Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomics-informed prebreeding unlocks the diversity in genebanks for wheat improvement

Abstract

The great efforts spent in the maintenance of past diversity in genebanks are rationalized by the potential role of plant genetic resources (PGR) in future crop improvement—a concept whose practical implementation has fallen short of expectations. Here, we implement a genomics-informed prebreeding strategy for wheat improvement that does not discriminate against nonadapted germplasm. We collect and analyze dense genetic profiles for a large winter wheat collection and evaluate grain yield and resistance to yellow rust (YR) in bespoke core sets. Breeders already profit from wild introgressions but PGR still offer useful, yet unused, diversity. Potential donors of resistance sources not yet deployed in breeding were detected, while the prebreeding contribution of PGR to yield was estimated through ‘Elite × PGR’ F1 crosses. Genomic prediction within and across genebanks identified the best parents to be used in crosses with elite cultivars whose advanced progenies can outyield current wheat varieties in multiple field trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic diversity within and between genebanks.
Fig. 2: Tracing the history of introgression breeding.
Fig. 3: Deep mining PGR of the IPK genebank for new sources of resistance against YR not yet used in winter wheat breeding.
Fig. 4: Uncovering the yield breeding value (BV) of PGR for prebreeding through Elite × PGR hybrids and genomic prediction.

Similar content being viewed by others

Data availability

Raw sequence data collected in this study have been deposited at the European Nucleotide Archive (https://www.ebi.ac.uk/ena/) under the following Project IDs: PRJEB41976 (GBS), PRJEB48988 (WGS) and PRJEB48738 (WGS). Individual sequenced samples can be found through the ‘SAMEA’ BioSample IDs (Supplementary Tables 3, 15 and 18) on EMBL-EBI BioSamples (https://www.ebi.ac.uk/biosamples/). VCF files for GBS and WGS data are available from EBI EVA (https://www.ebi.ac.uk/eva/) under project PRJEB52759. Integrated phenotypic and genomic data used for GWAS in T3Cs and genomic prediction were deposited into e!DAL-PGP111 and can be accessed here112,113. Among the Supplementary Tables, the following data are included: passports of the studied plant material and presence in datasets/analyses (Supplementary Table 1), list of SSD-PGR from the TRI catalog and their DOIs (Supplementary Table 39), mislabeled tetraploid wheats (Supplementary Table 4), duplicated accessions within the IPK collection (Supplementary Table 5) and between INRAE and IPK collections (Supplementary Table 7), accessions private to INRAE (Supplementary Table 8) and IPK genebanks (Supplementary Table 9), YR score estimates from large-scale screenings based on natural infections (Supplementary Table 12), YR score estimates based on natural and artificial field inoculations in balanced experiments (Supplementary Table 15), detected selective sweep regions (Supplementary Table 19), genotypes of the historic panel and their alien introgressions (Supplementary Table 21), markers significantly associated with YR score estimates (Supplementary Table 22), donors of potentially new sources of YR resistance for prebreeding (Supplementary Table 28) and those optimal for gene validation (Supplementary Table 27), sequences of k-mers associated with YR scores but absent in reference genomes (Supplementary Table 25) and their donors (Supplementary Table 26), yield breeding values of PGR estimated using the Elite × PGR bridging context (Supplementary Table 29), estimated yield performances of prebreeding lines in validation experiments and their DOIs (Supplementary Table 34), genomic predictions of yield breeding values for the IPK (Supplementary Table 35) and INRAE (Supplementary Table 37) collections.

Code availability

The custom awk code for filtering of VCF files is available at e!DAL-PGP and can be accessed at ref. 114 (https://doi.org/10.5447/ipk/2022/15). Custom R codes associated to input files deposited into e!DAL-PGP are available in the respective YR_GWAS_ R_codes112 (https://doi.org/10.5447/ipk/2022/5) and RD_and_GP_R_codes113 (https://doi.org/10.5447/ipk/2022/6) folders.

References

  1. McCouch, S. et al. Mobilizing crop biodiversity. Mol. Plant 13, 1341–1344 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Voss-Fels, K. P. et al. Breeding improves wheat productivity under contrasting agrochemical input levels. Nat. Plants 5, 706–714 (2019).

    Article  PubMed  Google Scholar 

  3. Longin, C. F. H. & Reif, J. C. Redesigning the exploitation of wheat genetic resources. Trends Plant Sci. 19, 631–636 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Mayer, M. et al. Discovery of beneficial haplotypes for complex traits in maize landraces. Nat. Commun. 11, 4954 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singh, S. et al. Direct introgression of untapped diversity into elite wheat lines. Nat. Food 2, 819–827 (2021).

    Article  Google Scholar 

  6. Mascher, M. et al. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat. Genet. 51, 1076–1081 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Halewood, M. et al. Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution. New Phytol. 217, 1407–1419 (2018).

    Article  PubMed  Google Scholar 

  8. Hafeez, A. N. et al. Creation and judicious application of a wheat resistance gene atlas. Mol. Plant 14, 1053–1070 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, Y. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947–951 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. McIntosh, R. A. Close genetic linkage of genes conferring adult-plant resistance to leaf rust and stripe rust in wheat. Plant Pathol. 41, 523–527 (1992).

    Article  Google Scholar 

  11. William, M. et al. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93, 153–159 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Ali, S. et al. Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Front. Plant. Sci. 8, 1057 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Saunders, D. G. O., Pretorius, Z. A. & Hovmøller, M. S. Tackling the re-emergence of wheat stem rust in Western Europe. Commun. Biol. 2, 51 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sansaloni, C. et al. Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nat. Commun. 11, 4572 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walkowiak, S. et al. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277–283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arora, S. et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37, 139–143 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Nelson, R., Wiesner-Hanks, T., Wisser, R. & Balint-Kurti, P. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet. 19, 21–33 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Borlaug, N. E. Wheat breeding and its impact on world food supply. In Proc. Third International Wheat Genetics Symposium (eds Finlay, K. W. & Shepherd, K. W.) 1–36 (Australian Academy of Science, 1968).

  19. Worland, A. J. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89, 49–57 (1996).

    Article  Google Scholar 

  20. Molero, G. et al. Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential. Plant Biotechnol. J. 17, 1276–1288 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simmonds, J. et al. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor. Appl. Genet. 129, 1099–1112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao, Y. et al. Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc. Natl Acad. Sci. USA 112, 15624–15629 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Crossa, J. et al. Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112, 48–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Yu, X. et al. Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat. Plants 2, 16150 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Whitford, R. et al. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J. Exp. Bot. 64, 5411–5428 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Singh, N. et al. Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accessions. Sci. Rep. 9, 650 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Milner, S. G. et al. Genebank genomics highlights the diversity of a global barley collection. Nat. Genet. 51, 319–326 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Balfourier, F. et al. Worldwide phylogeography and history of wheat genetic diversity. Sci. Adv. 5, eaav0536 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cheng, H. et al. Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol. 20, 136 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. The International Wheat Genome Sequencing Consortium. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191 (2018).

    Article  Google Scholar 

  31. Przewieslik-Allen, A. M. et al. The role of gene flow and chromosomal instability in shaping the bread wheat genome. Nat. Plants 7, 172–183 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Racimo, F. Testing for ancient selection using cross-population allele frequency differentiation. Genetics 202, 733–750 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Hedden, P. The genes of the Green Revolution. Trends Genet. 19, 5–9 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Feuillet, C. et al. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl Acad. Sci. USA 100, 15253–15258 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bariana, H. S. & McIntosh, R. A. Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36, 476–482 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Coriton, O. et al. Double dose efficiency of the yellow rust resistance gene Yr17 in bread wheat lines. Plant Breed. 139, 263–271 (2020).

    Article  CAS  Google Scholar 

  37. He, F. et al. Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nat. Genet. 51, 896–904 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Avni, R. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93–97 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Luo, M. C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Doussinault, G., Delibes, A., Sanchez-Monge, R. & Garcia-Olmedo, F. Transfer of a dominant gene for resistance to eyespot disease from a wild grass to hexaploid wheat. Nature 303, 698–700 (1983).

    Article  Google Scholar 

  41. Cruz, C. D. et al. The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum pathotype of Magnaporthe oryzae. Crop Sci. 56, 990–1000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, F. et al. Exome association analysis sheds light onto leaf rust (Puccinia triticina) resistance genes currently used in wheat breeding (Triticum aestivum L.). Plant Biotechnol. J. 18, 1396–1408 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Rabinovich, S. V. Importance of wheat–rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica 100, 323–340 (1998).

    Article  Google Scholar 

  44. Mago, R. et al. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat–rye translocation lines. Theor. Appl. Genet. 104, 1317–1324 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Heun, M. & Friebe, B. Introgression of powdery mildew resistance from rye into wheat. Phytopathology 80, 242–245 (1990).

    Article  Google Scholar 

  46. Howell, T. et al. Mapping a region within the 1RS.1BL translocation in common wheat affecting grain yield and canopy water status. Theor. Appl. Genet. 127, 2695–2709 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pretorius, Z. A., Singh, R. P., Wagoire, W. W. & Payne, T. S. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis. 84, 203 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Martin, D. J. & Stewart, B. G. Dough stickiness in rye-derived wheat cultivars. Euphytica 51, 77–86 (1990).

    Article  Google Scholar 

  49. Pang, Y. et al. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Mol. Plant 13, 1311–1327 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Dolatabadian, A. et al. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. Plant Biotechnol. J. 18, 969–982 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nsabiyera, V. et al. Fine mapping of Lr49 using 90K SNP chip array and flow sorted chromosome sequencing in wheat. Front. Plant Sci. 10, 1787 (2019).

    Article  PubMed  Google Scholar 

  52. Kanwal, M. et al. An adult plant stripe rust resistance gene maps on chromosome 7A of Australian wheat cultivar Axe. Theor. Appl. Genet. 134, 2213–2220 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Boeven, P. H. et al. Negative dominance and dominance-by-dominance epistatic effects reduce grain-yield heterosis in wide crosses in wheat. Sci. Adv. 6, eaay4897 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cavanagh, C. R. et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl Acad. Sci. USA 110, 8057–8062 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou, Z. et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33, 408–414 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. de Souza, L. M. et al. Linkage disequilibrium and population structure in wild and cultivated populations of rubber tree (Hevea brasiliensis). Front. Plant. Sci. 9, 815 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mace, E. S. et al. Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat. Commun. 4, 2320 (2013).

    Article  PubMed  Google Scholar 

  58. Kale, S. M. et al. A catalogue of resistance gene homologs and a chromosome-scale reference sequence support resistance gene mapping in winter wheat. Plant Biotechnol. J. 20, 1730–1742.(2022).

  59. Wang, M. & Chen, X. in Stripe Rust (eds Chen, X. & Kang, Z.) 353–558 (Springer, 2017).

  60. Laidig, F., Piepho, H. P., Drobek, T. & Meyer, U. Genetic and non-genetic long-term trends of 12 different crops in German official variety performance trials and on-farm yield trends. Theor. Appl. Genet. 127, 2599–2617 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Frankel, O. H. in Genetic Manipulation: Impact on Man and Society (eds Arber, W. et al.) 161–170 (Cambridge Univ. Press, 1984).

  62. Brown, A. H. D. Core collections—a practical approach to genetic-resources management. Genome 31, 818–824 (1989).

    Article  Google Scholar 

  63. Odong, T., Jansen, J., Van Eeuwijk, F. & van Hintum, T. J. Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theor. Appl. Genet. 126, 289–305 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Khazaei, H., Street, K., Bari, A., Mackay, M. & Stoddard, F. L. The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS ONE 8, e63107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tarter, J. A. et al. Testcross performance of semiexotic inbred lines derived from Latin American maize accessions. Crop Sci. 43, 2272–2278 (2003).

    Article  Google Scholar 

  66. Fischer, S. et al. Molecular marker assisted broadening of the Central European heterotic groups in rye with Eastern European germplasm. Theor. Appl. Genet. 120, 291–299 (2010).

    Article  PubMed  Google Scholar 

  67. Gaurav, K. et al. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat. Biotechnol. 40, 422–431 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Rosyara, U. et al. Genetic contribution of synthetic hexaploid wheat to CIMMYT’s spring bread wheat breeding germplasm. Sci. Rep. 9, 12355 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Becker, H. C., Engqvist, G. M. & Karlsson, B. Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor. Appl. Genet. 91, 62–67 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Zhuang, W. et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat. Genet. 51, 865–876 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chetelat, R. T. et al. Introgression lines of Solanum sitiens, a wild nightshade of the Atacama Desert, in the genome of cultivated tomato. Plant J. 100, 836–850 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Mano, Y. & Omori, F. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays). Ann. Bot. 112, 1125–1139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Oppermann, M., Weise, S., Dittmann, C. & Knüpffer, H. GBIS: the information system of the German Genebank. Database 2015, bav021 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Neumann, K., Kobiljski, B., Denčić, S. S., Varshney, R. K. & Börner, A. Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol. Breed. 27, 37–58 (2011).

    Article  Google Scholar 

  75. Longin, C. F. H. et al. Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs. Theor. Appl. Genet. 126, 2791–2801 (2013).

    Article  PubMed  Google Scholar 

  76. Würschum, T. et al. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor. Appl. Genet. 126, 1477–1486 (2013).

    Article  PubMed  Google Scholar 

  77. Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J.-L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7, e32253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wendler, N. et al. Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnol. J. 12, 1122–1131 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Keilwagen, J. et al. Detecting large chromosomal modifications using short read data from genotyping-by-sequencing. Front. Plant Sci. 10, 1133 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article  Google Scholar 

  81. Bittencourt, S. A. FastQC: A Quality Control Tool for High Throughput Sequence Data (Babraham Institute, 2010); https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  82. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  83. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  86. Zheng, X. et al. SeqArray—a storage-efficient high-performance data format for WGS variant calls. Bioinformatics 33, 2251–2257 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Galbraith, D. W. et al. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049–1051 (1983).

    Article  CAS  PubMed  Google Scholar 

  89. Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Galinsky, K. J. et al. Fast principal-component analysis reveals convergent evolution of ADH1B in Europe and East Asia. Am. J. Hum. Genet. 98, 456–472 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 1695, 1–9 (2006).

    Google Scholar 

  94. Rimbert, H. et al. High throughput SNP discovery and genotyping in hexaploid wheat. PLoS ONE 13, e0186329 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kokot, M., Dlugosz, M. & Deorowicz, S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics 33, 2759–2761 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Richtlinien für die Durchführung von landwirtschaftlichen Wertprüfungen und Sortenversuchen (Bundessortenamt, 2020); http://www.bundessortenamt.de/internet30/fileadmin/Files/PDF/Richtlinie_LW2000.pdf

  97. Zhao, Y. et al. Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat. Sci. Adv. 7, eabf9106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bernal-Vasquez, A.-M., Utz, H.-F. & Piepho, H.-P. Outlier detection methods for generalized lattices: a case study on the transition from ANOVA to REML. Theor. Appl. Genet. 129, 787–804 (2016).

    Article  PubMed  Google Scholar 

  99. Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Rogers, J. S. Measures of genetic similarity and genetic distance. Stud. Genet. 7, 145–153 (1972).

    Google Scholar 

  101. Gao, X. Y., Stamier, J. & Martin, E. R. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet. Epidemiol. 32, 361–369 (2008).

    Article  PubMed  Google Scholar 

  102. Hill, W. G. & Robertson, A. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38, 226–231 (1968).

    Article  CAS  PubMed  Google Scholar 

  103. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Voichek, Y. & Weigel, D. Identifying genetic variants underlying phenotypic variation in plants without complete genomes. Nat. Genet. 52, 534–540 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhou, X. A unified framework for variance component estimation with summary statistics in genome-wide association studies. Ann. Appl. Stat. 11, 2027–2051 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Butler, D. G., Cullis, B. R., Gilmour, A. R. & Gogel, B. J. ASReml–R Reference Manual (The State of Queensland, Department of Primary Industries and Fisheries, 2009); https://asreml.kb.vsni.co.uk/wp-content/uploads/sites/3/ASReml-R-3-Reference-Manual.pdf

  107. Butler, D. G. et al. ASReml–R Reference Manual Version 4 (VSN International, 2017); https://asreml.kb.vsni.co.uk/wp-content/uploads/sites/3/ASReml-R-Reference-Manual-4.pdf

  108. VanRaden, P. M. Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 4414–4423 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Endelman, J. B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4, 250–255 (2011).

    Article  Google Scholar 

  110. Henderson, C. R. Best linear unbiased estimation and prediction under a selection model. Biometrics 31, 423–447 (1975).

    Article  CAS  PubMed  Google Scholar 

  111. Arend, D. et al. PGP repository: a plant phenomics and genomics data publication infrastructure. Database 2016, baw033 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Schulthess, A. W. et al. Genome-wide Association Mapping for Yellow Rust Resistance in a Population of 454 Whole-Genome Sequenced Diverse Wheat Genotypes (e!DAL—Plant Genomics and Phenomics Research Data Repository, 2022); https://doi.org/10.5447/ipk/2022/5

  113. Schulthess, A. W. et al. Genomic Prediction of Yield Breeding Values for 10,353 Winter Wheat Genebank Samples (e!DAL—Plant Genomics and Phenomics Research Data Repository, 2022); https://doi.org/10.5447/ipk/2022/6

  114. Mascher, M. Filtration Script for Genetic Variant Matrices in Variant Call Format (VCF) (e!DAL—Plant Genomics and Phenomics Research Data Repository, 2022); https://doi.org/10.5447/ipk/2022/15

Download references

Acknowledgements

This research work was mainly funded by the German Federal Ministry of Education and Research under the frame of the Project GeneBank2.0 (grant no. FKZ031B0184B and FKZ031B0184A to J.C.R.). Additional financial support was provided by the German Federal Ministry of Food and Agriculture under the frame of the GenDiv-Project (grant no. 2814603813 to N.S.). We are very thankful to A. Börner for providing seeds of the ‘B’ collection. We would like to also thank C. Martin, J. Perovic, J. Schneider, S. Gentz, A. Kunze, M. Kühne, L. Gaczensky and M. Koch for their valuable technical support in field activities, as well as S. König, J. Pohl, I. Walde and M. Knauft for their technical assistance in producing GBS and WGS data. We additionally thank J. Bauernfeind, T. Münch and H. Miehe for administration of the IT infrastructure as well as A. Fiebig, D. Schüler and D. Arend for their support with data management and repositories.

Author information

Authors and Affiliations

Authors

Contributions

J.C.R., M.M., N.S. and V.K. developed the concept. M.O. and S.W. provided passport information of the TRI catalog of genebank accessions as well as DOIs for their derived progenies. S.K. provided DNA for GBS and A.H. and N.S. produced sequencing raw reads. A.H. and N.S. obtained high-quality DNA samples and generated WGS raw reads. A.W.S., N. Philipp, U.B., A.S., N. Pfeiffer., P.H.G.B. and J.S. conducted YR resistance screenings. N. Philipp, P.H.G.B. and C.F.H.L. produced seeds and conducted yield trials for hybrids. N. Philipp, M.R. and J.C.R. produced, selected and yield-tested PGR-derived families. J.F. confirmed wheat ploidy level through fluorometry. A.W.S., Y.Z., A.S., N. Philipp and M.R. analyzed and curated phenotypic data. S.M.K. processed sequencing reads, integrated INRAE and IPK genomic data, generated SNP and k-mer matrices and performed diversity, selective sweep, introgression analyses as well as GBS-based GWAS. A.W.S. integrated genomic and phenotypic data, selected T3Cs and performed genomic prediction. F.L. performed GWAS for YR and selected donors with the support of J.C.R., A.W.S. and M.M. A.S. provided genomic data for NILs carrying Yr genes and performed colocation analysis. Y.J., Y.Z. and M.M. provided statistical support. M.L. and U.S. facilitated the data management, the sequence and variation data submission to public repositories. A.W.S., S.M.K., F.L., M.M. and J.C.R. wrote the manuscript with the input of all other co-authors.

Corresponding authors

Correspondence to Martin Mascher or Jochen C. Reif.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Peter Langridge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2 and Figs. 1–17.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–43.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulthess, A.W., Kale, S.M., Liu, F. et al. Genomics-informed prebreeding unlocks the diversity in genebanks for wheat improvement. Nat Genet 54, 1544–1552 (2022). https://doi.org/10.1038/s41588-022-01189-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-022-01189-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing