Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Democratizing plant genomics to accelerate global food production

Building on the fundamental discoveries of Mendel, plant genomics has had a major role in advancing the genetic improvement of crops worldwide, particularly in developed economies where the technologies are easily accessible. From cumbersome to more miniaturized high-throughput sequencing technologies, the field continues to evolve, providing vast opportunities for studying plant genomes with varying levels of complexity and potential real-life applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A framework for democratizing plant genomics-based technologies to boost agricultural productivity in low-resourced countries.

References

  1. Lee, J., Chin, J. H., Ahn, S. N. & Koh, H.-J. in Current Technologies in Plant Molecular Breeding: a Guide Book of Plant Molecular Breeding for Researchers (eds Koh, H.-J. et al.) 1–14 (Springer Netherlands, 2015).

  2. Mendel, G. Verhandlungen des naturforschenden Vereines in Brünn IV, 3–47 (1865).

    Google Scholar 

  3. Ohnoutkova, L. Mutation breeding in barley: historical overview. Methods Mol. Biol. 7–19, 2019 (1900).

    Google Scholar 

  4. James, C. Global status of commercialized biotech/GM crops: 2014. ISAAA Briefs No. 49 (ISAAA, 2014).

  5. Wych, R. D. in Agronomy Monographs 565–607 (American Society of Agronomy, 2015).

  6. Briney, A. Green Revolution. History and Overview of Green Revolution https://sites.google.com/a/friscoisd.org/minettm/video-learning/greenrevolution-homework/Green%20Revolution%20Article%202.pdf (2007).

  7. Nagano, H., Onishi, K., Ogasawara, M., Horiuchi, Y. & Sano, Y. Genealogy of the “Green Revolution” gene in rice. Genes Genet. Syst. 80, 351–356 (2005).

    Article  CAS  Google Scholar 

  8. Hargrove, T. R. & Cabanilla, V. L. The impact of semidwarf varieties on Asian rice-breeding programs. BioScience 29, 731–735 (1979).

    Article  Google Scholar 

  9. James, C. & Krattiger, A. F. Global review of the field testing and commercialization of transgenic plants: 1986 to 1995. ISAAA Briefs No. 1-1996 (ISAAA, 1996).

  10. Oladipo, O. H., Ibrahim, R. R., Adeboye, S. E. & Kuiper, H. Readiness of the Nigerian public for the introduction of genetically modified crops into the food market. Afr. J. Biotchenol. 19, 426–438 (2020).

    Article  Google Scholar 

  11. Conrow, J. Nigeria green lights GMO maize. Alliance for Science https://allianceforscience.cornell.edu/blog/2021/10/nigeria-green-lights-gmo-maize/ (2021).

  12. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

    Article  Google Scholar 

  13. Dolgin, E. Maize genome mapped. Nature https://doi.org/10.1038/news.2009.1098 (2009).

    Article  PubMed  Google Scholar 

  14. Schnable, P. S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).

    Article  CAS  Google Scholar 

  15. Sharma, P. et al. Improvements in the sequencing and assembly of plant genomes. Gigabyte https://doi.org/10.46471/gigabyte.24 (2021).

  16. Marks, R. A., Hotaling, S., Frandsen, P. B. & VanBuren, R. Representation and participation across 20 years of plant genome sequencing. Nat. Plants 7, 1571–1578 (2021).

    Article  CAS  Google Scholar 

  17. Staple foods: what do people eat? https://www.fao.org/3/u8480e/u8480e07.htm#:~:text=The%20world%20has%20over%2050,animal%20products%20(7%20percent (FAO, 2022)

  18. Tadele, Z. Orphan crops: their importance and the urgency of improvement. Planta 250, 677–694 (2019).

    Article  CAS  Google Scholar 

  19. Chang, Y. et al. The draft genomes of five agriculturally important African orphan crops. Gigascience 8, giy152 (2019).

    Article  Google Scholar 

  20. United Nations. World Population Prospects 2019: Highlights (2019).

  21. Majola, N. G., Gerrano, A. S. & Shimelis, H. Bambara groundnut (Vigna subterranea [L.] Verdc.) production, utilisation and genetic improvement in Sub-Saharan Africa. Agronomy 11, 1345 (2021).

    Article  CAS  Google Scholar 

  22. Pomerantz, A. et al. Rapid in situ identification of biological specimens via DNA amplicon sequencing using miniaturized laboratory equipment. Nat. Protoc. 17, 1415–1443 (2022).

    Article  CAS  Google Scholar 

  23. Hendre, P. S. et al. African Orphan Crops Consortium (AOCC): status of developing genomic resources for African orphan crops. Planta 250, 989–1003 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Nkechi Ibe.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibe, C.N. Democratizing plant genomics to accelerate global food production. Nat Genet 54, 911–913 (2022). https://doi.org/10.1038/s41588-022-01122-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-022-01122-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research