Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Supporting undiagnosed participants when clinical genomics studies end

Many large research initiatives have cumulatively enrolled thousands of patients with a range of complex medical issues but no clear genetic etiology. However, it is unclear how researchers, institutions and funders should manage the data and relationships with those participants who remain undiagnosed when these studies end. In this Comment, we outline the current literature relevant to post-study obligations in clinical genomics research and discuss the application of current guidelines to research with undiagnosed participants.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Ramoni, R. B. et al. Am. J. Hum. Genet. 100, 185–192 (2017).

    CAS  Article  Google Scholar 

  2. Amendola, L. M. et al. Am. J. Hum. Genet. 103, 319–327 (2018).

    CAS  Article  Google Scholar 

  3. Baxter, S. M. et al. Genet. Med. 24, 784–797 (2022).

    Article  Google Scholar 

  4. Taruscio, D. et al. Mol. Genet. Metab. 129, 243–254 (2020).

    CAS  Article  Google Scholar 

  5. 100,000 Genomes Pilot Project Investigators. N. Engl. J. Med. 385, 1868–1880 (2021).

  6. Zurek, B. et al. Eur. J. Hum. Genet. 29, 1325–1331 (2021).

    Article  Google Scholar 

  7. Splinter, K. et al. N. Engl. J. Med. 379, 2131–2139 (2018).

    CAS  Article  Google Scholar 

  8. National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. US Department of Health and Human Services (1979).

  9. Richardson, H. S. & Belsky, L. Hastings Cent. Rep. 34, 25–33 (2004).

    Article  Google Scholar 

  10. Cho, H. L., Danis, M. & Grady, C. Lancet 391, 1478–1479 (2018).

    Article  Google Scholar 

  11. Cho, H. L., Danis, M. & Grady, C. Clin. Trials 15, 509–521 (2018).

    Article  Google Scholar 

  12. World Medical Association. J. Am. Med. Assoc. 310, 2191–2194 (2013).

    Article  Google Scholar 

  13. Halley, M. C. et al. Am. J. Med. Genet. A. 188, 1088–1101 (2022).

    Article  Google Scholar 

  14. Appelbaum, P. S., Roth, L. H., Lidz, C. W., Benson, P. & Winslade, W. Hastings Cent. Rep. 17, 20–24 (1987).

    CAS  Article  Google Scholar 

  15. Carrieri, D. et al. Eur. J. Hum. Genet. 27, 169–182 (2019).

    Article  Google Scholar 

  16. Pyeritz, R. E. N. Engl. J. Med. 365, 1367–1369 (2011).

    CAS  Article  Google Scholar 

  17. Bombard, Y. et al. Am. J. Hum. Genet. 104, 578–595 (2019).

    CAS  Article  Google Scholar 

  18. Beskow, L. M. & Burke, W. Sci. Transl. Med. 2, 38cm20 (2010).

    Article  Google Scholar 

  19. Jarvik, G. P. et al. Am. J. Hum. Genet. 94, 818–826 (2014).

    CAS  Article  Google Scholar 

  20. Weiner, C. Am. J. Epidemiol. 180, 562–564 (2014).

    Article  Google Scholar 

  21. Middleton, A. et al. Lancet 385, 1289–1290 (2015).

    Article  Google Scholar 

  22. Richardson, H. S. & Cho, M. K. Genet. Med. 14, 467–472 (2012).

    Article  Google Scholar 

  23. Tan, N. B. et al. Mol. Genet. Genomic Med. 8, e1508 (2020).

    Article  Google Scholar 

  24. Marwaha, S., Knowles, J. W. & Ashley, E. A. Genome Med. 14, 23 (2022).

    Article  Google Scholar 

  25. Morain, S. & Largent, E. Am. J. Bioeth. (2022).

  26. Reuter,, C. M. et al. J. Genet. Couns. 28, 1107–1118 (2019).

    Article  Google Scholar 

  27. Boycott, K. M. et al. Cell 177, 32–37 (2019).

    CAS  Article  Google Scholar 

  28. Kohane, I. S. et al. Science 316, 836–837 (2007).

    CAS  Article  Google Scholar 

  29. Prictor, M. et al. J. Empir. Res. Hum. Res. Ethics 15, 175–186 (2020).

    Article  Google Scholar 

  30. Tabor, H. K. et al. Genet. Med. 19, 467–475 (2017).

    Article  Google Scholar 

Download references


Financial support for this work was provided by the National Institutes of Health Common Fund, Office of the Director, as an administrative supplement to grant number U01HG010218-03S2 (E.A.A.). M.C.H. also is supported by the National Human Genome Research Institute grant number K01HG011341, and H.K.T. also is supported by the National Center for Advancing Translational Science grant number UL1TR003142.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Meghan C. Halley.

Ethics declarations

Competing interests

E.A.A. is co-founder to Personalis, DeepCell and Svexa; non-executive director to AstraZeneca; and advisor to Genome Medical, Sequence Bio, Apple and Foresite Capital. As a volunteer, M.C.H. is co-chair of the Undiagnosed Diseases Network Patient Education and Empowerment Resource and is a member of the Board of Directors of the Undiagnosed Diseases Network Foundation; both roles are uncompensated. H.K.T. declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Halley, M.C., Ashley, E.A. & Tabor, H.K. Supporting undiagnosed participants when clinical genomics studies end. Nat Genet 54, 1063–1065 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing