Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MHC II immunogenicity shapes the neoepitope landscape in human tumors

Abstract

Despite advances in predicting physical peptide-major histocompatibility complex I (pMHC I) binding, it remains challenging to identify functionally immunogenic neoepitopes, especially for MHC II. By using the results of >36,000 immunogenicity assay, we developed a method to identify pMHC whose structural alignment facilitates T cell reaction. Our method predicted neoepitopes for MHC II and MHC I that were responsive to checkpoint blockade when applied to >1,200 samples of various tumor types. To investigate selection by spontaneous immunity at the single epitope level, we analyzed the frequency spectrum of >25 million mutations in >9,000 treatment-naive tumors with >100 immune phenotypes. MHC II immunogenicity specifically lowered variant frequencies in tumors under high immune pressure, particularly with high TCR clonality and MHC II expression. A similar trend was shown for MHC I neoepitopes, but only in particular tissue types. In summary, we report immune selection imposed by MHC II-restricted natural or therapeutic T cell reactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Construction and validation of DeepNeo-TCR model.
Fig. 2: Association of predicted neoantigen load with clinical benefits in multiple ICB cohorts.
Fig. 3: Response of predicted neoantigens to ICB treatment.
Fig. 4: Magnitude of depletion of immunogenic MHC II neoantigens according to the strength of immune phenotypes.
Fig. 5: Magnitude of depletion of nonimmunogenic MHC II neoantigens according to the strength of immune phenotypes.
Fig. 6: Magnitude of neoantigen depletion according to the predicted immunogenicity of mutations.
Fig. 7: Relative contribution of the predicted immunogenicity of mutations to neoantigen depletion within samples.

Similar content being viewed by others

Data availability

Raw sequencing data of cohorts that received immune checkpoint blockade (ICB) therapy were obtained from each publication. More specifically, data were retrieved with the following accession numbers: Rizvi et al.’s dataset16(phs000980), Van Allen et al.’s dataset18(phs000452), Riaz et al.’s dataset19(SRP094781), Snyder et al.’s dataset20(phs001041), Hugo et al.’s dataset21(SRP067938, SRP090294), Roh et al.’s dataset22(phs001425), Sade-Feldman et al.’s dataset23,24(phs001427, phs001680), Mariathasan et al.’s dataset26(EGAS00001002556) Miao et al.’s dataset28(phs001493). The Cancer Genome Atlas data were obtained from the GDC Data Portal (https://portal.gdc.cancer.gov/).

The raw exome sequencing data for our lung cancer ICB cohort is available at the European Genome-Phenome Archive (EGAD00001009101) under controlled access because it contains germline data as sensitive data. Somatic mutations called from the data is available at European Variation Archive (EVA) under PRJEB57400.

Code availability

Codes for implementing prediction of peptide-MHC binding and prediction of immunogenicity are deposited at https://github.com/kaistomics/DeepNeo.

References

  1. Jurtz, V. et al. NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J. Immunol. 199, 3360–3368 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. O’Donnell, T. J., Rubinsteyn, A. & Laserson, U. MHCflurry 2.0: improved pan-allele prediction of MHC class I-presented peptides by incorporating antigen processing. Cell Syst. 11, 42–48 (2020).

    Article  PubMed  Google Scholar 

  3. Bassani-Sternberg, M. et al. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Comput. Biol. 13, 1–28 (2017).

    Article  Google Scholar 

  4. Racle, J. et al. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat. Biotechnol. 37, 1283–1286 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, B. et al. Predicting HLA class II antigen presentation through integrated deep learning. Nat. Biotechnol. 37, 1332–1343 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kathuria, K. R. et al. Maria-I: a deep-learning approach for accurate prediction of MHC Class I tumor neoantigen presentation. Blood 134, 84 (2019).

    Article  Google Scholar 

  7. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Tran, E. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350, 1387–1390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wells, D. K. et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell 183, 818–834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, K. et al. Predicting clinical benefit of immunotherapy by antigenic or functional mutations affecting tumour immunogenicity. Nat. Commun. 11, 951 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sharon, E. et al. Genetic variation in MHC proteins is associated with T cell receptor expression biases. Nat. Genet. 48, 995–1002 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hellmann, M. D. et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell 33, 843–852 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anagnostou, V. et al. Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer. Nat. Cancer 1, 99–111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with Nivolumab. Cell 171, 934–949 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roh, W. et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci. Transl. Med. 9, eaah3560 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anagnostou, V. et al. Integrative tumor and immune cell multi-omic analyses predict response to immune checkpoint blockade in melanoma. Cell Rep. Med. 1, 100139 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Snyder, A. et al. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis. PLoS Med. 14, e1002309 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmidt, J. et al. Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. Cell Rep. Med. 2, 100194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, M. N. & Meyerson, M. Antigen identification for HLA class I- and HLA class II-restricted T cell receptors using cytokine-capturing antigen-presenting cells. Sci. Immunol. 6, eabf4001 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stryhn, A. et al. A systematic, unbiased mapping of CD8+ and CD4+ T cell epitopes in yellow fever vaccinees. Front. Immunol. 11, 1836 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grifoni, A. et al. Characterization of magnitude and antigen specificity of HLA-DP, DQ, and DRB3/4/5 restricted DENV-specific CD4+ T cell responses. Front. Immunol. 10, 1568 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferrari, V. et al. In vitro induction of neoantigen-specific T cells in myelodysplastic syndrome, a disease with low mutational burden. Cytotherapy 23, 320–328 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Parn, S., Jabbour, G., Nguyenkhoa, V. & Dakshanamurthy, S. Design of peptide vaccine for COVID19: CD8+ and CD4+ T cell epitopes from SARS-CoV-2 open-reading-frame protein variants. Preprint at bioRxiv https://doi.org/10.1101/2021.09.21.461301 (2021).

  35. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zapata, L. et al. Negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome. Genome Biol. 19, 67 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Weghorn, D. & Sunyaev, S. Bayesian inference of negative and positive selection in human cancers. Nat. Genet. 49, 1785–1788 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ng, P. C. & Henikoff, S. Predicting deleterious amino acid substitutions predicting deleterious amino acid substitutions. Genome Res. 11, 863–874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet., https://doi.org/10.1002/0471142905.hg0720s76 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tokheim, C. & Karchin, R. CHASMplus reveals the scope of somatic missense mutations driving human cancers. Cell Syst. 9, 9–23 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tamborero, D. et al. Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med. 10, 25 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. O’Donnell, J. S., Teng, M. W. L. & Smyth, M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16, 151–167 (2019).

    Article  PubMed  Google Scholar 

  50. Mittal, D., Gubin, M. M., Schreiber, R. D. & Smyth, M. J. New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Van den Eynden, J., Jiménez-Sánchez, A., Miller, M. L. & Larsson, E. Lack of detectable neoantigen depletion signals in the untreated cancer genome. Nat. Genet. 51, 1741–1748 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang, S. et al. Revisiting neoantigen depletion signal in the untreated cancer genome. Preprint at bioRxiv https://doi.org/10.1101/2020.05.11.089540 (2020).

  53. Marty, R. et al. MHC-I genotype restricts the oncogenic mutational landscape. Cell 171, 1272–1283 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marty, R., Thompson, W. K., Salem, R. M., Zanetti, M. & Carter, H. Evolutionary pressure against MHC Class II binding cancer mutations. Cell 175, 416–428 (2018).

    Article  CAS  Google Scholar 

  55. Oh, D. Y. et al. Intratumoral CD4+ T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 181, 1612–1625 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alspach, E. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696–701 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Fang, Y. et al. A pan-cancer clinical study of personalized neoantigen vaccine monotherapy in treating patients with various types of advanced solid tumors. Clin. Cancer Res. Clincancers 26, 4511–4520 (2020).

    Article  CAS  Google Scholar 

  61. Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Tung, C.-W., Ziehm, M., Kämper, A., Kohlbacher, O. & Ho, S.-Y. POPISK: T-cell reactivity prediction using support vector machines and string kernels. BMC Bioinf. 12, 446 (2011).

    Article  CAS  Google Scholar 

  63. Lata, S., Bhasin, M. & Raghava, G. P. S. MHCBN 4.0: a database of MHC/TAP binding peptides and T-cell epitopes. BMC Res. Notes 2, 61 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wick, D. A. et al. Surveillance of the tumor mutanome by T cells during progression from primary to recurrent ovarian cancer. Clin. Cancer Res. 20, 1125–1134 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Cohen, C. J. et al. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res. 67, 3898–3903 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Robbins, P. F. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med. 19, 747–752 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu, Y.-C. et al. Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin. Cancer Res. 20, 3401–3410 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kalaora, S. et al. Combined analysis of antigen presentation and T-cell recognition reveals restricted immune responses in melanoma. Cancer Discov. 8, 1366–1375 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Calis, J. J. A. et al. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput. Biol. 9, e1003266 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Carreno, B. M. et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348, 803–808 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Matsuda, T. et al. Induction of neoantigen-specific cytotoxic T cells and construction of T-cell receptor-engineered T cells for ovarian cancer. Clin. Cancer Res. 24, 5357–5367 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Croft, N. P. et al. Most viral peptides displayed by class I MHC on infected cells are immunogenic. Proc. Natl Acad. Sci. USA 116, 3112–3117 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, M. et al. Identification of an HLA-A*0201 restricted Bcl2-derived epitope expressed on tumors. Cancer Lett. 251, 86–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Sabatino, D. E. et al. Identification of the AAV2 capsid CD8+ T cell epitope in C57BL/6 mice. Blood 104, 3188 (2004).

    Article  Google Scholar 

  77. Karandikar, S.H. et al. Identification of epitopes in ovalbumin that provide insights for cancer neoepitopes. JCI Insight 4, e127882 (2019).

    Article  PubMed Central  Google Scholar 

  78. Bobisse, S. et al. Sensitive and frequent identification of high avidity neo-epitope specific CD8+T cells in immunotherapy-naive ovarian cancer. Nat. Commun. 9, 1092 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jha, A. N., Vishveshwara, S. & Banavar, J. R. Amino acid interaction preferences in proteins. Protein Sci. 19, 603–616 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Pedregosa, F. et al. SciKit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  81. Osorio, D., Rondón-Villarreal, P. & Torres Sáez, R. Peptides: a package for data mining of antimicrobial peptides. R J. 7, 4–14 (2015).

    Article  Google Scholar 

  82. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hundal, J. et al. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 8, 11 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Shukla, S. A. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol. 33, 1152–1158 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kawaguchi, S., Higasa, K., Shimizu, M., Yamada, R. & Matsuda, F. HLA-HD: an accurate HLA typing algorithm for next-generation sequencing data. Hum. Mutat. 38, 788–797 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Schwartz, L. H. et al. RECIST 1.1—update and clarification: from the RECIST committee. Eur. J. Cancer https://doi.org/10.1016/j.ejca.2016.03.081 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Therneau, T. M. A package for survival analysis in R. https://CRAN.R-project.org/package=survival (2022).

  92. Kassambara, A., Kosinski, M. & Biecek, P. R package survminer version 0.4.8: drawing survival curves using ‘ggplot2’. https://www.semanticscholar.org/paper/Drawing-Survival-Curves-using-%27ggplot2%27-%5BR-package-Kassambara-Kosinski/f6af125d765dae90c2092b46012bf0a6de1dbf35 (2020).

  93. Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput. Biol. 12, e1004873 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gillis, S. & Roth, A. PyClone-VI: scalable inference of clonal population structures using whole genome data. BMC Bioinf. 21, 571 (2020).

    Article  Google Scholar 

  95. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, https://doi.org/10.1093/bioinformatics/bts635 (2013).

    Article  PubMed  Google Scholar 

  98. Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Pedregosa, F. et al. Scikit-learn: machine learning in {P}ython. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  100. Boegel, S. et al. HLA typing from RNA-Seq sequence reads. Genome Med. 4, 102 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jerome, A., Hastie, T., Simon, N. & Tibshirani, R. Package ‘glmnet’. https://mran.microsoft.com/snapshot/2017-05-03/web/packages/glmnet/glmnet.pdf (2017).

Download references

Acknowledgements

This work was supported by the Bio and Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (NRF-2019M3A9B6064688, NRF-2017M3A9A7050612, and NRF-2022R1A4A5028131). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.Y.K. performed all data analyses and wrote the manuscript. H.C. generated and managed the cohort data. K.K., C.H.S., J.H.A., H.B. and J.O.Y. participated in the data analysis. H.K., S.C. and I.S. conducted the mouse experiments. S.-J.N., I.S. and D.-Y.C. designed the mouse experiments and analyzed the data. D.-Y.C. supervised the mouse experiments. S.-H.L. supervised the cohort analysis. J.K.C. conceived the whole study.

Corresponding authors

Correspondence to Dae-Yeon Cho, Se-Hoon Lee or Jung Kyoon Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Overall pipeline of data processing and scoring.

a, Overview of the pipeline used to process ICB cohorts and TCGA pan-cancer samples. Colored steps indicate that they were only used in the processing of ICB cohorts. b, Schemes for scoring pMHC complexes. Immunogenic neoepitope load per sample was calculated as the unique number of mutant peptides regardless of HLA genes. Neoepitope immunogenicity score per mutation was calculated as the mean or maximum of all pMHC pairs derived from the mutation.

Extended Data Fig. 2 PR curve of DeepNeo models.

a, PR (precision recall) curve of DeepNeo-mhc (green) and DeepNeo-tcr (blue) for MHC I (left) and MHC II (right). b, F1 score of DeepNeo and other tools in predicting the PRIME dataset of MHC I epitope immunogenicity. c, PR curve and F1 score of DeepNeo and other tools in predicting MHC II epitopes derived from external data (n = 812). d, ROC (receiver operating characteristic) curve of DeepNeo and other tools in predicting MHC II epitopes based on the HLA-DRB restricted subset of data used in c (n = 227).

Extended Data Fig. 3 ELISpot results for individual DeepNeoII(+) peptides.

For each murine tumor model, DeepNeoII(+) epitopes that passed thresholds were tested for their ability to stimulate immune responses in vivo. Colored dots indicate individual mice in which the epitopes were tested. Negative control is marked as the red dashed line, and positive control is plotted in the last column. The experiments were individually plotted with a, the first set of experiments on EMT6, n = 29 peptides examined over n = 188 independent experiments b, the second set of experiments on EMT6, which was conducted for n = 19 peptides examined over n = 114 independent experiments c, LLC1, which was conducted for n = 12 peptides examined over n = 72 independent experiments and d, B16F10, which was conducted for n = 15 peptides over n = 90 independent experiments. In all boxplots, center bar represents median box represent 25th and 75th percentile, and whiskers represent furthest outlier ≤1.5× the interquartile range from the box. Outliers of the boxplots are replaced with the actual data point represented as colored dots.

Extended Data Fig. 4 Correlation of DeepNeo predictions with TCR scores in TCGA samples.

a, Comparison of the TCR (T cell receptor) signature score between groups of high- and low- immunogenic neoantigen load as predicted by DeepNeo-MHC I and -MHC II. The difference between the two groups is calculated by the two-sided Welch t test. The boxplot’s box represents 25th and 75th percentile with center bar as median value and whiskers represent furthest outlier ≤1.5× the interquartile range from the box. b-c, Correlation of the TCR signature score with b, immunogenic neoantigen load and c, TMB across TCGA cancer types. For the TMB analyses, we used matching TCGA samples with available MHC I or II genotypes. The size and color of dots represent the number of samples per cancer type used in the analysis. The shaded area represents 95 percent confidence interval for fitted line.

Extended Data Fig. 5 Survival analysis of our lung cancer cohort.

The samples of our lung cancer cohort (n = 335) were divided into high- and low- neoantigen load group, and the progression free survival of the two groups was compared. P values were generated from the Kaplan-Meier estimation.

Extended Data Fig. 6 Forest plots for ICB cohorts with >100 samples.

The hazard ratio predicted by each neoantigen prediction method was plotted for a, our cohort in lung cancer, b, Mariathasan cohort in bladder cancer, and c, Van Allen cohort in melanoma. High immunogenic neoantigen load predicted by DeepNeo class II demonstrated the lowest hazard ratio, indicating the highest correlation of predicted neoantigen load with the survival outcome.

Extended Data Fig. 7 Schematics of the between-group and within-group analysis of TCGA untreated samples.

In the between-group analysis, the samples are divided into high-and low-immune groups, and the corresponding group’s VAF difference was calculated for immunogenic and nonimmunogenic mutations. For the within-group analysis, VAF differences between immunogenic and nonimmunogenic mutations were calculated for each high-and low-immune group.

Extended Data Fig. 8 Magnitude of neoantigen depletion according to the predicted immunogenicity of class II neoantigens.

According to contrasting terms, namely, a, TCR richness versus TCR evenness and b, Th1 cells versus Th2 cells, the distributions of VAFs comparing immunogenic and nonimmunogenic mutations were plotted for DeepNeo and NetMHCpan. The differential distribution between the two types of variants were estimated using Kolmogorov’s D statistic.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Table 1. Datasets used for DeepNeo-TCR model, Supplementary Table 2. Data used for DeepNeo-TCR MHC I model, Supplementary Table 3. Data used for DeepNeo-TCR MHC II model, Supplementary Table 4. Mouse ELISpot results, Supplementary Table 5. List of immune phenotype and proliferation terms for TCGA samples, Supplementary Table 6. MHC II genotype of TCGA samples.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.Y., Cha, H., Kim, K. et al. MHC II immunogenicity shapes the neoepitope landscape in human tumors. Nat Genet 55, 221–231 (2023). https://doi.org/10.1038/s41588-022-01273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-022-01273-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer