In the zebrafish heart, several transient fibroblast types appear after injury. High-throughput lineage tracing revealed that injury-responsive fibroblasts are derived from two distinct lineage origins: the epicardium and the endocardium. Targeted cell-type-specific depletion showed that at least one fibroblast type has a critical role in heart regeneration.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Gonzalez-Rosa, J. M., Burns, C. E. & Burns, C. G. Zebrafish heart regeneration: 15 years of discoveries. Regeneration 4, 105–123 (2017). This review is about zebrafish heart regeneration.
Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002). This paper was the first to report regeneration of the adult zebrafish heart.
Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464, 601–605 (2010). This paper demonstrated that the heart muscle regenerates via the dedifferentiation and proliferation of remaining cardiomyocytes.
Spanjaard, B. et al. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat. Biotechnol. 36, 469–473 (2018). In this paper, we introduced a novel method for high-throughput lineage tracing.
Sayers, J. R. & Riley, P. R. Heart regeneration: beyond new muscle and vessels. Cardiovasc. Res. 117, 727–742 (2021). This review discusses heart regeneration as a complex phenomenon to which many different cell types contribute.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This is a summary of: Hu, B. et al. Origin and function of activated fibroblast states during zebrafish heart regeneration. Nat. Genet. https://doi.org/10.1038/s41588-022-01129-5 (2022).
Rights and permissions
About this article
Cite this article
Transient activated fibroblasts contribute to zebrafish heart regeneration. Nat Genet 54, 1076–1077 (2022). https://doi.org/10.1038/s41588-022-01130-y
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41588-022-01130-y