







    Skip to main content




    
        
        Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
            the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
            Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
            and JavaScript.


    




    

    
            

            
                
                    Advertisement

                    
        
            
    
        
            
                [image: Advertisement]
        

    


        
    
                

            
        

    
        
            
                
                    
                    
                    
                        
                        
                            
                                
                                [image: Nature Genetics]
                            
                        
                    
                    

                    
                    	
                            
                                View all journals
                            
                        
	
                            
                                Search
                            
                        
	
                            
                                Log in
                            
                        


                

            

        

        
            
                
                    
                        	
                                    
                                        Explore content
                                    
                                
	
                                    
                                        About the journal
                                    
                                
	
                                        
                                            Publish with us
                                        
                                    
	
                                    
                                        Subscribe
                                    
                                


                        	
                                    
                                        Sign up for alerts
                                    
                                
	
                                    
                                            RSS feed
                                    
                                


                    

                

            

        
    


    
    
        
            
                	nature



	nature genetics

	articles

	
                                    article


    
        
        
            
            
                
                    	Article
	Published: 07 September 2022



                    RNA m6A regulates transcription via DNA demethylation and chromatin accessibility

                    	Shuang Deng1Â na1, 
	Jialiang Zhang1Â na1, 
	Jiachun SuÂ 
            ORCID: orcid.org/0000-0002-8445-49011Â na1, 
	Zhixiang ZuoÂ 
            ORCID: orcid.org/0000-0002-2492-26891Â na1, 
	Lingxing ZengÂ 
            ORCID: orcid.org/0000-0002-0846-87621, 
	Kaijing Liu1,2, 
	Yanfen Zheng1, 
	Xudong Huang1, 
	Ruihong Bai1, 
	Lisha Zhuang1, 
	Ying Ye1, 
	Mei Li3, 
	Ling Pan1, 
	Junge Deng1, 
	Guandi Wu1, 
	Rui Li1, 
	Shaoping Zhang1, 
	Chen WuÂ 
            ORCID: orcid.org/0000-0003-4954-10114, 
	Dongxin LinÂ 
            ORCID: orcid.org/0000-0002-8723-88681,4,5, 
	Jianjun ChenÂ 
            ORCID: orcid.org/0000-0003-3749-29026 & 
	â€¦
	Jian ZhengÂ 
            ORCID: orcid.org/0000-0001-9831-70381,5Â 

Show authors

                    

                    
                        
    Nature Genetics

                        volumeÂ 54,Â pages 1427â€“1437 (2022)Cite this article
                    

                    
        
            	
                        18k Accesses

                    
	
                        45 Citations

                    
	
                            45 Altmetric

                        
	
                    Metrics details

                


        

    
                    
                

                
    
        Subjects

        	Epigenetics
	Gene regulation
	Oesophageal cancer


    


                
    
    

    
    

                
            


        
            Abstract
Transcriptional regulation, which integrates chromatin accessibility, transcription factors and epigenetic modifications, is crucial for establishing and maintaining cell identity. The interplay between different epigenetic modifications and its contribution to transcriptional regulation remains elusive. Here, we show that METTL3-mediated RNA N6-methyladenosine (m6A) formation leads to DNA demethylation in nearby genomic loci in normal and cancer cells, which is mediated by the interaction between m6A reader FXR1 and DNA 5-methylcytosine dioxygenase TET1. Upon recognizing RNA m6A, FXR1 recruits TET1 to genomic loci to demethylate DNA, leading to reprogrammed chromatin accessibility and gene transcription. Therefore, we have characterized a regulatory mechanism of chromatin accessibility and gene transcription mediated by RNA m6A formation coupled with DNA demethylation, highlighting the importance of the crosstalk between RNA m6A and DNA modification in physiologic and pathogenic process.
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                    Fig. 1: RNA m6A modification levels are anti-correlated with DNA 5mC levels.[image: ]


Fig. 2: DNA demethylase TET1 activities are correlated with genome-wide RNA m6A levels in KYSE30 cells.[image: ]


Fig. 3: RNA m6A co-transcriptionally directs TET1 to demethylate DNA cytosines.[image: ]


Fig. 4: FXR1 recruits TET1 to demethylate DNA.[image: ]


Fig. 5: RNA m6A formation coupled with DNA demethylation plays a role in chromatin states and gene transcription.[image: ]


Fig. 6: Validation of transcription regulation by RNA m6A formation coupled with DNA demethylation in ESCC.[image: ]
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                Data availability

              
              The ChIP sequencing data for METTL3, TET1, TET2 and TET3 and the m6A sequencing data were downloaded from the NCBI Gene Expression Omnibus (GEO) database with the accession numbers GSE92257, GSE100955, GSE115964, GSE94688 and GSE52662, respectively. For integrated analysis of DNA methylation and m6A data, reduced representation bisulfite sequencing for mESCs was obtained from GEO dataset GSE57576. Human Methylation 450â€‰K (HM450K) array data for HepG2, HeLa and A549 cell lines were obtained from ENCODE (GSE40699). m6A sequencing data in HepG2 (GSE102620), HeLa (GSE46705) and A549 (GSE54365) were from GEO datasets. WGBS, m6A sequencing and CUT&Tag raw data have been deposited in the GEO under accession code GSE168344 and the Genome Sequence Archive in BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences under accession number HRA000682. The following datasets were used to generate the data: ESCC Human Methylation 450K (HM450K) array data of TCGA (https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga), hg19 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/_) and mm10 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.20/). Source data are provided with this paper.

            

Code availability

              
              Only publicly available tools were used in data analysis and the parameters have been described wherever relevant in Methods and Reporting Summary.
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Extended data

Extended Data Fig. 1 The relationship between RNA m6A and DNA 5mC.
a, Venn plots show overlap of m6A peaks and CpGs in A549, HeLa, HepG2 and mouse embryonic stem cells (mESC). b, The distribution of DNA methylation levels of CpGs close to m6A peak center in indicated cell lines. c, Box plots show DNA methylation levels of the CpGs near or far from m6A peak center in indicated cells with high or low gene expression. Sample size of each group: A549: nâ€‰=â€‰3. HepG2: nâ€‰=â€‰2. Hela: nâ€‰=â€‰2. mESC: nâ€‰=â€‰2. The difference was examined by two-sided Wilcoxon rank-sum test.


Extended Data Fig. 2 METTL3 regulates both RNA m6A and DNA 5mC levels.
a, Western blots show knockout (KO) efficiency of FTO or METTL14. b, Effects of FTO or METTL14 KO on global DNA 5mC levels. c, d, Effects of METTL3 knockdown on DNA methyltransferase and demethylase levels determined by qRT-PCR (c) and Western blotting (d). e, Western blots show the KO efficiency of METTL3 and ectopic expression of wild-type METTL3 or its mutant. f, Consensus sequence motif of m6A peaks. P-value was from HOMER based on binomial distribution. g, Metagene analysis of m6A peaks. h, RNA m6A levels in cells with METTL3 expression alteration. i, Count of significant differentially methylated regions (DMRs) in METTL3-depleted cells with the ectopic restore of METTL3 or its mutant. j, Metagene analysis of the DNA hypermethylated regions in cells with METTL3 KO. k, Heatmap shows differential DNA methylation levels of the hypermethylated DMRs close to m6A peaks in cells with or without METTL3 KO. DMRs are sorted in ascending order based on the beta value per region. l, Violin plots show differential DNA methylation levels of CpGs between the regions near and far from m6A peaks. Data were computed with methylKit with 2 biologically independent samples. m, Violin plots show methylation levels of CpGs in the non-m6A regions in cells with or without METTL3 KO. P-values in l and m were for two-sided Wilcoxon test. n, Venn plot shows overlap between hypomethylated m6A peaks (52.7%) with hypermethylated DMRs in cells with METTL3 KO versus control. o, p, Effects of METTL3 knockdown on m6A levels (o) and DNA 5mC levels (p) of the representative genes. q, r, Effects of the ectopic expression of METTL3 or its mutant on m6A levels (q) and DNA 5mC-modified levels (r) of the indicated genes with METTL3 KO. Data are mean Â± s.e.m. of three independent experiments in b, c and oâ€‰âˆ’â€‰r. CNGA4 was a non-m6A control. P values by unpaired two-sided t-test.
Source data


Extended Data Fig. 3 Genome-wide colocalization of RNA m6A and TET1.
a, Metagene analysis of m6A, Mettl3 and Tet1/2/3 ChIP peaks in mESCs. b, Density of distance from Tet1 to m6A center in mESCs. c, d METTL3 (left) and TET1 (right) binding (c) and the peak numbers (d) in cells with or without METTL3 or TET1 knockout. e, Reads per kilobase per million (RPKM) of METTL3 (left) or TET1 (right) CUT&Tag-signals relative to METTL3 CUT&Tag peak center. f, Correlation of TET1 and METTL3 CUT&Tag-signals. g, Density of distance from METTL3 to TET1 CUT&Tag-peaks. h, Colocalization of TET1 with METTL3 and m6A levels of exampled genes. Number represents the range of CUT&Tag-signal. i, Correlation of Tet1 and Mettl3 ChIP- signals in mESCs. j, Density of distance from Tet1 to Mettl3 ChIP-peaks in mESCs. k, Density of distance from METTL3 KO-decreased TET1 CUT&Tag-peaks to m6A peak center. l, Effects of METTL3 knockdown on TET1 enrichment in indicated genes. m, Effects of ectopic expression of METTL3 and its mutant on TET1 enrichment in indicated genes in cells with METTL3 KO. n, Western blot shows METTL3 KO efficiency and ectopic expression of TET1. o, METTL3 KO increased DNA 5mC levels of indicated genes, which could be rescued by ectopic expression of TET1. p, Effects of ectopic expression of METTL3 and its mutant on DNA 5hmC, 5fC or 5caC levels. q, Effects of ectopic expression of wild-type METTL3 and its mutant on counts of hypomethylated or hypermethylated DNA 5hmC peak upon METTL3 KO. r, Western blots show the effect of histone enzyme knockdown on histone modification level. s, Western blots show the effect of histone methylation enzyme knockdown on histone methylation level upon METTL3 KO. t, Effect of histone methyltransferase KO on global DNA 5mC level in cells with or without METTL3 KO. Data in l, m, o, p and t are mean Â± s.e.m. of 3 independent experiments. CNGA4 was a non-m6A control. P values by unpaired two-sided t-test. Peaks in c, e are sorted in descending order based on the mean value per region.
Source data


Extended Data Fig. 4 RNA m6A co-transcriptionally directs TET1 to target chromatin.
a, The proportion (pie chart) and enrichment (bar chart) of the Pol II CUT&Tag peaks in the different gene regions. b, Percentage of the annotated Pol II CUT&Tag peaks in protein-coding RNAs, non-coding RNAs, pseudogene RNAs and other RNAs. c, Venn plots show overlap between the Tet1-binding sites and the Pol II-binding sites identified by chromatin immunoprecipitation (ChIP) sequencing in mouse embryo stem cells (mESC). d, Density of the distance from Tet1-binding sites to Pol II-binding sites identified by ChIP sequencing in mESC. e, Effect of METTL3 knockdown on TET1 enrichment on pol II-bound regions in KYSE510 and HEK293T cells. f, Effects of the ectopic expression of wild-type METTL3 (WT) and its mutant (Mut) on TET1 enrichment on pol II-bound regions in KYSE510 and HEK293T cells with endogenous METTL3 knockout (KO). Data in e, f are mean Â± s.e.m. of 3 independent experiments. CNGA4 was a non-m6A control. P values by unpaired two-sided t-test.
Source data


Extended Data Fig. 5 FXR1 acts as an m6A reader and binds with TET1.
a, Western blot shows no direct association between TET1 and METTL3 in KYSE510 and HEK293T cells. b, Immunofluorescence analysis shows colocalization of FXR1 and TET1 in KYSE30 cells. Scale bar, 20 Î¼m. c, RNA pulldown assays using endogenous FXR1 or the ectopically expressed KH domain deletion mutant (FXR1-Î”KH) with RNA oligos show that only oligo-m6A (but not oligo-A) binds FXR1 but not FXR1-Î”KH. d, The distributions of FXR1 or FXR1-Î”KH in whole cell lysate (WCL), the cytoplasm, and the nuclei. GAPDH and H3 were loading controls. e, The distribution of FXR1 PAR-CLIP sequencing peaks in different regions of mRNAs. f, The consensus sequence motifs for FXR1 binding detected by PAR-CLIP sequencing and HOMER analysis. g, h, Effect of METTL3 knockdown on FXR1 RNA (g) and protein (h) levels determined by qRT-PCT or Western blotting. i, METTL3 knockdown significantly reduced FXR1 binding to the select mRNAs in KYSE510 and HEK293T cells. j, Effects of the ectopic expression of wild-type METTL3 (WT) or its mutant (Mut) on FXR1 binding to the select mRNAs in KYSE510 and HEK293T cells with endogenous METTL3 KO. k, Effects of METTL14 KO or FTO KO on FXR1 binding to the select mRNAs in KYSE510 and HEK293T cells. Data in g, iâ€‰âˆ’â€‰k are mean Â± s.e.m. of 3 independent experiments. CNGA4 was a non-m6A control. ns, not significant; P values by unpaired two-sided t-test.
Source data


Extended Data Fig. 6 FXR1 recruits TET1 to RNA m6A sites.
a, FXR1 binding (top) and peak numbers (bottom) upon FXR1 knockout. b, Overlap of FXR1, METTL3 and TET1 binding. c, Overlap of FXR1 transcriptome-wide and genome-wide binding (60.6%). d, DNA-binding of METTL3 to FXR1 in METTL3-depleted cells affected by wild-type METTL3 or its mutant. e, Density of distance from METTL3 knockout-decreased FXR1 CUT&Tag-peaks to m6A peak center. f, Western blot shows FXR1 knockout efficiency. g, FXR1 knockout-increased global DNA 5mC levels by ELISA (top) or LC-MS/MS (bottom). h, Effects of histone methyltransferases knockout on global 5mC level upon FXR1 depletion. i, Correlations between FXR1 and TET1 CUT&Tag-signals. j, TET1 binding (left) and the statistics by two-sided Wilcoxon test in 2 biologically independent samples (right) upon FXR1 knockout. k, Effects of FXR1 knockout on significant DMR counts affected by FXR1 or its KH domain deletion mutant (FXR1-Î”KH). l, Density of distance from FXR1 KO-induced hyper-DMR to m6A peak center. m, FXR1 KO-induced binding pattern alteration of TET1 to FXR1 CUT&Tag-peaks affected by FXR1 or FXR1-Î”KH mutant. n, TET1 CUT&Tag-signals in selected genes upon FXR1 knockout. Number represents the range of the CUT&Tag-signal. o, Effects of FXR1 knockout on TET1 enrichment. p, Effects of overexpressing FXR1 and FXR1-Î”KH mutant on DNA 5hmC, 5fC or 5caC levels. q, Counts of significantly differential DNA 5hmC peak upon overexpression of FXR1 or FXR1-Î”KH mutant. r, Density of distance from FXR1 knockout-induced DNA hypo-5hmC to the center of DNA hypermethylation region. s, Density of distance from FXR1 knockout-induced hypo-5hmC to m6A peak center. t, Overlap of genes with hyper-5mC and hypo-5hmC (93.2%) within genes having hypo-m6A-RNA upon FXR1 depletion. u, FXR1 TUD and the TET1 CXXC domain are responsible for their interaction. Top shows truncation forms of TET1 (left) and FXR1 (right) while bottom shows their interactions. v, Validation of dPspCas13b-FXR1 fusion protein expression. w, x, Effects of FXR1 (left) and TET1 (right) knockout on global RNA m6A levels by ELISA (w) and MeRIP-sequencing (x). Data in g, h, o, p and w are mean Â± s.e.m. of 3 independent experiments. P values by unpaired two-sided t-test. CUT&Tag-peaks in heatmap are sorted in descending order based on the mean value per region.
Source data


Extended Data Fig. 7 FXR1 and m6A-RNA form liquid-like condensates to facilitate FXR1 and TET1 interaction.
a, Western blot shows no direct association between FXR1 and METTL3. b, Western blot shows impaired interaction between FXR1 and TET1 upon METTL3 depletion. IP, immunoprecipitation. c, Amino acid number in FXR1 KH domain and the predicted intrinsic disordered region (IDR) flanking it (left). Right shows binding of FXR1 to m6A. d, Effects of FXR1 on liquid-like condensate formation. Representative imaging (left) of condensate formation in cells expressing mNeonGreen-fused FXR1 or two FXR1 mutants with the deletion of KH (FXR1-Î”KH) or IDR (FXR1-Î”IDR) domain. Scale bar, 10 Î¼m. Right is the quantitative statistics. ND, not detected. e, Representative fluorescence recovery after photobleaching (FRAP) of mNeonGreen-FXR1 condensate at different times (top). Pre, pre-bleaching, and quantification of FRAP (bottom). Scale bar, 10 Î¼m. f, Time-lapse images of FXR1-m6A RNA droplets showing a droplet fusion event at different times. Scale bars, 2 Î¼m. g, Representative fluorescence recovery images of FXR1-m6A RNA droplets (left) and quantification of FRAP data (right) at different times. The bleaching event occurred at 0â€‰s. Scale bars, 2 Î¼m. h, Effects of METTL3 KO on FXR1-m6A RNA liquid-like condensate formation in cells transfected with mNeonGreen-FXR1. Top is representative images and lower is quantitative statistics. Scale bar, 10 Î¼m. i, Effects of FXR1 on FRX1-m6A phase separation in vitro. Left shows representative images of phase separation using 1.0 Î¼M of mNeonGreen-FXR1, mNeonGreen-FXR1-Î”KH, or mNeonGreen-FXR1-Î”IDR and 5â€‰nM RNA oligo with (RR[m6A]C) or without (RR[A]C) m6A. Assay without the RNA oligo served as Control. Scale bar, 10 Î¼m. Right is quantification statistics of particle areas. Data in d, h and i are mean Â± s.e.m. and in c, g are mean Â± S.D. P values by two-sided Studentâ€™s t test. j, Western blot analysis of GST pulldown product shows the direct interaction between TET1 and FXR1 but not indicated mutant types. k, Differential effects of Cy3-labeled RNA oligo without m6A (RR[A]C) and with m6A (RR[m6A]C) on phase separation caused by mNeonGreen-FXR1 (1â€‰Î¼M, green) and Alexa-Fluor-647-labeled TET1 (1â€‰Î¼M, purple) in vitro. Scale bars: 5 Î¼m.
Source data


Extended Data Fig. 8 Chromatin accessibility and gene transcription in cells with METTL3, FXR1 or TET1 knockout.
a, Bar plot shows differential accessible regions (DARs) of chromatin in cells with METTL3, FXR1 or TET1 knockout (KO). b, Enrichment of DARs in the annotated gene regions in cells with METTL3, FXR1 or TET1 KO. c, Venn plots show overlaps between the regions with loss (left) or gain (right) of accessibility in cells with FXR1, METTL3 or TET1 KO compared with that in cells without KO of these 3 genes. d, Overlap between genes in DARs and genes with differential expression levels in cells with METTL3, FXR1 or TET1 KO compared with that in cells without KO of these 3 genes. DA, genes in DARs; DE, genes having differential expression levels in cells with KO compared with that in cells without KO. e, Venn plots show overlaps between the down-regulated genes in the ATAC loss regions (left panel) and up-regulated genes in the ATAC gain regions (right panel) in KYSE30 cells with or without FXR1, METTL3 or TET1 KO. f, g, FXR1, METTL3 and TET1 binding signals detected by CUT&Tag sequencing and chromatin accessibility signals detected by ATAC-sequencing in select 6 genes as indicated in figure in KYSE30 cells with or without FXR1, METTL3 and TET1 KO. h, Venn plots show overlaps between the down-regulated genes in the intersected hyper-DMR and ATAC loss regions (left panel) and up-regulated genes in the intersected hyper-DMR and ATAC gain regions (right panel) in KYSE30 cells with or without FXR1, METTL3 or TET1 KO. i, Proportions of differential Pol II occupancy (calculated by R package DiffBind) in the intersect ATAC loss and intersect ATAC gain regions in KYSE30 cells with or without METTL3 KO. j, Effects of gRNA-guided dPspCas13b-FXR1 fusion protein on mRNA levels of select genes in cells with or without METTL3 KO. NT, untargeted gRNA. Data are mean Â± s.e.m. of 3 independent experiments. P values by unpaired two-sided t-test.
Source data


Extended Data Fig. 9 The correlation of DNA 5mC and RNA m6A in clinical ESCC samples.
a, m6A sequencing and HOMER analysis show the consensus sequence motifs of RNA m6A peaks in both ESCC and normal tissues. P value was from HOMER based on binomial distribution. b, Metagene analysis of m6A peaks in different regions of mRNA in tissue samples. c, Pie plot shows percentage of the annotated m6A peaks in protein coding RNAs, nonprotein-coding RNAs, pseudogene RNAs, and other type RNAs. d, Correlation of the CpG methylation levels in our ESCC samples detected by whole-genome bisulfite sequencing (WGBS) and TCGA-ESCC samples detected by the Human Methylation 450â€‰K (HM450K) array. The two-sided Pearson correlation was calculated using R function cor.test(), in which P value was based on t test. e, Ridge plots of RNA m6A and DNA 5mC levels in the annotated genomic locations, that is, the 3â€²untranslated region (UTR), exon, promoter, intron, 5â€²UTR, and intergenic region, in tumor and normal samples. X axis represents RNA m6A and DNA 5mC levels in the m6A regions. The m6A peaks with a level 1.5 times the interquartile range above the upper quartile were considered as outliers and removed in the ridge plots. f, Volcano plot shows differentially methylated CpGs in ESCC samples minus the adjacent normal samples. P value was calculated using R package MethylKit based on logistic regression. g, Density plot shows the distribution of correlations between RNA m6A levels and DNA 5mC levels in the annotated genomic locations. h, Profiles of m6A and FXR1, TET1 or METTL3 CUT&Tag regions in KYSE30 cells for the indicated genes in control cells, cells with METTL3 knockout (KO) or MTTL3 KO cells with the ectopic expression of wild-type (WT) METTL3 or its mutant (Mut). Note: as m6A can also be deposited by other m6A methyltransferase such as METTL16, METTL3 KO may not reduce m6A abundance dramatically in all loci.


Extended Data Fig. 10 RNA m6A formation coupled DNA 5mC demethylation plays a role in the development of ESCC.
a, Box plots show the RNA levels of METTL3, TET1 and FXR1 determined by qRT-PCR in ESCC compared with the paired adjacent normal samples (Nâ€‰=â€‰215). The lines in the middle of the box are medians and the upper and lower lines indicate 25th and 75th percentiles. The lines in the upper and lower of the whiskers indicate the maxima and minima. The whiskers represent 1.5Ã— the interquartile range. Pâ€‰was calculated by two-sided Wilcoxon rank-sum test. b, Kaplan-Meier estimate of survival time in ESCC patients by the METTL3, TET1 or FXR1 RNA level alone or the combination of three genes. c, d, Effects of FXR1 KO on proliferation (c), migration and invasion (d) of ESCC cells. Top panels of d are the representative transwell pictures and bottom panels are the quantitative statistics. e, f, Effects of METTL3 KO on proliferation (e), migration and invasion (f) of ESCC cells with or without the ectopic FXR1 expression. Top panels of f are the representative transwell pictures and bottom panels are the quantitative statistics. g, h, Effects of FXR1 KO on proliferation (g), migration and invasion (h) of ESCC cells with or without the ectopic expression of FXR1 or its mutants lacking KH domain (FXR1-Î”KH) or TUD domain (FXR1-Î”TUD). Upper panels of h are representative transwell pictures and lower panels are the quantitative statistics. i, j, Effects of TET1 KO on proliferation, migration and invasion of ESCC cells with or without the ectopic FXR1 expression. Top panels of j are the representative transwell pictures and bottom panels are the quantitative statistics. Cell proliferation ability was determined by the CCK8 assay and results are means Â± s.e.m. from 3 independent experiments while the migration or invasion ability was examined by transwell assay, and the results are mean Â± s.e.m. of cells from 3 random fields. Scale bars in transwell images, 200 Î¼m. P values by unpaired two-sided t-test.
Source data
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