestry that match the eQTL dataset. For cohorts from ances-
tries that do not match the eQTL dataset, their phenotypic effect will 
be projected to allele frequency PCs of the eQTL dataset and then 
meta-analyzed with other cohorts. The resulting estimates benefit from 
the contribution of cohorts of all ancestries and satisfy the proportion-
ality condition, as long as the phenotypic effects are mediated by the 
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Fig. 2 | Manhattan plot for multi-tissue TESLA results using GTEx for CigDay 
phenotype. For each chromosome, we labeled the fine-mapped genes with 
posterior inclusion probability (PIP) > 0.9 (with P < 2.5 × 10−6). If more than ten 
genes were significant for a chromosome, only the top ten genes were labeled. 
The Manhattan plot for other traits can be found in Supplementary Fig. 2.  

All P values are two sided. We have now labeled the fine-mapped genes with 
PIP > 0.9 in the Manhattan plot. For smoking initiation trait, there are a large 
number of fine-mapped signals, so we labeled only ten genes per chromosome 
with the largest PIP values.
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genetically regulated gene expressions and effect heterogeneity in the 
same ancestry is modest. The performance of TWASs using the eQTL 
weights and estimated phenotypic effects in the matched ancestry 
thus yields optimal power.

Finally, TESLA combines the TWAS results based on multiple 
meta-regression models using a minimal P-value method to attain 
robust results. We also assessed whether TESLA hits are enriched in 
pathways or tissues and identified candidate drugs that may be repur-
posed for smoking cessation. We provide details in Methods and Sup-
plementary Text.

We perform extensive simulation to evaluate the pro-
posed method and compare them with FE-TWASs, RE-TWASs and 
EURO-TWASs using meta-analysis results from METASOFT (Code avail-
ability). We show that TESLA consistently outperforms or performs 
competitively compared with other methods across all scenarios 
(Supplementary Text and Supplementary Tables 1 and 2). In fact, 
TESLA is the only method that performs consistently well. Given that 
the genetic effects are often unknown in practice, TESLA is a clear 
favorite in real applications.

TESLA improves gene discovery in diverse ancestries
We applied TESLA to summary-level association statistics derived from 
61 cohorts in GSCAN and TOPMed studies of 4 smoking traits including 
smoking initiation (SmkInit, binary trait of smoker versus nonsmoker), 
cigarettes per day (CigDay, continuous outcome), smoking cessation 
(SmkCes, binary outcome comparing current versus former smokers) 
and age of smoking initiation (AgeInit, continuous outcome of the age 
of starting regular smoking) (Supplementary Table 3). Details of phe-
notype definitions can be found in Methods and Supplementary Text. 
PrediXcan weights of 48 tissues from samples of European ancestry in 
GTEx (v.7) (Genotype-Tissue Expression) were used. TESLA was applied 
to analyze gene–phenotype associations in each tissue separately. All 
statistical tests that we performed and the reported P values are two 
sided, unless stated otherwise. Tissue-specific TESLA results were also 
combined using the Cauchy combination test14 to obtain a P value of a 

multi-tissue TWAS for each gene. A schematic description of the TESLA 
analysis flow is shown in Fig. 1.

TESLA results produced well-calibrated genomic control values 
(Supplementary Fig. 1) in each GTEx tissue and phenotype. A total of 
4,475 gene × trait associations (across 48 tissues, 1,389 unique genes 
in total) of 4 smoking traits were identified by TESLA with P values 
<2.5 × 10−6 (Bonferroni’s threshold for testing up to 20,000 expressed 
genes), which was 6.9%, 504% and 12.5% more than FE-TWAS, RE-TWAS 
and EURO-TWAS, respectively (Table 1, Fig. 2 and Supplementary Figs. 
2 and 3). Although 87% of the GWAS samples were of European ances-
try, we still noted considerable improvement in power from TESLA, 
which corroborated the simulation results. Among these results, 783 
gene × trait associations (384 unique genes) were identified in 13 brain 
tissues, including the amygdala, anterior cingulate cortex, caudate, 
cerebellar hemisphere, cerebellum, cortex, frontal cortex, hippocam-
pus, hypothalamus, nucleus accumbens, putamen, brain spinal cord 
(cervical C1) and substantia nigra (Supplementary Table 4).

Among the TESLA-identified genes, 15, 193, 19 and 46 were new 
for AgeInit, SmkInit, SmkCes and CigDay, respectively, which are 
>1 × 106 base pairs (bp) away from known GWAS sentinel variants (Sup-
plementary Table 5). The number of new genes identified by TESLA was 
also 23.5% and 55.1% more than FE-TWAS and EURO-TWAS, respectively. 
We also counted the number of new loci where we considered genes 
within 1 × 106 bp of each other to be the same locus. A similar advantage 
remains where the number of new loci identified by TESLA is 20.5% 
and 32.5% more than FE-TWASs and EURO-TWASs, respectively. The 
improvements over FE-TWAS showcase the advantage of the TESLA 
method, whereas the advantage over EURO-TWAS is probably attribut-
able to the addition of non-European samples. The advantage of TESLA 
was maintained when a more stringent P-value threshold was used (that 
is, 5.0 × 10−8, Bonferroni’s threshold for testing 20,000 genes among 
48 tissues) (Supplementary Table 6).

The number of significant associations in each tissue was influ-
enced by both the tissue relevance for the trait and the sample size of 
the eQTL dataset. Although brain tissues are known to be involved in 

CC: dopaminergic synapse in CigDay
(GO:0098691)

0

3

6

9

Amygdala

Anterior cingulate cortex BA24

Caudate basal ganglia

Cerebellar hemisphere

Cerebellum

Cortex

Frontal cortex BA9
Hippocampus

Hypothalamus

Nucleus accumbens basal ganglia

Putamen basal ganglia

Spinal cord cervical C1

Substantia nigra

FWER < 0.05

a BP: behavorial response to nicotine in CigDay
(GO:0035095)

0

3

6

9

Amygdala

Anterior cingulate cortex BA24

Caudate basal ganglia

Cerebellar hemisphere

Cerebellum

Cortex

Frontal cortex BA9 Hippocampus

Hypothalamus

Nucleus accumbens basal ganglia

Putamen basal ganglia

Spinal cord cervical C1

Substantia nigra

FWER < 0.05

–log10(P)

b

–log10(P)

1212

Fig. 3 | Key addiction-related pathways are ubiquitously enriched with TESLA 
hits in multiple brain tissues. We displayed TESLA enrichment P values (two 
sided) across 13 GTEx brain tissues using radar plots. a,b, The enrichment of 
TESLA hits for cigarettes per day for the dopaminergic synapse pathways (a) and 
the behavioral response to nicotine pathways (b). Gridlines in the radar plots 

indicate different levels of statistical significance. Each spoke represents a brain 
tissue and the length of the spoke represents the −log10(P) of enrichment. Brain 
tissues with significant enrichment P values after multiple testing corrections are 
shown in red. CC, cellular component; BP, biological process.
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tobacco use phenotypes, we did not observe an increased number of 
associated genes in brain tissues, possibly because the small sample 
sizes of brain tissue eQTL datasets lead to limited power for predict-
ing gene expression in silico. On the other hand, we typically found a 
larger number of gene × trait associations in tissues with larger eQTL 
sample sizes, with TWASs in whole blood yielding the largest number 
of associations (Supplementary Fig. 3).

Similar patterns were observed for TESLA analysis with nucleus 
accumbens eQTL data from the Lieber Institute for Brain Development 
(LIBD) Human Brain Repository, which contains a higher representa-
tion of non-European ancestry (n = 198; 53% of European and 47% with 
African ancestry) than GTEx (n = 114 for nucleus accumbens; overall 15% 
non-European ancestry). As the sample size of non-European ancestry 
GWASs is relatively small (AgeInit n = 11,626, CigDay n = 12,379, SmkCes 
n = 14,293, SmkInit n = 22,693), the number of gene × trait associations 
identified using African–American eQTL data is small, but a significant 
portion is replicated in the TWAS using European eQTLs (Supplemen-
tary Table 7). The advantage of TESLA over alternative TWAS methods 
widened even more using the African ancestry eQTL dataset, because 
the fraction of non-African ancestry GWAS samples is large. Across 4 

smoking traits, TESLA identified 122 genes, which was 91% more than 
FE-TWAS (64 significant gene associations), the second-best method. 
On the other hand, AFR-TWAS that uses ancestry-matched African 
ancestry eQTL and GWAS data yielded much smaller numbers of genes, 
because only a small fraction of GWAS cohorts was of African ancestry. 
This showed that conducting TWASs using only ancestry-matched 
GWAS and eQTL datasets cannot overcome sample size limitations and 
thus they remain severely underpowered (Supplementary Table 8).

Based on TESLA results, we quantified the extent of phenotypic 
effect heterogeneity based on the models that yield minimal P values 
and show that 77% of the genes have homogeneous effects across 
ancestries. (Supplementary Text, Supplementary Figs. 4 and 5 and 
Supplementary Table 9). We also performed fine-mapping analysis and 
identified a number of genes with biological relevance (Supplementary 
Text, Supplementary Fig. 6 and Supplementary Table 10).

Enrichment analysis highlighted key pathways
We used gene ontology (GO) enrichment analysis to find pathways, 
tissues and cell types relevant to tobacco use (Supplementary  
Table 11). Our enrichment analysis is based on the same idea as 
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Fig. 4 | Different brain tissues are enriched with distinct pathways. We 
used REVIGO to reduce redundant GO terms and facilitate the visualization of 
enrichment results. We highlighted three brain regions (that is, cortex, substantia 
nigra and cerebellum) with distinct patterns of enrichment. For brain cortex, 

one GO term (relaxation of smooth muscle) accounts for 98.3% of the pathways 
enriched with TWAS hits, whereas, for substantia nigra and cerebellum, a diverse 
set of GO terms was enriched with TWAS hits. The brain figures are generated by 
R package ggseg43.
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GWAS-based pathway analysis tools, such as MAGMA15, which lever-
age weighted regression to assess whether a given pathway is enriched 
with TWAS hits from a given tissue16. First, we identified a number of key 
pathways with known biological relevance to addiction that are ubiqui-
tously enriched in multiple tissues. These pathways include neuromus-
cular synaptic transmission (GO:0007274), neurotransmitter catabolic 
process (GO:0042135), negative regulation of synaptic transmission, 
GABAergic (GO:0032229), Lewy body (GO:0097413) and dopaminergic 
synapse (GO:0098691) (Fig. 3a). Importantly, many tobacco-related 
pathways are consistently ranked among the top pathways (family-wise 
error rate (FWER) < 0.05) in the cerebellum, including neurotransmitter 
catabolic process (GO:0042135) for CigDay (P = 9.5 × 10−11), dopamin-
ergic synapse (GO:0098691) for SmkInit (P = 1.2 × 10−9) and behavioral 
response to nicotine (GO:0035095) for CigDay (P = 2.3 × 10−14). This 
finding is consistent with increasing evidence showing that cerebellum 

functions extend beyond motor control and involve rewarding and 
addictive behaviors17–22.

On the other hand, for most pathways, the enrichment patterns 
differ between traits and tissues, which implicated potentially dif-
ferent genetic architectures (Fig. 3b). To reduce the dimension of 
the data and reveal underlying biology, we clustered GO items using 
the REVIGO method23 (Code availability and Supplementary Fig. 7).  
For CigDay, the only dominant pathway category enriched with 
TWAS hits in cortex is ‘relaxation of smooth muscle’ (GO:0044557, 
P = 3.4 × 10−7, with weight = 98.3%), whereas there are more diverse 
GO items in substantia nigra, an important brain tissue for reward. 
The top GO terms enriched with TESLA hits include: ‘positive regula-
tion of fatty acid transport’ (weight = 31.3%), ‘epithelial cell morpho-
genesis’ (weight = 31.1%), ‘negative regulation of feeding behavior’ 
(weight = 15.5%) and ‘sensory of touch’ (weight = 6.7%) (Fig. 4). The top 

Table 2 | Top drugs identified using enrichment analysis

Drug name Indication Smoking trait Minimal P value and tissue typesa MAGMAb Referencec

Putative drug targets that may be repurposed for smoking cessation

Dextromethorphan Coughing CigDay 3.3 × 10−39 (caudate basal ganglia) 1.0 × 10−4 32,41

SmkInit 9.2 × 10−15 (brain spinal cord 
cervical C1)

0.36

SmkCes 2.8 × 10−4 (brain spinal cord cervical 
C1)

9.2 × 10−9

Ganaxolone Seizure disorders 
(investigated)

CigDay 1.3 × 10−9 (substantia nigra) 0.05 33

SmkInit 3.5 × 10−3 (cerebellum) 0.66

SmkCes 0.08 (caudate basal ganglia) 0.02

Galantamine Alzheimer’s disease CigDay 4.2 × 10−73 (substantia nigra) 7.7 × 10−14 34,42

SmkInit 1.3 × 10−4 (brain spinal cord cervical 
C1)

4.3 × 10−3

SmkCes 0.020 (cortex) 3.4 × 10−9

Clinical drugs identified

Nicotine Smoking cessation CigDay 4.2 × 10−71 (substantia nigra) 4.3 × 10−17 First-line therapy

SmkInit 1.3 × 10−5 (hypothalamus) 0.01

SmkCes 0.03 (amygdala) 5.8 × 10−11

Varenicline CigDay 4.8 × 10−26 (frontal cortex BA9) 5.6 × 10−6 First-line therapy

SmkInit 9.2 × 10−15 (brain spinal cord 
cervical C1)

5.9 × 10−3

SmkCes 2.8×10−4 (brain spinal cord cervical 
C1)

8.2 × 10−9

Bupropion CigDay 9.0 × 10−19 (brain spinal cord 
cervical C1)

0.62 First-line therapy

SmkInit 9.2 × 10−15 (brain spinal cord 
cervical C1)

0.92

SmkCes 2.8 × 10−4 (brain spinal cord cervical 
C1)

0.05

Cytisine CigDay 3.9 × 10−132 (frontal cortex BA9) 5.6 × 10−6 Second-line therapy

SmkInit 9.2 × 10−15 (brain spinal cord 
cervical C1)

5.9 × 10−3

SmkCes 2.8 × 10−4 (brain spinal cord cervical 
C1)

8.2 × 10−9

Anxiolytic drugs 
(butalbital)d

CigDay 4.8 × 10−132 (frontal cortex BA9) 1.1 × 10−3 Second-line therapy

SmkInit 4.9 × 10−5 (cerebellar hemisphere) 7.3 × 10−3

SmkCes 1.1 × 10−3 (caudate basal ganglia) 0.33

Drug enrichment analysis of TESLA results implicates drugs with biological relevance and drugs that are being clinically evaluated. We created gene sets of drug target genes and tested whether 
these gene sets were enriched with TESLA hits. The most significant TESLA P values for enrichment analysis are shown and, as a comparison and validation, we also show enrichment analysis 
based on MAGMA for implicated drugs. Full results are available in Supplementary Table 14. All P values are two sided. aThe minimal P value in 13 brain tissues; significance Bonferroni’s corrected 
P values that are under 5% threshold and labeled bold. bMAGMA using the GWAS signals; significant P values after Bonferroni’s correction are labeled bold. cReferences where the candidate 
drugs were discussed. Preliminary clinical/basic evidence/references support the drug repositioning. dComplete enrichment results for anxiolytic drugs are shown in Supplementary Table 14.
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GO terms have been implicated in substance use and addictive behav-
iors. For example, poly(unsaturated fatty acids) were known to influ-
ence psychiatric outcomes among drug users and food supplements 
for poly(unsaturated fatty acids) have been used to stabilize aggressive 
behaviors24. It is interesting that smoking is also known to reduce stress 
and have self-medication effects. In addition, the enriched GO term 
‘negative regulation of feeding behavior’ is corroborated by many 
smoking-associated loci. These loci were implicated in feeding behav-
ior due to their functions in reward processing25. Results from MAGMA 
enrichment analyses using samples of European ancestry were included 
as a comparison (Supplementary Table 12). Top hits from MAGMA 
remain significant in TESLA and show up in multiple tissues, whereas 
hits that are only significant in TESLA tend to be more tissue specific.

Finally, we incorporated single-cell RNA-sequencing (scRNA-seq) 
data from neurons in the mouse central nervous system to prioritize 
specific cell types related to tobacco use phenotypes26. We created 
cell-type-specific gene sets that consist of the top 10% most highly 
expressed genes specific to each cell type and tested whether they are 
enriched with TESLA hits (Supplementary Fig. 8 and Supplementary 
Table 13). We highlighted cholinergic and monoaminergic neurons 
(P = 4.9 × 10−6, FEWR < 0.01), as well as glutamatergic neuroblasts 
(P = 6.1 × 10−6, FWER < 0.01), as relevant cell types for CigDay in the 
cerebellum (Supplementary Fig. 8), which corroborated human brain 
transcriptomic data.

Enrichment analysis identified drugs for repurposing
We created genes sets for targeted pathways of each drug in DrugBank27 
and examined whether these drug target pathways were enriched with 
TESLA hits in 13 brain tissues from GTEx. We identified 102 putative 
drugs pathways under stringent Bonferroni’s threshold for testing 1,642 
drugs (7.9 × 10−7) (Supplementary Table 14). As confirmation, we also 
included enrichment analysis based on MAGMA, a gene-based method 
that aggregates phenotype association results without incorporat-
ing eQTLs, using samples of European ancestry. Our results pointed 
to drugs with putative or known relevance to smoking cessation and 
suggested new drug classes that may be repurposed for treatment of 
smoking cessation (Table 2).

First, as a positive control and confirmation of the validity of our 
approach, our enrichment analysis identified approved drugs, includ-
ing varenicline, bupropion and cytisine, which are used as first- or 
second-line therapies for smoking cessation28–31.

Second, TESLA enrichment pointed to drugs with putative smok-
ing cessation effects, which are being evaluated in clinical trials. For 
example, the target pathway of dextromethorphan32, a drug orig-
inally used to treat cough, is enriched with CigDay loci in anterior 
cingulate cortex BA24 (P = 3.28 × 10−31, FEWR < 0.01), caudate basal 
ganglia (P = 1.17 × 10−39, FEWR < 0.01) and cerebellum (P = 7.4 × 10−39, 
FEWR < 0.01). The drug target pathway for ganaxolone33, a drug 
used for seizure disorders, is enriched with CigDay loci in hippocam-
pus (P = 2.2 × 10−5, FEWR < 0.01) and substantia nigra (P = 1.1 × 10−9, 
FEWR < 0.01).

Enrichment analysis also identified potential drugs for treat-
ing smoking addiction, which are supported by preliminary 
clinical evidence. For example, galantamine, a Food and Drug 
Administration-approved medication for the treatment of cognitive 
deficits associated with Alzheimer’s disease, increases synaptic ace-
tylcholine levels by inhibiting acetylcholinesterase, an enzyme that 
breaks down acetylcholine. Galantamine also directly stimulates α7- 
and α4β2-nicotinic acetylcholine receptors (nAChRs) via its positive 
allosteric modulator actions34.

In addition to individual drugs, we also evaluated the potential of 
drug classes that can be repurposed for smoking cessation. To do so, we 
grouped all the identified drugs into 15 categories based on their indi-
cations (see Supplementary Text). The top drug group enriched with 
CigDay hits was muscle relaxants, which have established relevance to 

smoking. For example, γ-aminobutyric acid (GABA) β-agonist baclofen 
was shown to ameliorate nicotine- and drug-induced behavior in ani-
mals and humans. This could be due to their shared targets of nAChR 
pathways with smoking addiction. The other two largest drug groups 
were for the treatment of mental disorders and neurological drugs 
(Supplementary Fig. 9).

Discussion
In the present study, we conducted a multi-ancestry TWAS using GWASs 
and whole-genome sequence data from 1.3 million individuals. Our 
TWAS results highlighted shared mechanisms with other substance use 
behaviors (for example, cocaine addiction) and psychiatric phenotypes 
(for example, pain sensitivity, depression and anxiety). Leveraging 
shared disease pathways, we identified drugs that may be repurposed 
for smoking cessation treatment, including dextromethorphan and 
galantamine, which are already being assessed in clinical trials. Given 
the tremendous public health burden that continues to be incurred 
by smoking, repurposing drugs for smoking cessation is extremely 
valuable, because it offers a potentially quicker and more cost-effective 
route to treatment than the development of new therapeutic targets.

Our work also made important methodological contributions. 
TESLA showed robust performance over other methods across dif-
ferent genetic architectures, which makes it a desirable choice in 
practice, because the true phenotypic effects across ancestries are 
unknown. TESLA improves power because it jointly analyzes samples 
from multiple ancestries, maximizes sample sizes and accommodates 
between-ancestry heterogeneities. The magnitude of increased power 
depends on the genetic architecture of the traits across ancestries. 
TELSA has the largest advantage when causal variants are shared 
between ancestries but have heterogeneous effects. Its performance 
is comparable to other well-performing methods when the effects 
are unique to European ancestry or homogeneous across ancestry 
groups. Importantly, the power improvement of TESLA over alterna-
tive methods tends to increase as a larger fraction of non-European 
samples is included. This ensures that TESLA will be even more useful 
because genetic studies are expanding to non-European populations, 
as part of the biomedical research community’s vision for precision 
health using genomics35.

TESLA uses allele frequency PCs to capture cohort ancestry dif-
ferences36 (Supplementary Fig. 4), because cohorts from different 
ancestries show systematic differences in allele frequencies. Similar 
to genotype PCs37, allele frequency PCs can also separate different 
ancestral groups. For example, the first allele frequency PC separates 
cohorts of individuals with recent African ancestries from those with 
other ancestries. As a rule of thumb, the number of PCs used could 
be determined by the number of relatively distinct ancestral groups 
of participating studies minus one, to yield sufficient degrees of 
freedom to separate different major ancestral groups. In our evalua-
tions, we used three PCs, which is consistent with other applications 
of meta-regression models in multi-ancestry studies36. In our simula-
tion study, we varied the number of PCs between two and four and the 
relative performance remained very similar.

TESLA is optimal when the phenotypic effects are mediated by 
the eQTL effects. When there are residual genetic effects of eQTL SNPs 
that influence phenotypes (for example, due to the LD between eQTL 
SNPs and other causal variants in the region), methods such as variance 
component (VC)-TWAS38 would be a useful complementary approach. 
VC-TWAS, in its original form, applies to individual-level data from a 
single study or summary association statistics. It does not accommo-
date multiple sources of input. A straightforward approach is to apply 
VC-TWAS to meta-analysis results. Given that VC-TWAS is an extension 
of the sequence kernel association test (SKAT)39, another possibil-
ity is to extend VC-TWAS in the same way as het-meta-SKAT39, which 
assumes that genetic effects are heterogeneous. These extensions may 
not be optimal, because they do not properly consider genetic effect 
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heterogeneities across ancestries. It would be an important future 
research area to develop optimal strategies to integrate VC-TWAS into 
trans-ancestry genetic studies.

Although TESLA optimizes the power for TWASs using existing 
eQTL datasets, it does not take away the need to generate eQTL data-
sets from non-European populations. The ancestry of the eQTL data-
set strongly influences the interpretation of TESLA results. When a 
European eQTL dataset is used, TESLA identifies target genes specific 
to European ancestry. Therefore, if a genetic variant has heterogene-
ous effects, meta-regression will put the most weight over cohorts of 
European ancestry and less weight on cohorts from non-European 
ancestry. Similarly, when an eQTL dataset of African ancestry is used 
(for example, nucleus accumbens from the LIBD dataset), TESLA iden-
tifies target genes in African ancestries and cohorts with individuals 
of African ancestries would contribute the most to meta-analysis. As 
additional non-European eQTL datasets are generated, TESLA will 
become even more useful to understand the impact of noncoding 
variants in non-European populations.

In summary, our study represents an attempt to extend GWASs 
and TWASs of tobacco use to non-European ancestries. The gene dis-
coveries deepen our understanding of the etiology of tobacco use 
phenotypes and implicate translational applications. The methodology 
is broadly useful for next-generation trans-ancestry genetic studies of 
complex diseases and address critical challenges for multi-ancestry 
TWASs40. TESLA will further improve power over existing methods as 
more non-European GWASs and eQTL datasets are generated.

Online content
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Methods
In this section, we describe the smoking phenotype definition, the sum-
mary association statistics from the GSCAN and TOPMed consortium, 
as well as the TESLA method. The enrichment and drug-repurposing 
analyses are described in Supplementary Text. The detailed descrip-
tions of transcriptomics datasets from the GTEx consortium, LIBD 
Human Brain Repository and mouse scRNA-seq data can also be found 
in Supplementary Text.

Phenotype definition
We analyzed the following four smoking behavior-related traits because 
of their broad availability in existing epidemiological and medical stud-
ies, as well as their biological relevance to addiction behaviors:

 (1) Smoking initiation (SmkInit): a binary trait that compares ever 
smokers with never smokers. Ever smokers were defined as indi-
viduals who have smoked >99 cigarettes in their lifetime, which is 
consistent with the definition by the Center for Disease Control44.

 (2) Cigarettes per day (CigDay): a quantitative trait that measures 
the average number of cigarettes smoked per day by an ever 
smoker.

 (3) Smoking cessation (SmkCes): a binary trait that compares 
former against current smokers.

 (4) Age of smoking initiation (AgeInit): a continuous outcome that 
measures the age when one starts regular smoking.

More detailed definitions for the four phenotypes can be found  
in Supplementary Text, which is reproduced from our published 
GSCAN studies1.

GWAS summary association statistics
Our study used GWAS summary association statistics from 61 partici-
pating studies as input (Supplementary Table 3). These studies were 
analyzed using either (generalized) linear models or linear mixed mod-
els and adjusted for age, sex and at least ten genetic PCs. The adjusted 
covariates may differ slightly between studies. All participating stud-
ies in the meta-analysis were examined by extensive quality control, 
including the check of Manhattan plots and quantile–quantile plots. 
The genomic control values for all participating cohorts are between 
0.9 and 1.1 (Supplementary Table 15). We assessed the probability of the 
meta-analysis results being genuine using MAMBA45, a model-based 
method that relies on the strength of consistency of association signals 
across studies.

We use bjk and sjk to denote the phenotypic effects and standard 
deviation for variant j in study k. We further use zjk = bjk/sjk to denote 
the z-score statistic. In our analysis, standardized genotypes (that is, 
when genotypes are normalized to have mean 0 and variance of 1) are 
used, so that the standard deviation sjk is inversely proportional to √njk, 
that is, zjk ≈ √njkbjk. The results could be easily extended when non-
standardized genotypes were used. In sequence-based genetic studies, 
score statistics are often generated, from which we can derive approxi-
mate phenotypic effects using the above formula. The approximation 
is known to be accurate if true phenotypic effects are small46.

In addition to phenotypic effects and their standard deviations, 
we also take the PCs (or multi-dimensional scaling coefficients36) of 
the cohort allele frequencies as input, which serve as proxies for the 
cohort ancestry (Supplementary Fig. 4). Allele frequencies from dif-
ferent ancestry groups show systematic differences, which can be 
captured by the PCs.

Proportionality condition for optimal TWAS power
We derived conditions for the TWAS statistic to have optimal power and 
used them to explain why direct integration of eQTL data with GWASs 
from different ancestries leads to suboptimal TWASs. We then pro-
posed new and improved TWAS methods for integrating trans-ancestry 
GWASs with European eQTL datasets.

TWASs (and similar methods) were proposed to integrate eQTL 
effects with GWASs, to identify transcripts/genes that are associated 
with phenotypes. The TWAS statistic is often written in the form of 
a linear combination of z-score statistics (which is proportional to 
phenotypic effect estimates when standardized genotypes are used):

UTWAS = ∑
j
wjzj (1)

where wj are the weights obtained from a gene expression prediction 
model. The variance for the statistic UTWAS equals:

VTWAS = w′Vzw (2)

where w is the vector of eQTL weights trained from gene expression 
prediction models, that is, w = (w1,… ,wJ), with J being the total number 
of variants used in the prediction model. Vz is the covariance matrix 
between z-score statistics, which can be approximated based on refer-
ence panels.

It is well understood that the choice of the weights can affect the 
power for the statistic UTWAS. To attain optimal power, the weights have 
to be chosen to maximize the noncentrality parameter of the test  

statistic, that is, μ2TWAS = (E (UTWAS/√VTWAS))
2
. Applying Cauchy Schwarz  

inequality, a given set of eQTL weights yields the optimal power if they  
are proportional to the phenotypic effects, that is wj ∝ βj. We call this 
the ‘proportionality condition’.

In TWAS methods, the eQTL effects are used as weights to combine 
phenotypic effect estimates of GWASs from the same ancestry. If the 
phenotypic effects are mediated by the eQTL effects, that is, Gj

wj→ E
c
→Y, 

and the phenotypic and eQTL effects are homogeneous in samples 
from the same ancestry, the weights and phenotypic effects will satisfy 
the proportionality condition, that is, βj = wjc, and TWAS will yield 
optimal power as a gene-level test.

Improved TWASs in trans-ancestry genetic studies
In contrast to TWASs using European GWASs and eQTL datasets, meas-
ured phenotypic effects can differ between ancestries in multi-ancestry 
genetic studies due to possibly different causal variants, allele frequen-
cies or LD patterns. As a result, the proportionality condition may be 
violated when the GWAS and eQTL data come from different ancestries. 
Nor will the proportionality condition hold when FE or RE meta-analysis 
results from a multi-ancestry study are used with European eQTL data-
set for TWASs. Suboptimal power is expected. Alternatively, if a TWAS is 
performed using European GWAS results and European eQTL dataset, 
and if the phenotypic effects and eQTL effects are homogeneous in 
the European population, the proportionality condition is expected 
to hold. Yet this strategy leaves out non-European GWAS data in the 
study and can still lead to suboptimal power when causal variants are 
shared between ancestries47.

Leveraging ancestral diversity while accounting for 
between-ancestry heterogeneities can improve the accuracy of the 
phenotypic effects in the matched ancestry of the eQTL data. For GWAS 
cohorts from different ancestries than the eQTL dataset, TESLA pro-
jects their phenotypic effects in the direction of eQTL weights, which 
are then meta-analyzed with other studies to get more accurate pheno-
typic effect estimates. TESLA uses these improved phenotypic effects 
to perform TWASs for optimal power.

Multi-ancestry meta-regression models for phenotypic effects
We model the phenotypic effect estimates of eQTL SNPs of a given gene 
as a fixed effect of the ancestry captured by the allele frequency PCs. 
To calculate the PCs of allele frequencies, we code the allele frequency 
matrix using variant sites shared across all studies as F, where each row 
represents a study and each column represents a variant site. We then 
perform singular value decomposition for F, that is, F = CFDFE′F. In our 
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analyses, we use the first three PCs, which is the first three columns of 
the matrix FEF. We denoted the lth PCs for study k as Xkl and the pheno-
typic effects of multiple genetic variants in study k as b⋅k. For notational 
convenience, we fix Xk0 to 1.

We vary the number of PCs used (that is, L) and consider a series 
of models M[L]:

M[L] ∶ b⋅k =
L
∑
l=0
Xklγ[L]l⋅ + ϵ⋅k (3)

where b⋅k = (b1k,… ,bJk) is the phenotypic effects of eQTL SNPs 1,… , J for 
the gene and ϵ⋅k = (ϵ1k,… , ϵJk) is the vector of residuals. The residuals 
follow multivariate normal distribution. γ[L]l⋅ = (γ[L]l1 ,… , γ[L]lJ )  are the 
regression coefficients for variants 1,… , J.

In our simulations and data analyses, we considered L = 0, 1, 2 or 3.  
When no PCs are included in the model, it is equivalent to the FE 
meta-analysis, which is suitable for modeling variants that have homo-
geneous effects across studies. When one or more PCs are included in 
the model, it can capture phenotypic effect heterogeneity between 
studies.

Under model M[L], the phenotypic effect follows a normal 
distribution:

bjk|M[L] ∼ N(
L
∑
l=1
Xklγ[L]lj , s

2
jk) .

Model M[L] can be fitted using the weighted least square method36. 
The solution satisfies:

̂γγγ[LLL]⋅jjj = (XXX[LLL]
′

ΩjjjXXX
[LLL])

−1
XXX[LLL]

′

Ωjjjbbbjjj⋅ (4)

where Ωjjj = diag (sj1,… , sjK).
Based on meta-regression coefficients, we can estimate pheno-

typic effects in the ancestry of the eQTL dataset so that the eQTL 
weights and phenotypic effect estimates satisfy the proportionality 
condition. The first L PC coordinates of the eQTL dataset are denoted 
X̃[L] and the phenotypic effect estimates in the ancestry of the eQTL 
dataset are given by:

̂bj
[L]

= X̃XX
[LLL] ̂γγγ[LLL]jjj = X̃XX[

LLL]
(XXX[LLL]

′

ΩjjjXXX
[LLL])

−1
XXX[LLL]

′

Ωjjjbbbjjj⋅

We denote the vector of estimated effects as b̂[L] = ( ̂b1
[L]
,… , ̂b

[L]
J ), 

the covariance matrix of which is Σ[LLL]
b

. To calculate Σ[LLL]
b

, we use the fact 
that the predicted phenotypic effects ̂bj

[L]
 are a linear combination of 

the phenotypic effects across all participating studies. As a result, we 
can calculate the correlation between the predicted effects of variants 
j1 and j2, that is, b[L]j1  and b[L]j2 , based on the correlations between bj1k and 
bj2k in each study k. Given that each cohort may come from different 
ancestries, we use ancestry-specific reference panels to estimate LD 
and approximate the correlations between bj1k and bj2k. Detailed deriva-
tion of the covariance matrix can be found in Supplementary Text. The 
standard deviation for the estimated effects b̂[L] is denoted by 
ŝ[LLL] = ( ̂s1

[L],… , ̂sJ
[L]), which equals the square root of the diagonal entries 

of Σ[L]
b

.

TESLA using predicted phenotypic effect
Based on the phenotypic effect estimate b̂[L] and its standard deviation 
ŝ[L], we constructed our TWAS statistic as U[L]TWAS =

J
∑
j=1
wj ̂bj

[L]
/ ̂sj

[L] .  
The variance for the statistic equals:

V[L]TWAS = w′ (diag ( ̂s1
[L],… , ̂sJ

[L]))
−1

Σ[LLL]
b
(diag ( ̂s1

[L],… , ̂sJ
[L]))

−1
w (5)

We further calculated the standardized statistic as 

T[L]TWAS = U
[L]
TWAS/√V[L]TWAS.

Four different TWAS statistics are calculated that correspond to 
the models with 0–3 PCs. The model with 0 PC is equivalent to FE-TWAS. 
When the same eQTL weights are used in each study, FE-TWAS is also 
equivalent to conducting TWAS in each participating study and then 
combining results using inverse-variance, weighted meta-analysis 
(Supplementary Text).

We use a minimal P-value approach to find the overall P value for 
the statistic. Specifically, we denote the P values for the four statistics 
as P[0], …, P[3]. The minimal P-value statistic P∗ = min (P[0],… ,P[3])  
follows:

Pr (P∗ < p∗) = 1 − Pr (P∗ > p∗) = 1 − Pr (Φ−1 (1 − p∗) < T[1]TWAS

< Φ−1 (p∗) ,… ,Φ−1 (1 − p∗) < T[4]TWAS < Φ−1 (p∗))
(6)

which can be evaluated using multivariate normal distribution func-
tion. Details can be found in Supplementary Text.

Multi-tissue TESLA statistic using the Cauchy combination
In addition to the single-tissue TESLA statistic, we also calculated a 
cross-tissue TWAS statistic. Numerous methods exist to combine 
P values from correlated test statistics, from which we chose to use 
the Cauchy combination14 due to its excellent power and the ease of 
calculation. In our analysis, we assigned equal weight to each tissue in 
the Cauchy combination test.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
We implemented a Shiny app for users to interactively explore research 
results, which is available at https://liugroupstatgen.shinyapps.io/
shiny-tesla-only. Precomputed gene expression prediction model 
weights of 48 tissues are from the PrediXcan website (GTEx v.7): https://
predictdb.org. GO and pathway gene sets are from MSigDB (https://
www.gsea-msigdb.org/gsea/msigdb). RNA-seq and genotype data from 
postmortem nucleus accumbens samples of physiologically normal 
human brains are from the LIBD Human Brain Repository Data (http://
eqtl.brainseq.org/phase2/eqtl).

Code availability
TELSA is implemented in our rare GWAMA software package and made 
available at GitHub (https://github.com/funfunchen/rareGWAMA) and 
Zenodo (https://doi.org/10.5281/zenodo.7352120)48. Other software 
used includes MAGMA (v.1.08; https://ctg.cncr.nl/software/magma); 
REVIGO (accessed May 2022; http://revigo.irb.hr); METASOFT (v.2.0.1; 
http://zarlab.cs.ucla.edu/software); MAMBA (v.1.12; https://github.
com/dan11mcguire/mamba); MetaXcan (v.0.7.1; https://github.com/
hakyimlab/MetaXcan); R Shiny (v.1.7.2; https://cran.r-project.org/
web/packages/shiny/index.html); and ggseg (v.1.5.3; https://github.
com/ggseg/ggseg).
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