Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

COMPUTATIONAL BIOLOGY

Automated sequence-based annotation and interpretation of the human genome

A machine-learning model produces summarized sequence representations of genomic regulatory activity, and provides a functional view of regulatory DNA variation in the human genome, with the aim of better understanding the role of sequence variation in health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual overview of the Sei framework.

References

  1. Roadmap Epigenomics Consortium. Nature 518, 317–330 (2015).

    Article  Google Scholar 

  2. ENCODE Project Consortium. Nature 583, 699–710 (2020).

    Article  Google Scholar 

  3. Zheng, R. et al. Nucleic Acids Res. 47, D729–D735 (2019).

    Article  CAS  Google Scholar 

  4. Meuleman, W. et al. Nature 584, 244–251 (2020).

    Article  CAS  Google Scholar 

  5. Chen, K. M., Wong, A. K., Troyanskaya, O. G. & Zhou, J. Nat. Genet. https://doi.org/10.1038/s41588-022-01102-2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zentner, G. E. & Henikoff, S. Nat. Rev. Genet. 15, 814–827 (2014).

    Article  CAS  Google Scholar 

  7. Avsec, Ž. et al. Nat. Genet. 53, 354–366 (2021).

    Article  CAS  Google Scholar 

  8. Avsec, Ž. et al. Nat. Methods 18, 1196–1203 (2021).

    Article  CAS  Google Scholar 

  9. Zhou, J. & Troyanskaya, O. G. Nat. Methods 12, 931–934 (2015).

    Article  CAS  Google Scholar 

  10. Zhou, J. et al. Nat. Genet. 50, 1171–1179 (2018).

    Article  CAS  Google Scholar 

  11. Janssens, J. et al. Nature 601, 630–636 (2022).

    Article  CAS  Google Scholar 

  12. Stenson, P. D. et al. Hum. Genet. 139, 1197–1207 (2020).

    Article  Google Scholar 

  13. Maslova, A. et al. Proc. Natl Acad. Sci. USA 117, 25655–25666 (2020).

    Article  CAS  Google Scholar 

  14. Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Nat. Biotechnol. 33, 831–838 (2015).

    Article  CAS  Google Scholar 

  15. Ching, T. et al. J. R. Soc. Interface 15, 20170387 (2018).

    Article  Google Scholar 

  16. Zhou, J. Nat. Genet. 54, 725–734 (2022).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anshul Kundaje or Wouter Meuleman.

Ethics declarations

Competing interests

A.K. is scientific co-founder of Ravel Biotechnology, is on the scientific advisory board of PatchBio, SerImmune, AINovo, TensorBio and OpenTargets, is a consultant with Illumina and owns shares in DeepGenomics, Immuni and Freenome. W.M. has no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundaje, A., Meuleman, W. Automated sequence-based annotation and interpretation of the human genome. Nat Genet 54, 916–917 (2022). https://doi.org/10.1038/s41588-022-01123-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-022-01123-x

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics