Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ten challenges for clinical translation in psychiatric genetics

Abstract

Genome-wide association studies have identified hundreds of robust genetic associations underlying psychiatric disorders and provided important biological insights into disease onset and progression. There is optimism that genetic findings will pave the way to precision psychiatry by facilitating the development of more effective treatments and the identification of groups of patients that these treatments should be targeted toward. However, there are several challenges that must be addressed before genetic findings can be translated into the clinic. In this Perspective, we highlight ten challenges for the field of psychiatric genetics, focused on the robust and generalizable detection of genetic risk factors, improved definition and assessment of psychopathology and achieving better clinical indicators. We discuss recent advancements in the field that will improve the explanatory and predictive power of genetic data and ultimately contribute to improving the management and treatment of patients with a psychiatric disorder.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Summary of GWAS findings of psychiatric disorders.
Fig. 2: Key challenges for the field of psychiatric genetics.
Fig. 3: An alternative phenotype framework to account for pleiotropy and heterogeneity in psychiatric disorders.

References

  1. Pardinas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Levey, D. F. et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat. Neurosci. 24, 954–963 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Sullivan, P. F. et al. Psychiatric genomics: an update and an agenda. Am. J. Psychiatry 175, 15–27 (2018).

    PubMed  Article  Google Scholar 

  5. Rees, E. & Owen, M. J. Translating insights from neuropsychiatric genetics and genomics for precision psychiatry. Genome Med. 12, 43 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  6. Hindorff, L. A. et al. Prioritizing diversity in human genomics research. Nat. Rev. Genet. 19, 175–185 (2018).

    CAS  PubMed  Article  Google Scholar 

  7. Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–S8 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  10. Chen, Z. et al. China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. Int. J. Epidemiol. 40, 1652–1666 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  11. Manrai, A. K. et al. Genetic misdiagnoses and the potential for health disparities. N. Engl. J. Med. 375, 655–665 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  12. Lee, P. H. et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482 (2019).

    Article  CAS  Google Scholar 

  13. Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570, 514–518 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 51, 1670–1678 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Giannakopoulou, O. et al. The genetic architecture of depression in individuals of East Asian ancestry: a genome-wide association study. JAMA Psychiatry 78, 1258–1269 (2021).

    PubMed  Article  Google Scholar 

  16. Atkinson, E. G. et al. Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nat. Genet. 53, 195–204 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Wang, Y. et al. Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations. Nat. Commun. 11, 3865 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Brown, B. C., Asian Genetic Epidemiology Network Type 2 Diabetes Consortium, Ye, C. J., Price, A. L. & Zaitlen, N. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet. 99, 76–88 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Sullivan, P. F. & Kendler, K. S. The state of the science in psychiatric genomics. Psychol. Med. 51, 2145–2147 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  20. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Levy, R. J., Xu, B., Gogos, J. A. & Karayiorgou, M. Copy number variation and psychiatric disease risk. Methods Mol. Biol. 838, 97–113 (2012).

    CAS  PubMed  Article  Google Scholar 

  22. Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).

    CAS  PubMed  Article  Google Scholar 

  23. Wainschtein, P. et al. Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data. Nat. Genet. 54, 263–273 (2022).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Uffelmann, E. & Posthuma, D. Emerging methods and resources for biological interrogation of neuropsychiatric polygenic signal. Biol. Psychiatry 89, 41–53 (2021).

    CAS  PubMed  Article  Google Scholar 

  25. Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat. Genet. 47, 1114–1120 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Halvorsen, M. et al. Increased burden of ultra-rare structural variants localizing to boundaries of topologically associated domains in schizophrenia. Nat. Commun. 11, 1842 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Wilfert, A. B. et al. Recent ultra-rare inherited variants implicate new autism candidate risk genes. Nat. Genet. 53, 1125–1134 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Satterstrom, F. K. et al. Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants. Nat. Neurosci. 22, 1961–1965 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Sul, J. H. et al. Contribution of common and rare variants to bipolar disorder susceptibility in extended pedigrees from population isolates. Transl. Psychiatry 10, 74 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  33. Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Sanders, S. J. et al. Whole genome sequencing in psychiatric disorders: the WGSPD consortium. Nat. Neurosci. 20, 1661–1668 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  37. Munafo, M. R., Tilling, K., Taylor, A. E., Evans, D. M. & Davey Smith, G. Collider scope: when selection bias can substantially influence observed associations. Int. J. Epidemiol. 47, 226–235 (2018).

    PubMed  Article  Google Scholar 

  38. Pirastu, N. et al. Genetic analyses identify widespread sex-differential participation bias. Nat. Genet. 53, 663–671 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Tyrrell, J. et al. Genetic predictors of participation in optional components of UK Biobank. Nat. Commun. 12, 886 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).

  41. Selzam, S. et al. Comparing within- and between-family polygenic score prediction. Am. J. Hum. Genet. 105, 351–363 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Howe, L. J. et al. Within-sibship GWAS improve estimates of direct genetic effects. Genet. Epidemiol. 45, 801 (2021).

    Google Scholar 

  43. Hyde, C. L. et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat. Genet. 48, 1031–1036 (2016).

    PubMed Central  Article  CAS  Google Scholar 

  44. Sanchez-Roige, S. & Palmer, A. A. Emerging phenotyping strategies will advance our understanding of psychiatric genetics. Nat. Neurosci. 23, 475–480 (2020).

  45. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Mitchell, B. L. et al. Polygenic risk scores derived from varying definitions of depression and risk of depression. JAMA Psychiatry 78, 1152–1160 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  47. Cai, N. et al. Minimal phenotyping yields genome-wide association signals of low specificity for major depression. Nat. Genet. 52, 437–447 (2020).

  48. Clements, C. C. et al. Genome-wide association study of patients with a severe major depressive episode treated with electroconvulsive therapy. Mol. Psychiatry 26, 2429–2439 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Brainstorm, C. et al. Analysis of shared heritability in common disorders of the brain. Science 360, eaap8757 (2018).

  50. Grotzinger, A. D. et al. Genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic and molecular genetic levels of analysis. Nat. Genet. 54, 548–559 (2022).

    CAS  PubMed  Article  Google Scholar 

  51. Gerring, Z. F., Thorp, J. G., Gamazon, E. R. & Derks, E. M. A local genetic correlation analysis provides biological insights into the shared genetic architecture of psychiatric and substance use phenotypes. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2022.03.001 (2022).

    Article  PubMed  Google Scholar 

  52. Ruderfer, D. M. et al. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715 (2018).

    CAS  PubMed Central  Article  Google Scholar 

  53. Thorp, J. G. et al. Symptom-level modelling unravels the shared genetic architecture of anxiety and depression. Nat. Hum. Behav. 5, 1432–1442 (2021).

    PubMed  Article  Google Scholar 

  54. Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693–697 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Gerring, Z. F., Thorp, J. G., Gamazon, E. R. & Derks, E. M. An analysis of genetically regulated gene expression and the role of co-expression networks across 16 psychiatric and substance use phenotypes. Eur. J. Hum. Genet. 30, 560–566 (2022).

  56. Caspi, A. & Moffitt, T. E. All for one and one for all: mental disorders in one dimension. Am. J. Psychiatry 175, 831–844 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  57. Lee, P. H., Feng, Y.-C. A. & Smoller, J. W. Pleiotropy and cross-disorder genetics among psychiatric disorders. Biol. Psychiatry 89, 20–31 (2021).

    CAS  PubMed  Article  Google Scholar 

  58. Smoller, J. W. et al. Psychiatric genetics and the structure of psychopathology. Mol. Psychiatry 24, 409–420 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  59. Waldman, I. D., Poore, H. E., Luningham, J. M. & Yang, J. Testing structural models of psychopathology at the genomic level. World Psychiatry 19, 350–359 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  60. Insel, Thomas et al. Research Domain Criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

    PubMed  Article  Google Scholar 

  61. Waszczuk, M. A. et al. Redefining phenotypes to advance psychiatric genetics: implications from hierarchical taxonomy of psychopathology. J. Abnorm. Psychol. 129, 143–161 (2020).

    PubMed  Article  Google Scholar 

  62. Michelini, G., Palumbo, I. M., DeYoung, C. G., Latzman, R. D. & Kotov, R. Linking RDoC and HiTOP: a new interface for advancing psychiatric nosology and neuroscience. Clin. Psychol. Rev. 86, 102025 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  63. Weinberger, D. R., Glick, I. D. & Klein, D. F. Whither Research Domain Criteria (RDoC)?: the good, the bad, and the ugly. JAMA Psychiatry 72, 1161–1162 (2015).

    PubMed  Article  Google Scholar 

  64. Wittchen, H.-U. & Beesdo-Baum, K. ‘Throwing out the baby with the bathwater’? Conceptual and methodological limitations of the HiTOP approach. World Psychiatry 17, 298–299 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  65. Hodgson, K., McGuffin, P. & Lewis, C. M. Advancing psychiatric genetics through dissecting heterogeneity. Hum. Mol. Genet. 26, R160–R165 (2017).

    CAS  PubMed  Article  Google Scholar 

  66. Cai, N., Choi, K. W. & Fried, E. I. Reviewing the genetics of heterogeneity in depression: operationalizations, manifestations and etiologies. Hum. Mol. Genet. 29, R10–R18 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®) (American Psychiatric Publishing, 2013).

  68. Fried, E. I., Coomans, F. & Lorenzo-Luaces, L. The 341 737 ways of qualifying for the melancholic specifier. Lancet Psychiatry 7, 479–480 (2020).

    PubMed  Article  Google Scholar 

  69. Nguyen, T.-D. et al. Genetic heterogeneity and subtypes of major depression. Mol. Psychiatry 27, 1667–1675 (2022).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Thorp, J. G. et al. Genetic heterogeneity in self-reported depressive symptoms identified through genetic analyses of the PHQ-9. Psychol. Med. 50, 2385–2396 (2020).

  71. Milaneschi, Y. et al. Genetic association of major depression with atypical features and obesity-related immunometabolic dysregulations. JAMA Psychiatry 74, 1214–1225 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  72. Sanchez-Roige, S. et al. Genome-wide association study meta-analysis of the Alcohol Use Disorders Identification Test (AUDIT) in two population-based cohorts. Am. J. Psychiatry 176, 107–118 (2019).

    PubMed  Article  Google Scholar 

  73. Dahl, A. et al. Reverse GWAS: using genetics to identify and model phenotypic subtypes. PLoS Genet. 15, e1008009 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. Han, B. et al. A method to decipher pleiotropy by detecting underlying heterogeneity driven by hidden subgroups applied to autoimmune and neuropsychiatric diseases. Nat. Genet. 48, 803–810 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Hukku, A. et al. Probabilistic colocalization of genetic variants from complex and molecular traits: promise and limitations. Am. J. Hum. Genet. 108, 25–35 (2021).

    CAS  PubMed  Article  Google Scholar 

  76. Hernandez, L. M. et al. Transcriptomic insight into the polygenic mechanisms underlying psychiatric disorders. Biol. Psychiatry 89, 54–64 (2021).

    CAS  PubMed  Article  Google Scholar 

  77. Gamazon, E. R., Zwinderman, A. H., Cox, N. J., Denys, D. & Derks, E. M. Multi-tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits. Nat. Genet. 51, 933–940 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Mountjoy, E. et al. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Nat. Genet. 53, 1527–1533 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Zhang, F. et al. OSCA: a tool for omic-data-based complex trait analysis. Genome Biol. 20, 107 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  82. Sey, N. Y. A. et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat. Neurosci. 23, 583–593 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Meng, X. H. et al. Integration of summary data from GWAS and eQTL studies identified novel causal BMD genes with functional predictions. Bone 113, 41–48 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 99, 1245–1260 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Caligiuri, S. P. & Kenny, P. J. The promise of genome editing for modeling psychiatric disorders. Neuropsychopharmacology 43, 223–224 (2018).

    CAS  PubMed  Article  Google Scholar 

  86. Begley, C. G. et al. Drug repurposing: misconceptions, challenges, and opportunities for academic researchers. Sci. Transl. Med. 13, eabd5524 (2021).

    CAS  PubMed  Article  Google Scholar 

  87. Sertkaya, A., Birkenbach, A., Berlind, A. & Eyraud, J. Examination of Clinical Trial Costs and Barriers for Drug Development (US Department of Health and Human Services, 2014).

  88. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    CAS  PubMed  Article  Google Scholar 

  89. Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18, 41–58 (2018).

    PubMed  Article  CAS  Google Scholar 

  90. Gaspar, H. A. et al. Using genetic drug-target networks to develop new drug hypotheses for major depressive disorder. Transl. Psychiatry 9, 117 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  91. Reay, W. R., Atkins, J. R., Carr, V. J., Green, M. J. & Cairns, M. J. Pharmacological enrichment of polygenic risk for precision medicine in complex disorders. Sci. Rep. 10, 879 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Subramanian, A. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Gerring, Z. F., Gamazon, E. R., White, A. & Derks, E. M. Integrative network-based analysis reveals gene networks and novel drug repositioning candidates for Alzheimer disease. Neurol. Genet. 7, e622 (2021).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. Taubes, A. et al. Experimental and real-world evidence supporting the computational repurposing of bumetanide for APOE4-related Alzheimer’s disease. Nat. Aging 1, 932–947 (2021).

    Article  Google Scholar 

  95. Pingault, J. B. et al. Using genetic data to strengthen causal inference in observational research. Nat. Rev. Genet. 19, 566–580 (2018).

    CAS  PubMed  Article  Google Scholar 

  96. Ohlsson, H. & Kendler, K. S. Applying causal inference methods in psychiatric epidemiology: a review. JAMA Psychiatry 77, 637–644 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  97. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Skrivankova, V. W. et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR Statement. JAMA 326, 1614–1621 (2021).

    PubMed  Article  Google Scholar 

  99. Wootton, R. E., Jones, H. J. & Sallis, H. M. Mendelian randomisation for psychiatry: how does it work, and what can it tell us?. Mol. Psychiatry 47, 1672–1679 (2021).

    Google Scholar 

  100. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).

    CAS  PubMed  Article  Google Scholar 

  101. McAdams, T. A., Rijsdijk, F. V., Zavos, H. M. S. & Pingault, J. B. Twins and causal inference: leveraging nature’s experiment. Cold Spring Harb. Perspect. Med. 11, a039552 (2021).

  102. Choi, K. W. et al. An exposure-wide and Mendelian randomization approach to identifying modifiable factors for the prevention of depression. Am. J. Psychiatry 177, 944–954 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  103. Zhou, E. A. Global Biobank Meta-analysis Initiative: powering genetic discovery across human diseases. Preprint at medRxiv https://doi.org/10.1101/2021.11.19.21266436 (2021).

  104. Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 9, e1003348 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Lewis, C. M. & Vassos, E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 12, 44 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  106. Fullerton, J. M. & Nurnberger, J. I. Polygenic risk scores in psychiatry: will they be useful for clinicians? F1000Res 8, https://doi.org/10.12688/f1000research.18491.1 (2019).

  107. Garcia-Gonzalez, J. et al. Pharmacogenetics of antidepressant response: a polygenic approach. Prog. Neuropsychopharmacol. Biol. Psychiatry 75, 128–134 (2017).

    CAS  PubMed  Article  Google Scholar 

  108. Ward, J. et al. Polygenic risk scores for major depressive disorder and neuroticism as predictors of antidepressant response: meta-analysis of three treatment cohorts. PLoS ONE 13, e0203896 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. Natarajan, P. et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation 135, 2091–2101 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  110. Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

E.M.D. and Z.F.G. are supported by the NIA, NIH (AG068026). J.G.T. is supported by a University of Queensland Research Training Program scholarship. We acknowledge the biomedical illustrator M. Kersting Flynn and the graphic designer J.M. Suarez for assisting with creation of the figures.

Author information

Authors and Affiliations

Authors

Contributions

E.M.D., J.G.T. and Z.F.G. conceived and wrote the manuscript.

Corresponding author

Correspondence to Eske M. Derks.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note

Supplementary Tables

Supplementary Tables 1–3.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Derks, E.M., Thorp, J.G. & Gerring, Z.F. Ten challenges for clinical translation in psychiatric genetics. Nat Genet (2022). https://doi.org/10.1038/s41588-022-01174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41588-022-01174-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing