Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome sequencing reveals evidence of adaptive variation in the genus Zea

Abstract

Maize is a globally valuable commodity and one of the most extensively studied genetic model organisms. However, we know surprisingly little about the extent and potential utility of the genetic variation found in wild relatives of maize. Here, we characterize a high-density genomic variation map from 744 genomes encompassing maize and all wild taxa of the genus Zea, identifying over 70 million single-nucleotide polymorphisms. The variation map reveals evidence of selection within taxa displaying novel adaptations. We focus on adaptive alleles in highland teosinte and temperate maize, highlighting the key role of flowering-time-related pathways in their adaptation. To show the utility of variants in these data, we generate mutant alleles for two flowering-time candidate genes. This work provides an extensive sampling of the genetic diversity of Zea, resolving questions on evolution and identifying adaptive variants for direct use in modern breeding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogeny of the Zea genus.
Fig. 2: Variation in the Zea genus.
Fig. 3: Local adaptation in teosintes and maize.

Similar content being viewed by others

Data availability

DNA and RNA sequencing reads from this study were deposited in the NCBI Sequence Read Archive with the accession codes PRJNA641489, PRJNA816255, PRJNA816273 and PRJNA645739. The SNP data can be downloaded from https://ftp.cngb.org/pub/CNSA/data3/CNP0001565/zeamap/02_Variants/PAN_Zea_Variants/Zea-vardb/. Source data are provided with this paper.

Code availability

All of the custom scripts used in this study are available at https://doi.org/10.5281/zenodo.6818334 (ref.132).

References

  1. Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8, e66428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D. & Schroeder, J. I. Genetic strategies for improving crop yields. Nature 575, 109–118 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    Article  Google Scholar 

  5. Tigchelaar, M., Battisti, D. S., Naylor, R. L. & Ray, D. K. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl Acad. Sci. USA 115, 6644–6649 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li, Q. & Yan, J. Sustainable agriculture in the era of omics: knowledge-driven crop breeding. Genome Biol. 21, 154 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Matsuoka, Y. et al. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl Acad. Sci. USA 99, 6080–6084 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Piperno, D. R., Ranere, A. J., Holst, I., Iriarte, J. & Dickau, R. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc. Natl Acad. Sci. USA 106, 5019–5024 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eyre-Walker, A., Gaut, R. L., Hilton, H., Feldman, D. L. & Gaut, B. S. Investigation of the bottleneck leading to the domestication of maize. Proc. Natl Acad. Sci. USA 95, 4441–4446 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tenaillon, M. I., U’Ren, J., Tenaillon, O. & Gaut, B. S. Selection versus demography: a multilocus investigation of the domestication process in maize. Mol. Biol. Evol. 21, 1214–1225 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Wright, S. I. et al. The effects of artificial selection on the maize genome. Science 308, 1310–1314 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Beissinger, T. M. et al. Recent demography drives changes in linked selection across the maize genome. Nat. Plants 2, 16084 (2016).

    Article  PubMed  Google Scholar 

  13. Swarts, K. et al. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science 357, 512–515 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Zampieri, M. et al. When will current climate extremes affecting maize production become the norm? Earths Future 7, 113–122 (2019).

    Article  Google Scholar 

  15. IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  16. Zhang, H., Li, Y. & Zhu, J. K. Developing naturally stress-resistant crops for a sustainable agriculture. Nat. Plants 4, 989–996 (2018).

    Article  PubMed  Google Scholar 

  17. Hufford, M. B., Bilinski, P., Pyhäjärvi, T. & Ross-Ibarra, J. Teosinte as a model system for population and ecological genomics. Trends Genet. 28, 606–615 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Sánchez González, J. J. et al. Ecogeography of teosinte. PLoS ONE 13, e0192676 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mammadov, J. et al. Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Front Plant Sci. 9, 886 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barnes, A. C. et al. An adaptive teosinte mexicana introgression modulates phosphatidylcholine levels and is associated with maize flowering time. Proc. Natl Acad. Sci. USA 119, e2100036119 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, H. et al. A teosinte-derived allele of a MYB transcription repressor confers multiple disease resistance in maize. Mol. Plant 14, 1846–1863 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Karn, A., Gillman, J. D. & Flint-Garcia, S. A. Genetic analysis of teosinte alleles for kernel composition traits in maize. G3 (Bethesda) 7, 1157–1164 (2017).

    Article  CAS  Google Scholar 

  23. Li, K. et al. Large-scale metabolite quantitative trait locus analysis provides new insights for high-quality maize improvement. Plant J. 99, 216–230 (2019).

    CAS  PubMed  Google Scholar 

  24. Mano, Y., Omori, F. & Takeda, K. Construction of intraspecific linkage maps, detection of a chromosome inversion, and mapping of QTL for constitutive root aerenchyma formation in the teosinte Zea nicaraguensis. Mol. Breed. 29, 137–146 (2012).

    Article  Google Scholar 

  25. Mano, Y. & Omori, F. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays). Ann. Bot. 112, 1125–1139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De Lange, E. S., Balmer, D., Brigitte, M.-M. & Turlings, T. C. J. Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol. 204, 329–341 (2014).

    Article  Google Scholar 

  27. Lennon, J. R., Krakowsky, M., Goodman, M., Flint-Garcia, S. & Balint-Kurti, P. J. Identification of alleles conferring resistance to gray leaf spot in maize derived from its wild progenitor species teosinte. Crop Sci. 56, 222–225 (2015).

    Google Scholar 

  28. Lennon, J. R., Krakowsky, M., Goodman, M., Flint-Garcia, S. & Balint-Kurti, P. J. Identification of teosinte alleles for resistance to southern leaf blight in near isogenic maize lines. Crop Sci. 57, 1973–1983 (2017).

    Article  Google Scholar 

  29. Hufford, M. B. et al. The genomic signature of crop-wild introgression in maize. PLoS Genet. 9, e1003477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Calfee, E. et al. Selective sorting of ancestral introgression in maize and teosinte along an elevational cline. PLoS Genet. 17, e1009810 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gaut, B. S. & Clegg, M. T. Molecular evolution of the Adh1 locus in the genus Zea. Proc. Natl Acad. Sci. USA 90, 5095–5099 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hilton, H. & Gaut, B. S. Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene. Genetics 150, 863–872 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. White, S. E. & Doebley, J. F. The molecular evolution of terminal ear1, a regulatory gene in the genus Zea. Genetics 153, 1455–1462 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ross-Ibarra, J., Tenaillon, M. & Gaut, B. S. Historical divergence and gene flow in the genus Zea. Genetics 181, 1399–1413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Q. & Dooner, H. K. Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses. Plant J. 72, 212–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Buckler, E. S. 4th, Goodman, M. M., Holtsford, T. P., Doebley, J. F. & Sánchez, G. J. Phylogeography of the wild subspecies of Zea mays. Maydica 51, 123–134 (2006).

    Google Scholar 

  37. Fukunaga, K. et al. Genetic diversity and population structure of teosinte. Genetics 169, 2241–2254 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sánchez, G. J. J. et al. Three new teosintes (Zea spp., Poaceae) from México. Am. J. Bot. 98, 1537–1548 (2011).

    Article  Google Scholar 

  39. Lamb, J. C. & Birchler, J. A. Retroelement genome painting: cytological visualization of retroelement expansions in the genera Zea and Tripsacum. Genetics 173, 1007–1021 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tenaillon, M. I., Hufford, M. B., Gaut, B. S. & Ross-Ibarra, J. Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol. Evol. 3, 219–229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chia, J. M. et al. Maize HapMap2 identifies extant variation from a genome in flux. Nat. Genet. 44, 803–807 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Ting, Y. C. Spontaneous chromosome inversions of Guatemalan teosintes (Zea mexicana). Genetica 36, 229–242 (1965).

    Article  PubMed  Google Scholar 

  43. Ting, Y. C. Common inversion in maize and teosinte. Am. Nat. 101, 87–89 (1967).

    Article  Google Scholar 

  44. Ting, Y. C. Chromosome polymorphism of teosinte. Genetics 83, 737–742 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fang, Z. et al. Megabase-scale inversion polymorphism in the wild ancestor of maize. Genetics 191, 883–894 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pyhäjärvi, T., Hufford, M. B., Mezmouk, S. & Ross-Ibarra, J. Complex patterns of local adaptation in teosinte. Genome Biol. Evol. 5, 1594–1609 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yang, N. et al. Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nat. Commun. 8, 1874 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fustier, M. A. et al. Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude. PLoS Genet. 15, e1008512 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Janzen, G. M. et al. Demonstration of local adaptation in maize landraces by reciprocal transplantation. Evol Appl. 5, 817–837 (2022).

    Article  Google Scholar 

  50. Fustier, M. A. et al. Signatures of local adaptation in lowland and highland teosintes from whole-genome sequencing of pooled samples. Mol. Ecol. 26, 2738–2756 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Aguirre-Liguori, J. A. et al. Divergence with gene flow is driven by local adaptation to temperature and soil phosphorus concentration in teosinte subspecies (Zea mays parviglumis and Zea mays mexicana). Mol. Ecol. 28, 2814–2830 (2019).

    CAS  PubMed  Google Scholar 

  52. Yang, X. et al. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol. Breed. 28, 511–526 (2011).

    Article  Google Scholar 

  53. Flouri, T., Jiao, X., Rannala, B. & Yang, Z. Species tree inference with BPP using genomic sequences and the multispecies coalescent. Mol. Biol. Evol. 35, 2585–2593 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, T. H., Guo, H., Wang, X., Kim, C. & Paterson, A. H. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15, 162 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang, X. et al. Genome alignment spanning major Poaceae lineages reveals heterogeneous evolutionary rates and alters inferred dates for key evolutionary events. Mol. Plant 8, 885–898 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Buckler, E. S. 4th & Holtsford, T. P. Zea systematics: ribosomal ITS evidence. Mol. Biol. Evol. 13, 612–622 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Schiffels, S. & Wang, K. MSMC and MSMC2: the Multiple Sequentially Markovian Coalescent. Methods Mol. Biol. 2090, 147–166 (2020).

    Article  PubMed  Google Scholar 

  58. Janzen, G. M., Wang, L. & Hufford, M. B. The extent of adaptive wild introgression in crops. New Phytol. 221, 1279–1288 (2019).

    Article  PubMed  Google Scholar 

  59. Van Heerwaarden, J., Hufford, M. B. & Ross-Ibarra, J. Historical genomics of North American maize. Proc. Natl Acad. Sci. USA 109, 12420–12425 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marand, A. P., Chen, Z., Gallavotti, A. & Schmitz, R. J. A cis-regulatory atlas in maize at single-cell resolution. Cell 184, 3041–3055 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Bellon, M. R. et al. Evolutionary and food supply implications of ongoing maize domestication by Mexican campesinos. Proc. Biol. Sci. 285, 20181049 (2018).

    PubMed  PubMed Central  Google Scholar 

  62. Finnegan, D. J. Eukaryotic transposable elements and genome evolution. Trends Genet. 5, 103–107 (1989).

    Article  CAS  PubMed  Google Scholar 

  63. Hufford, M. B. et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655–662 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Faria, R., Johannesson, K., Butlin, R. K. & Westram, A. M. Evolving inversions. Trends Ecol. Evol. 34, 239–248 (2019).

    Article  PubMed  Google Scholar 

  65. Kirkpatrick, M. & Barton, N. Chromosome inversions, local adaptation and speciation. Genetics 173, 419–434 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Crow, T. et al. Gene regulatory effects of a large chromosomal inversion in highland maize. PLoS Genet. 16, e1009213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, H. & Ralph, P. Local PCA shows how the effect of population structure differs along the genome. Genetics 211, 289–304 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Wei, S., Dai, Y., Duan, Q., Liu, B. & Hua, Y. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst. 6, 249–263 (2014).

    Article  Google Scholar 

  69. Silva, R. et al. Gluconacetobacter diazotrophicus changes the molecular mechanisms of root development in Oryza sativa L. growing under water stress. Int. J. Mol. Sci. 21, 333 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  70. Wang, C. et al. Mutation in xyloglucan 6-xylosytransferase results in abnormal root hair development in Oryza sativa. J. Exp. Bot. 65, 4149–4157 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Corbett-Detig, R. B. & Hartl, D. L. Population genomics of inversion polymorphisms in Drosophila melanogaster. PLoS Genet. 8, e1003056 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lowry, D. B. & Willis, J. H. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol. 8, e1000500 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yant, L. et al. Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr. Biol. 23, 2151–2156 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Ma, A. et al. The genetics and genome-wide screening of regrowth loci, a key component of perennialism in Zea diploperennis. G3 (Bethesda) 9, 1393–1403 (2019).

    Article  CAS  Google Scholar 

  75. Guo, Z. et al. Identification of major QTL for waterlogging tolerance in maize using genome-wide association study and bulked sample analysis. J. Appl. Genet. 62, 405–418 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Yu, F. et al. Dissecting the genetic architecture of waterlogging stress-related traits uncovers a key waterlogging tolerance gene in maize. Theor. Appl. Genet. 131, 2299–2310 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Osman, K. A. et al. Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage. PLoS ONE 8, e79305 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kim, H. J. et al. Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis. Proc. Natl Acad. Sci. USA 115, E4930–E4939 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Tang, J. et al. GDSL lipase occluded stomatal pore 1 is required for wax biosynthesis and stomatal cuticular ledge formation. New Phytol. 228, 1880–1896 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Yan, L. et al. Parallels between natural selection in the cold-adapted crop-wild relative Tripsacum dactyloides and artificial selection in temperate adapted maize. Plant J. 99, 965–977 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Buckler, E. S. et al. The genetic architecture of maize flowering time. Science 325, 714–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, L. et al. Molecular parallelism underlies convergent highland adaptation of maize landraces. Mol. Biol. Evol. 38, 3567–3580 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, Y. X. et al. Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. Plant J. 86, 391–402 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Bouché, F., Lobet, G., Tocquin, P. & Périlleux, C. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res. 44, D1167–D1171 (2016).

    Article  PubMed  Google Scholar 

  85. Hayama, R., Yokoi, S., Tamaki, S., Yano, M. & Shimamoto, K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422, 719–722 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Seo, E. et al. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell 21, 3185–3197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Peng, H. & Neff, M. M. CIRCADIAN CLOCK ASSOCIATED 1 and ATAF2 differentially suppress cytochrome P450-mediated brassinosteroid inactivation. J. Exp. Bot. 71, 970–985 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Liang, L. et al. The transcriptional repressor OsPRR73 links circadian clock and photoperiod pathway to control heading date in rice. Plant Cell Environ. 44, 842–855 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Nakamichi, N. et al. Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. Plant Cell Physiol. 48, 822–832 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, H. et al. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell 32, 1397–1413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hufford, M. B., Martínez-Meyer, E., Gaut, B. S., Eguiarte, L. E. & Tenaillon, M. I. Inferences from the historical distribution of wild and domesticated maize provide ecological and evolutionary insight. PLoS ONE 7, e47659 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Aguirre-Liguori, J. A. et al. Connecting genomic patterns of local adaptation and niche suitability in teosintes. Mol. Ecol. 26, 4226–4240 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Gui, S. et al. ZEAMAP, a comprehensive database adapted to the maize multi-omics era. iScience 23, 101241 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gault, C. M., Kremling, K. A. & Buckler, E. S. Tripsacum de novo transcriptome assemblies reveal parallel gene evolution with maize after ancient polyploidy. Plant Genome 11, 1–13 (2018).

    Article  Google Scholar 

  95. Fernie, A. R. & Yan, J. Targeting key genes to tailor old and new crops for a greener agriculture. Mol. Plant 13, 354–356 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Jiao, Y. et al. Improved maize reference genome with single-molecule technologies. Nature 546, 524–527 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bouckaert, R. R. DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26, 1372–1373 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Clark, R. M., Tavaré, S. & Doebley, J. Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus. Mol. Biol. Evol. 22, 2304–2312 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Forsythe, E. S., Sloan, D. B. & Beilstein, M. A. Divergence-based introgression polarization. Genome Biol. Evol. 12, 463–478 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Brown, C. T. & Irber, L. sourmash: a library for MinHash sketching of DNA. J. Open Source Softw. 1, 27 (2016).

    Article  Google Scholar 

  114. Novák, P., Neumann, P. & Macas, J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11, 378 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cáceres, A. & González, J. R. Following the footprints of polymorphic inversions on SNP data: from detection to association tests. Nucleic Acids Res. 43, e53 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bradbury, P. J. et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Brock, G., Pihur, V., Datta, S. & Datta, S. clValid: an R package for cluster validation. J. Stat. Softw. 25, 1–22 (2008).

    Article  Google Scholar 

  119. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338 (2019).

    Article  Google Scholar 

  121. Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped Gene Ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu, Z. et al. Expanding maize genetic resources with predomestication alleles: maize-teosinte introgression populations. Plant Genome https://doi.org/10.3835/plantgenome2015.07.0053 (2016).

  123. Pan, Q. et al. Genome-wide recombination dynamics are associated with phenotypic variation in maize. New Phytol. 210, 1083–1094 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–1007 (2014).

    Article  PubMed  Google Scholar 

  125. Chen, H., Patterson, N. & Reich, D. Population differentiation as a test for selective sweeps. Genome Res. 20, 393–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Beissinger, T. M., Rosa, G. J. M., Kaeppler, S. M., Gianola, D. & de Leon, N. Defining window-boundaries for genomic analyses using smoothing spline techniques. Genet. Sel. Evol. 47, 30 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Frame, B. R. et al. Agrobacterium tumefaciens—mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129, 13–22 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, L. Zea_genus. Zenodo https://doi.org/10.5281/zenodo.6818334 (2022).

Download references

Acknowledgements

We thank S. Taba from CIMMYT for providing the teosinte materials, J. Chen from Henan Agricultural University for providing the DNA of T. dactyloides, A. Kur from North Carolina State University for drawing the picture of teosinte morphological characteristics and T. AuBuchon-Elder and S. Fabbri for growing and supplying germplasm. Computation resources were provided by the high-throughput computing platform of the National Key Laboratory of Crop Genetic Improvement at Huazhong Agricultural University and supported by H. Liu. This research was supported by the National Key Research and Development Program of China (2020YFE0202300), National Natural Science Foundation of China (U1901201 and 31771879) and Science and Technology major program of Hubei Province (2021ABA011) (all to J.Y.), the Young Elite Scientist Sponsorship Program of the China Association for Science and Technology (2019QNRC001 to N.Y), and the US National Science Foundation (grants 1546719 and 1822330) and United States Department of Agriculture Hatch project CADPLS2066H (both to J.R.-I.).

Author information

Authors and Affiliations

Authors

Contributions

Jianbing Yan., J.R.-I. and N.Y. designed and supervised the study. Y.P., W.L., A.P., B.C., J.S.B., R.R.-A., R.J.H.S., Jiali Yan., Q.Z., S.W., S.G., Y.W., Y.L., C.J., M.D., M.J., J.L., L.J., Y.Yu., M.Z. and X.Yang. prepared the materials. X.Z. provided the variant calling pipeline. J.L. performed the Sanger validation of SNPs. W.W. uploaded the SNPs and indels to the database. L.C. and J.L. analyzed the data. M.J., X.L., Q.L., Y.Yin. and X.Ye. performed the genetic transformation and mutant validation. L.C. led the population genomics analyses. L.C., M.J., N.Y., M.B.H., A.R.F., M.L.W., J.R.-I. and Jianbing Yan. prepared the manuscript.

Corresponding authors

Correspondence to Ning Yang, Jeffrey Ross-Ibarra or Jianbing Yan.

Ethics declarations

Competing interests

The authors M.J., X.L., J.X., H.L., Y.Yin., L.H., J.G., B.H. and Jianbing Yan. (Chinese patent application number 2021 1 0085348.5; “Methods and genes of changing the flowering time of maize”) and X.L., Q.L., M.J., X.L., J.X., H.L., Y.Yin., J.G., Y.L., L.H., B.H., Y.L., Jianbing Yan. and D.H. (Chinese patent application number 2020 1 1480563.7; “Application of a maize plant height and ear height controlling gene ZmCOL14”) have filed patent applications on technology related to the processes described in this article. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Klaus Mayer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 STRUCTURE and principle component analysis (PCA) of 507 maize and 237 teosinte.

a, Population structure for K = 2–16. maize (TEM) indicates temperate maize (including 8 components), maize (TST) indicates tropical maize (including 3 components). Samples with assignment to maize (TEM) or maize (TST) lower than 0.6 were classified as maize (mix), and mexicana or parviglumis samples with assignment lower than 0.6 to any teosinte were classified as teosinte (mix). b, Cross-validation error for K = 2–20 showing K = 15 with the lowest cross validation error. c, PCA of maize and teosinte; points are colored according to the admixture result (K = 15).

Source data

Extended Data Fig. 2 Phylogenetic tree of Zea genus.

The maximum likelihood tree was estimated with SNPhylo54. Populations are colored based on the admixture result for K = 15.

Source data

Extended Data Fig. 3 The distribution of nucleotide diversity.

a, Violin plot for nucleotide diversity analysis (calculated with 5 kb non-overlap window; windows less than 500 covered sites were excluded to filter out regions of poor alignment). Windows used in nicaraguensis (n = 60,778), luxurians (n = 51,956), diploperennis (n = 52,656), perennis (n = 51,306), huehuetenangensis (n = 107,481), mexicana (n = 60,247), parviglumis (n = 61,014) and maize (n = 76,375). Cultivated maize was down-sampled to 110 randomly selected individuals. Horizontal lines in each violin plot represent the median value of nucleotide diversity. b, Line plot of nucleotide diversity analysis along the chromosomes.

Source data

Extended Data Fig. 4 Repeat comparison of Zea.

Boxplot of reads mapped to different repeat classes across the samples in different taxa. Center lines in the boxplot indicate the median, edges represent the 25th and 75th percentiles, whiskers further extend by ±1.5 times the interquartile range from the limits of each box. Each point shows the percentage of mapped reads to different transposon classes in each individual. nicaraguensis (n = 14), luxurians (n = 14), diploperennis (n = 20), perennis (n = 19), huehuetenangensis (n = 5), mexicana (n = 81), parviglumis (n = 70), TST (n = 210) and TEM (n = 280).

Source data

Extended Data Fig. 5 Principal component analysis and haplotype of eight large inversions.

Each group of plots contains a dotplot showing the principal component analysis of SNPs in the inversion region and a heatmap showing genotypes at the inversion identified by invClust116. Each point in the dotplot represents a sample and the color represents the inversion haplotypes. Each row in the heatmap represents the genotyped window used in invClust (500 kb) and each column represents a sample. The bar above the heatmap also shows the inversion cluster identified by PCA.

Source data

Extended Data Fig. 6 Enrichment analysis between highland and high latitude adaptation.

1,000 independent permutations were performed to accesses overlap using a, selected regions or b, differently expressed genes. Grey points represent the statistics of each permutation. Bars represent SD. P-values derived from permutation test are indicated.

Source data

Extended Data Fig. 7 Flowering time related pathway in highland and high latitude adaptation.

Pathway were integrated from Arabidopsis and rice. Genes colored with ‘blue’ represent highland adaptation genes, ‘green’: high latitude adaptation genes, ‘purple’: homologous genes pairs with one copy under selection in the highlands and the other in high latitude, ‘red’: convergent selection genes in highland and high latitude adaptation.

Extended Data Fig. 8 Phenotype analysis of CRISPR/Cas9 mutation for ZmPRR7 in different environments.

a, Gene structure and sequences of ZmPRR7 target regions in wild type, ZmPRR7 CRISPR/Cas9 knockout mutants. b and c, Statics of days to tassel, days to anthesis, days to silk in Hainan province (2019 and 2020; China; E109°, N18°; tropical environment). d and e, Statics of days to tassel, days to anthesis, days to silk in Jilin province (2020 and 2021; China; E125°, N44°; temperate environment). ns: no significance, two-sided t-test P-value shown. Numbers in the blank in x-axis represents the number of individuals. Each point shows the statistics of traits for each individual. Center lines in the boxplot indicate the median, edges represent the 25th and 75th percentiles, whiskers further extend by ±1.5 times the interquartile range from the limits of each box.

Source data

Extended Data Fig. 9 Phenotype analysis of different CRISPR/Cas9 mutation ZmCOL9 in different environments.

a, Gene structure and sequences of ZmCOL9 target regions in wild type, ZmCOLl9 CRISPR/Cas9 knockout mutants 1. b, Statics of days to tassel, days to anthesis, days to silk in Hainan province (2019; China; E109°, N18°; CRISPR/Cas9 mutation). c, Statics of days to tassel, days to anthesis, days to silk in Jilin province (2020; China; E125°, N44°; CRISPR/Cas9 mutation). d, Gene structure and sequences of ZmCOL9 target regions in wild type, ZmCOL9 CRISPR/Cas9 knockout mutants 2. e, Statics of days to tassel, days to anthesis, days to silk in Hainan province (2019; China; E109°, N18°; CRISPR/Cas9 mutation). f, Statics of days to tassel, days to anthesis, days to silk in Jilin province (2020; China; E125°, N44°; CRISPR/Cas9 mutation). ns: no significance, two-sided t-test P-value shown. Numbers in the blank in x-axis represents the number of individuals. Each point shows the statistics of traits in each individual. Center lines in the boxplot indicate the median, edges represent the 25th and 75th percentiles, whiskers further extend by ±1.5 times the interquartile range from the limits of each box.

Source data

Extended Data Fig. 10 Phenotype analysis of different overexpression lines for ZmCOL9 in different environments.

a, Statistics of days to tassel, days to anthesis, days to silk in Hainan province (2019; China; E109°, N18°; overexpression line 1). b, Statics of days to tassel, days to anthesis, days to silk in Hainan province (2019; China; E109°, N18°; overexpression line 2). c, Statics of days to tassel, days to anthesis, days to silk in Jilin province (2020; China; E125°, N44°; overexpression line 1). d, Statics of days to tassel, days to anthesis, days to silk in Jilin province (2020; China; E125°, N44°; overexpression line 2). ns: no significance, two-sided t-test P-value shown. Numbers in the blank in x-axis represents the number of individuals. Each point shows the statistics of traits in each individual. Center lines in the boxplot indicate the median, edges represent the 25th and 75th percentiles, whiskers further extend by ±1.5 times the interquartile range from the limits of each box.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Tables 8, 11 and 24.

Reporting Summary

Supplementary Tables

Supplementary Table 1–7, 9, 10 and 12–23.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data (phylogenetics tree file).

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 10

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Luo, J., Jin, M. et al. Genome sequencing reveals evidence of adaptive variation in the genus Zea. Nat Genet 54, 1736–1745 (2022). https://doi.org/10.1038/s41588-022-01184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-022-01184-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing