Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic determinants of chromatin reveal prostate cancer risk mediated by context-dependent gene regulation

Abstract

Many genetic variants affect disease risk by altering context-dependent gene regulation. Such variants are difficult to study mechanistically using current methods that link genetic variation to steady-state gene expression levels, such as expression quantitative trait loci (eQTLs). To address this challenge, we developed the cistrome-wide association study (CWAS), a framework for identifying genotypic and allele-specific effects on chromatin that are also associated with disease. In prostate cancer, CWAS identified regulatory elements and androgen receptor-binding sites that explained the association at 52 of 98 known prostate cancer risk loci and discovered 17 additional risk loci. CWAS implicated key developmental transcription factors in prostate cancer risk that are overlooked by eQTL-based approaches due to context-dependent gene regulation. We experimentally validated associations and demonstrated the extensibility of CWAS to additional epigenomic datasets and phenotypes, including response to prostate cancer treatment. CWAS is a powerful and biologically interpretable paradigm for studying variants that influence traits by affecting transcriptional regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the method.
Fig. 2: Genetic variation creates abundant cQTLs and allelically imbalanced regulatory elements.
Fig. 3: Integrative cistrome models identify genetic determinants of gene regulation.
Fig. 4: CWAS identifies prostate cancer risk mediated by genetic variation in AR binding and regulatory element activity.
Fig. 5: CWAS identifies associations not marked by a steady-state eQTL.
Fig. 6: CWAS associations linked to selected prostate developmental genes and proto-oncogenes.
Fig. 7: CWAS identifies ARBS underlying heritability of multiple androgen-regulated phenotypes.

Similar content being viewed by others

Data availability

Public datasets used in this study are listed in Supplementary Table 1. Data generated for this study are available in GEO (accession number GSE205885).

Code availability

Scripts to reproduce analyses from this study are available at https://github.com/scbaca/cwas, https://github.com/scbaca/chip_imputation and https://doi.org/10.5281/zenodo.6666796.

References

  1. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Pickrell, J. K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP–trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hormozdiari, F. et al. Leveraging molecular quantitative trait loci to understand the genetic architecture of diseases and complex traits. Nat. Genet. 50, 1041–1047 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gallagher, M. D. & Chen-Plotkin, A. S. The post-GWAS era: from association to function. Am. J. Hum. Genet. 102, 717–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association studies. Nat. Genet. 51, 592–599 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wray, N. R., Wijmenga, C., Sullivan, P. F., Yang, J. & Visscher, P. M. Common disease is more complex than implied by the core gene omnigenic model. Cell 173, 1573–1580 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. GTex Consortium.The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  13. GTEx Consortium.Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  PubMed Central  Google Scholar 

  14. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article  CAS  Google Scholar 

  15. Kim, J. et al. Gene expression profiles associated with acute myocardial infarction and risk of cardiovascular death. Genome Med. 6, 40 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Singh, T. et al. Characterization of expression quantitative trait loci in the human colon. Inflamm. Bowel Dis. 21, 251–256 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Ram, R. et al. Systematic evaluation of genes and genetic variants associated with type 1 diabetes susceptibility. J. Immunol. 196, 3043–3053 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Gong, J. et al. PancanQTL: systematic identification of cis-eQTLs and trans-eQTLs in 33 cancer types. Nucleic Acids Res. 46, D971–D976 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, B., Gloudemans, M. J., Rao, A. S., Ingelsson, E. & Montgomery, S. B. Abundant associations with gene expression complicate GWAS follow-up. Nat. Genet. 51, 768–769 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Strober, B. J. et al. Dynamic genetic regulation of gene expression during cellular differentiation. Science 364, 1287–1290 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Knowles, D. A. et al. Allele-specific expression reveals interactions between genetic variation and environment. Nat. Methods 14, 699–702 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ward, M. C., Banovich, N. E., Sarkar, A., Stephens, M. & Gilad, Y. Dynamic effects of genetic variation on gene expression revealed following hypoxic stress in cardiomyocytes. eLife 10, e57345 (2021). 2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumasaka, N., Knights, A. J. & Gaffney, D. J. Fine-mapping cellular QTLs with RASQUAL and ATAC-seq. Nat. Genet. 48, 206–213 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, A. T. et al. Allele-specific QTL fine mapping with PLASMA. Am. J. Hum. Genet. 106, 170–187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim-Hellmuth, S. et al. Genetic regulatory effects modified by immune activation contribute to autoimmune disease associations. Nat. Commun. 8, 266 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Umans, B. D., Battle, A. & Gilad, Y. Where are the disease-associated eQTLs?. Trends Genet. 37, 109–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Yao, D. W., O’Connor, L. J., Price, A. L. & Gusev, A. Quantifying genetic effects on disease mediated by assayed gene expression levels. Nat. Genet. 52, 626–633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chun, S. et al. Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-disease-associated loci in three major immune-cell types. Nat. Genet. 49, 600–605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, Y. I. et al. RNA splicing is a primary link between genetic variation and disease. Science 352, 600–604 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McVicker, G. et al. Identification of genetic variants that affect histone modifications in human cells. Science 342, 747–749 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, L. et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 167, 1398–1414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Waszak, S. M. et al. Population variation and genetic control of modular chromatin architecture in humans. Cell 162, 1039–1050 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. del Rosario, R. C. H. et al. Sensitive detection of chromatin-altering polymorphisms reveals autoimmune disease mechanisms. Nat. Methods 12, 458–464 (2015).

    Article  PubMed  CAS  Google Scholar 

  34. Grubert, F. et al. Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell 162, 1051–1065 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gate, R. E. et al. Genetic determinants of co-accessible chromatin regions in activated T cells across humans. Nat. Genet. 50, 1140–1150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maurano, M. T. et al. Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo. Nat. Genet. 47, 1393–1401 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deplancke, B., Alpern, D. & Gardeux, V. The genetics of transcription factor DNA binding variation. Cell 166, 538–554 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Alasoo, K. et al. Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response. Nat. Genet. 50, 424–431 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gusev, A. et al. Allelic imbalance reveals widespread germline-somatic regulatory differences and prioritizes risk loci in renal cell carcinoma. Preprint at bioRxiv https://doi.org/10.1101/631150 (2019).

  41. Benaglio, P. et al. Allele-specific NKX2-5 binding underlies multiple genetic associations with human electrocardiographic traits. Nat. Genet. 51, 1506–1517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang, X. et al. Shared heritability and functional enrichment across six solid cancers. Nat. Commun. 10, 431 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Davies, R. W., Flint, J., Myers, S. & Mott, R. Rapid genotype imputation from sequence without reference panels. Nat. Genet. 48, 965–969 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stelloo, S. et al. Integrative epigenetic taxonomy of primary prostate cancer. Nat. Commun. 9, 4900 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pomerantz, M. M. et al. Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat. Genet. 52, 790–799 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stouffer, S. A., Suchman, E. A., Devinney, L. C., Star, S. A. & Williams R. M. Jr. The American Soldier: Adjustment During Army Life Vol. 1 (Princeton University Press,1949).

  48. Castel, S. E. et al. A vast resource of allelic expression data spanning human tissues. Genome Biol. 21, 234 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liang, Y., Aguet, F., Barbeira, A. N., Ardlie, K. & Im, H. K. A scalable unified framework of total and allele-specific counts for cis-QTL, fine-mapping, and prediction. Nat. Commun. 12, 1424 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Emami, N. C. et al. Association of imputed prostate cancer transcriptome with disease risk reveals novel mechanisms. Nat. Commun. 10, 3107 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Schumacher, F. R. et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 50, 928–936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mancuso, N. et al. Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nat. Commun. 9, 4079 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Pomerantz, MM. et al. Analysis of the 10q11 cancer risk locus implicates MSMB and NCOA4 in human prostate tumorigenesis. PLoS Genet. 6, e1001204 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Meuleman, W. et al. Index and biological spectrum of human DNase I hypersensitive sites. Nature 584, 244–251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Conti, D. V. et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat. Genet. 53, 65–75 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, X. & Goldstein, D. B. Enhancer domains predict gene pathogenicity and inform gene discovery in complex disease. Am. J. Hum. Genet. 106, 215–233 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kasowski, M. et al. Variation in transcription factor binding among humans. Science 328, 232–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Koh, C. M. et al. MYC and prostate cancer. Genes Cancer 1, 617–628 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, B. et al. Klf5 acetylation regulates luminal differentiation of basal progenitors in prostate development and regeneration. Nat. Commun. 11, 997 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bhatia-Gaur, R. et al. Roles for Nkx3.1 in prostate development and cancer. Genes Dev. 13, 966–977 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Drobnjak, M., Osman, I., Scher, H. I., Fazzari, M. & Cordon-Cardo, C. Overexpression of cyclin D1 is associated with metastatic prostate cancer to bone. Clin. Cancer Res. 6, 1891–1895 (2000).

    CAS  PubMed  Google Scholar 

  63. Economides, K. D. & Capecchi, M. R. Hoxb13 is required for normal differentiation and secretory function of the ventral prostate. Development 130, 2061–2069 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Wu, D. et al. Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer. Nucleic Acids Res. 42, 3607–3622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ahmed, M. et al. CRISPRi screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer. Nat. Commun. 12, 1781 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kim, S. M. et al. Regulation of mouse steroidogenesis by WHISTLE and JMJD1C through histone methylation balance. Nucleic Acids Res. 38, 6389–6403 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jin, G. et al. Genome-wide association study identifies a new locus JMJD1C at 10q21 that may influence serum androgen levels in men. Hum. Mol. Genet. 21, 5222–5228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Levasseur, A., St-Jean, G., Paquet, M., Boerboom, D. & Boyer, A. Targeted disruption of YAP and TAZ impairs the maintenance of the adrenal cortex. Endocrinology 158, 3738–3753 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hawley, J. R. et al. Reorganization of the 3D genome pinpoints noncoding drivers of primary prostate tumors. Cancer Res. 81, 5833–5848 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Sáez, C. et al. Expression of basic fibroblast growth factor and its receptors FGFR1 and FGFR2 in human benign prostatic hyperplasia treated with finasteride. Prostate 40, 83–88 (1999).

    Article  PubMed  Google Scholar 

  72. Sweeney, C. J. et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N. Engl. J. Med. 373, 737–746 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pomerantz, M. et al. Genome-wide association study (GWAS) of response to androgen deprivation therapy (ADT) and survival in metastatic prostate cancer (PCa). JCO 34, 1540 (2016).

    Article  Google Scholar 

  74. Whitaker, H. C. et al. N-acetyl-l-aspartyl-l-glutamate peptidase-like 2 is overexpressed in cancer and promotes a pro-migratory and pro-metastatic phenotype. Oncogene 33, 5274–5287 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Berndt, S. I. et al. Two susceptibility loci identified for prostate cancer aggressiveness. Nat. Commun. 6, 6889 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, Z. et al. An AR-ERG transcriptional signature defined by long-range chromatin interactomes in prostate cancer cells. Genome Res. 29, 223–235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Baca, S. C. et al. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nat. Commun. 12, 1979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008). (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  PubMed  CAS  Google Scholar 

  82. Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).

    Article  PubMed  CAS  Google Scholar 

  83. Loh, P. R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443–1448 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nat. Methods 12, 1061–1063 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Castel, S. E., Levy-Moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T. Tools and best practices for data processing in allelic expression analysis. Genome Biol. 16, 195 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kuilman, T. et al. CopywriteR: DNA copy number detection from off-target sequence data. Genome Biol. 16, 49 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Delaneau, O. et al. A complete tool set for molecular QTL discovery and analysis. Nat. Commun. 8, 15452 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Whitlock, M. C. Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. J. Evolut. Biol. 18, 1368–1373 (2005).

    Article  CAS  Google Scholar 

  89. Gusev, A. et al. A transcriptome-wide association study of high grade serous epithelial ovarian cancer identifies novel susceptibility genes and splice variants. Nat. Genet. 51, 815–823 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hukku, A. et al. Probabilistic colocalization of genetic variants from complex and molecular traits: promise and limitations. Am. J. Hum. Genet. 108, 25–35 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Barbeira, A. N. et al. Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. Genome Biol. 22, 49 (2021). 2021)

    Article  PubMed  PubMed Central  Google Scholar 

  92. Aulchenko, Y. S., Struchalin, M. V. & van Duijn, C .M. ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinf. 11, 134 (2010).

    Article  CAS  Google Scholar 

  93. Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the PhRMA Foundation and the Kure It Cancer Research Foundation (S.C.B.). The androgen deprivation GWAS was supported in part by the National Cancer Institute of the National Institutes of Health under award numbers U10CA180820, U10CA180794 and UG1CA233180 (C.J.S.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We are grateful to the E3805: CHAARTED investigators; the patients who participated in the trial; the Prostate Cancer Foundation Mazzone Awards; and Sanofi for partial financial support and supplying docetaxel for early use (C.J.S.). In addition, we acknowledge Public Health Service grants CA180794, CA180820, CA23318, CA66636, CA21115, CA49883, CA16116, CA21076, CA27525, CA13650, CA14548, CA35421, CA32102, CA31946, CA04919, CA107868 and CA184734 (C.J.S.). We are grateful for the generous support of Rebecca and Nathan Milikowsky and Debbie and Bob First (S.C.B.).

Author information

Authors and Affiliations

Authors

Contributions

S.C.B., A.G. and M.L.F. conceived the study. S.C.B. analyzed the data and wrote the manuscript under the joint supervision of M.L.F. and A.G. A.F. performed ChIP–seq experiments. J.-H.S. generated and C.K. analyzed allelic imbalance data from LNCaP cells. T.M. and Y.D. analyzed SNP STARR-seq data under the supervision of N.L. and B.P. C.S. performed CRISPRi experiments under the supervision of D.Y.T. S. Z. assisted with analysis of ChIP–seq data. S.G. assisted with genotype imputation. S.L. and W.Z. provided prostate cancer ChIP–seq data. M.M.P. and V.W. analyzed ADT GWAS data performed on samples and data provided by C.J.S. J.A. assisted with implementation of the CWAS pipeline.

Corresponding authors

Correspondence to Alexander Gusev or Matthew L. Freedman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Jason Stein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Accurate genotyping of SNPs from epigenomic data.

(a) Overview of 575 epigenomic datasets merged across 163 individuals for genotyping. Datasets are colored by cohort (See Supplementary Table 1). (b) Genomic distribution of reads in ChIP-seq, RNA-seq and input control (whole genome) data. The genome was divided into non-overlapping 500 base-pair windows and cumulative read counts for each bin were summed. For each datatype, five samples were randomly selected and down-sampled to 8.4 million reads for uniformity. The mean percentage of bins with the indicated number of read counts is shown for each datatype. (c) Number of covered SNPs (≥ 5 reads) versus total aggregated reads for each individual. (d) Number of covered SNPs (≥ 5 reads) for each individual (n = 165) as the indicated number of datasets are merged. Datasets were added in random order for a given individual. For boxplots, lower and upper hinges indicate 25th and 75th percentiles; whiskers extend to 1.5 x the inter-quartile ranges (IQR). (e) Correlation of imputed versus array-based genotype dosages across 24 individuals. (f) Receiver operating characteristic curve for detection of heterozygous SNPs using sequencing and imputation, with array-based genotypes as ground truth. Dotted red line indicates a mean sensitivity of 0.92 at a specificity of 0.9 in individuals of European ancestry.

Extended Data Fig. 2 Inferred ancestry of individuals in the study.

Projection of imputed genotypes onto the first two principal components of continental ancestry from ref. 78. Individual identifiers for outlier samples (with values > 2 x standard deviation) are labeled. Self-reported ancestry is coded by color.

Extended Data Fig. 3 Overlap of cQTLs with prostate tissue eQTLs.

(a) Enrichment of genetically determined AR peaks (left) and H3K27ac peaks (right) for overlap with GWAS risk SNPs eQTLs across various tissues. Empiric p values are derived 10,000 from permutations. (b) number of AR and H3K27ac cQTLs that are also the top eQTL for a gene in prostate tissue. (c) correlation of cQTL and eQTL effect size (β) for cQTL SNPs; p-value for Pearson correlation test is indicated. (d) Examples of SNPs (labeled with rs identifier) that are both AR cQTLs and eQTLs where the corresponding cPeak and eGene are connected by an H3K27ac HiChIP loop in LNCaP. cPeak coordinates are shown and eGene transcriptional start sites (TSS) is denoted. (e) Contingency table showing enrichment of H3K27ac HiChIP looping between the corresponding cPeak and eGene for cQTLs that are also eQTLs. Chi-square test p-values are indicated.

Extended Data Fig. 4 Distribution of cQTLs around cPeaks.

cQTL SNP significance versus distance to the center of the corresponding cPeak for significant cQTLs (permutation-based q-value < 0.05). Dashed blue lines indicate ± 25 Kb from the peak center.

Extended Data Fig. 5 Conditioning of GWAS SNP significance on genetically predicted CWAS AR binding.

Genomic context of AR CWAS ARBS (depicted in green) that are significantly associated with prostate cancer risk. Manhattan plots indicate significance of SNP associations with prostate cancer before and after conditioning on genetically predicted CWAS ARBS activity. (a) and (b) show representative examples where ARBS explain most of the nearby cis-SNP GWAS significance. (c) CWAS ARBS at the promoter of GGCX, where residual GWAS significance remains after conditioning on ARBS, suggesting additional mechanisms underlying risk conferred by SNPs in this region.

Extended Data Fig. 6 Comparison of CWAS and GWAS significance for tested ARBS and H3K27ac peaks.

The absolute value of the association Z-score is plotted for CWAS peak-trait associations (y-axis) and GWAS SNP-trait associations for the most significant nearby SNP (x-axis). (a) shows ARBS and (b) shows H3K27ac peaks. Dashed horizontal lines indicate genome-wide significance thresholds for CWAS. Vertical dotted lines indicate the GWAS significance threshold of z = 5.45.

Extended Data Fig. 7 Enrichment of prostate cancer GWAS risk SNPs in genetically determined AR peaks and H3K27ac peaks.

Enrichment and p-values for AR peaks (a) and H3K27ac peaks (b) derived from linkage disequilibrium score regression5.

Extended Data Fig. 8 cQTL vs. eQTL activity at TMPRSS2 and NKX3-1 loci.

(a) Normalized AR ChIP-seq reads at the TMPRSS2 enhancer and TMPRSS2 expression stratified by genotype of the indicated SNP. (b) Normalized H3K27ac ChIP-seq reads at the NKX3-1 enhancer and NKX3-1 expression stratified by genotype of the indicated SNP. ρ and p-values indicate Pearson correlation coefficient for (A) and (B). (c) Estimated cis-SNP heritability for the indicated epigenomic features and corresponding genes. For boxplots, lower and upper hinges indicate 25th and 75− percentiles; whiskers extend to 1.5 x the inter-quartile ranges (IQR).

Supplementary information

Supplementary Information

Supplementary Methods and Supplementary Note.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–11.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baca, S.C., Singler, C., Zacharia, S. et al. Genetic determinants of chromatin reveal prostate cancer risk mediated by context-dependent gene regulation. Nat Genet 54, 1364–1375 (2022). https://doi.org/10.1038/s41588-022-01168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-022-01168-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing