Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

From Mendel to quantitative genetics in the genome era: the scientific legacy of W. G. Hill

An Author Correction to this article was published on 22 July 2022

This article has been updated

Abstract

The quantitative geneticist W. G. (‘Bill’) Hill, awardee of the 2018 Darwin Medal of the Royal Society and the 2019 Mendel Medal of the Genetics Society (United Kingdom), died on 17 December 2021 at the age of 81 years. Here, we pay tribute to his multiple key scientific contributions, which span population and evolutionary genetics, animal and plant breeding and human genetics. We discuss his theoretical research on the role of linkage disequilibrium (LD) and mutational variance in the response to selection, the origin of the widely used LD metric r2 in genomic association studies, the genetic architecture of complex traits, the quantification of the variation in realized relationships given a pedigree relationship and much more. We demonstrate that basic theoretical research in quantitative and statistical genetics has led to profound insights into the genetics and evolution of complex traits and made predictions that were subsequently empirically validated, often decades later.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Five intertwined strands that shape genetic variance for complex traits within populations.
Fig. 2: Citations of two key Hill papers on LD.
Fig. 3: Distribution of the proportion of the genome shared identical-by-descent in a selected number of relative pairs.
Fig. 4: Relationships among polygenicity, inbreeding depression and dominance variance.

Data availability

The code used to create Fig. 3 is available at https://github.com/loic-yengo/Hill-and-Weir-2011—revisited.

Change history

References

  1. Fisher, R. A. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 53, 399–433 (1918).

    Google Scholar 

  2. Provine, W. B. The Origins of Theoretical Population Genetics (University of Chicago Press, 1971).

  3. Blixt, S. Why didn’t Gregor Mendel find linkage? Nature 256, 206 (1975).

    CAS  PubMed  Google Scholar 

  4. Fairbanks, D. J. & Rytting, B. Mendelian controversies: a botanical and historical review. Am. J. Bot. 88, 737–752 (2001).

    CAS  PubMed  Google Scholar 

  5. Robbins, R. B. Some applications of mathematics to breeding problems III. Genetics 3, 375–389 (1918).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewontin, R. C. & Kojima, K. The evolutionary dynamics of complex polymorphisms. Evolution 14, 458–472 (1960).

    Google Scholar 

  7. Hill, W. G. & Robertson, A. Linkage disequilibrium in finite populations. Theor. Appl Genet 38, 226–231 (1968).

    CAS  PubMed  Google Scholar 

  8. Sved, J. A. & Hill, W. G. One hundred years of linkage disequilibrium. Genetics 209, 629–636 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet Res 8, 269–294 (1966).

    CAS  PubMed  Google Scholar 

  10. Lande, R. & Thompson, R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124, 743–756 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Weir, B. S. & Hill, W. G. Effect of mating structure on variation in linkage disequilibrium. Genetics 95, 477–488 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hill, W. G. & Weir, B. S. Variances and covariances of squared linkage disequilibria in finite populations. Theor. Popul Biol. 33, 54–78 (1988).

    CAS  PubMed  Google Scholar 

  14. Hill, W. G. Estimation of linkage disequilibrium in randomly mating populations. Heredity 33, 229–239 (1974).

    CAS  PubMed  Google Scholar 

  15. Excoffier, L. & Slatkin, M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. Evol. 12, 921–927 (1995).

    CAS  PubMed  Google Scholar 

  16. Morton, N. E. et al. The optimal measure of allelic association. Proc. Natl Acad. Sci. USA 98, 5217–5221 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Charlesworth, B., Betancourt, A. J., Kaiser, V. B. & Gordo, I. Genetic recombination and molecular evolution. Cold Spring Harb. Symp. Quant. Biol. 74, 177–186 (2009).

    CAS  PubMed  Google Scholar 

  19. Hill, W. G. Variation in genetic identity within kinships. Heredity 71, 652–653 (1993).

    Google Scholar 

  20. Avery, P. J. & Hill, W. G. Variability in genetic parameters among small populations. Genet. Res. 29, 193–213 (1977).

    CAS  PubMed  Google Scholar 

  21. Weir, B. S., Avery, P. J. & Hill, W. G. Effect of mating structure on variation in inbreeding. Theor. Popul. Biol. 18, 396–429 (1980).

    Google Scholar 

  22. Hill, W. G. & Weir, B. S. Variation in actual relationship as a consequence of Mendelian sampling and linkage. Genet Res (Camb.) 93, 47–64 (2011).

    CAS  Google Scholar 

  23. Hill, W. G. & White, I. M. S. Identification of pedigree relationship from genome sharing. G3-Genes Genomes Genet. 3, 1553–1571 (2013).

    Google Scholar 

  24. Hill, W. G. & Weir, B. S. Variation in actual relationship among descendants of inbred individuals. Genet. Res. 94, 267–274 (2012).

    CAS  Google Scholar 

  25. Falconer, D. S. Introduction to Quantitative Genetics (Oliver and Boyd, 1960).

  26. Hivert, V., Wray, N. R. & Visscher, P. M. Gene action, genetic variation, and GWAS: a user-friendly web tool. PLoS Genet. 17, e1009548 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer, 1998).

    Google Scholar 

  28. Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).

    CAS  PubMed  Google Scholar 

  29. Robertson, A. & Hill, W. G. Population and quantitative genetics of many linked loci in finite populations. Proc. R. Soc. Ser. B Biol. Sci. 219, 253–264 (1983).

    Google Scholar 

  30. Mukai, T., Cardellino, R. A., Watanabe, T. K. & Crow, J. F. The genetic variance for viability and its components in a local population of Drosophila melanogaster. Genetics 78, 1195–1208 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Joshi, P. K. et al. Directional dominance on stature and cognition in diverse human populations. Nature 523, 459–462 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. Yengo, L. et al. Detection and quantification of inbreeding depression for complex traits from SNP data. Proc. Natl Acad. Sci. USA 114, 8602–8607 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Clark, D. W. et al. Associations of autozygosity with a broad range of human phenotypes. Nat. Commun. 10, 4957 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Hill, W. G., Goddard, M. E. & Visscher, P. M. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. 4, e1000008 (2008).

    PubMed  PubMed Central  Google Scholar 

  35. Maki-Tanila, A. & Hill, W. G. Influence of gene interaction on complex trait variation with multilocus models. Genetics 198, 355–367 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Keightley, P. D. Models of quantitative variation of flux in metabolic pathways. Genetics 121, 869–876 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Charlesworth, B. Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc. Natl Acad. Sci. USA 112, 1662–1669 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Polderman, T. J. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47, 702–709 (2015).

    CAS  PubMed  Google Scholar 

  39. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet 101, 5–22 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu, Z. et al. Dominance genetic variation contributes little to the missing heritability for human complex traits. Am. J. Hum. Genet 96, 377–385 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hivert, V. et al. Estimation of non-additive genetic variance in human complex traits from a large sample of unrelated individuals. Am. J. Hum. Genet 108, 786–798 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pazokitoroudi, A., Chiu, A. M., Burch, K. S., Pasaniuc, B. & Sankararaman, S. Quantifying the contribution of dominance deviation effects to complex trait variation in biobank-scale data. Am. J. Hum. Genet 108, 799–808 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bloom, J. S. et al. Genetic interactions contribute less than additive effects to quantitative trait variation in yeast. Nat. Commun. 6, 8712 (2015).

    CAS  PubMed  Google Scholar 

  44. Bloom, J. S., Ehrenreich, I. M., Loo, W. T., Lite, T. L. & Kruglyak, L. Finding the sources of missing heritability in a yeast cross. Nature 494, 234–237 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, X. S. & Hill, W. G. Genetic variability under mutation selection balance. Trends Ecol. Evol. 20, 468–470 (2005).

    PubMed  Google Scholar 

  46. Hill, W. G. Predictions of response to artificial selection from new mutations. Genet. Res. 40, 255–278 (1982).

    PubMed  Google Scholar 

  47. Hill, W. G. Rates of change in quantitative traits from fixation of new mutations. Proc. Natl Acad. Sci. USA 79, 142–145 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hill, W. G. Understanding and using quantitative genetic variation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 73–85 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. Hill, W. G. & Kirkpatrick, M. What animal breeding has taught us about evolution. Annu. Rev. Ecol. Evol. Syst. 41, 1–19 (2010).

    Google Scholar 

  50. Wray, N. R., Kemper, K. E., Hayes, B. J., Goddard, M. E. & Visscher, P. M. Complex trait prediction from genome data: contrasting EBV in livestock to PRS in humans: genomic prediction. Genetics 211, 1131–1141 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. Hill, W. G. Prediction and evaluation of response to selection with overlapping generations. Anim. Prod. 18, 117–139 (1974).

    Google Scholar 

  52. Sales, J. & Hill, W. G. Effect of sampling errors on efficiency of selection indexes. 1. Use of information from relatives for single trait improvement. Anim. Prod. 22, 1–17 (1976).

    Google Scholar 

  53. Sales, J. & Hill, W. G. Effect of sampling errors on efficiency of selection indexes. 2. Use of information on associated traits for improvement of a single important trait. Anim. Prod. 23, 1–14 (1976).

    Google Scholar 

  54. Hayes, J. F. & Hill, W. G. Modification of estimates of parameters in the construction of genetic selection indexes (bending). Biometrics 37, 483–493 (1981).

    Google Scholar 

  55. de Vlaming, R. et al. Multivariate analysis reveals shared genetic architecture of brain morphology and human behavior. Commun. Biol. 4, 1180 (2021).

    PubMed  PubMed Central  Google Scholar 

  56. Hill, W. G. & Nicholas, F. W. Estimation of heritability by both regression of offspring on parent and intra-class correlation of sibs in one experiment. Biometrics 30, 447–468 (1974).

    CAS  PubMed  Google Scholar 

  57. Patterson, H. D. & Thompson, R. Recovery of interblock information when block sizes are unequal. Biometrika 58, 545–554 (1971).

    Google Scholar 

  58. Visscher, P. M., Thompson, R. & Hill, W. G. Estimation of genetic and environmental variances for fat yield in individual herds and an investigation into heterogeneity of variance between herds. Livest. Prod. Sci. 28, 273–290 (1991).

    Google Scholar 

  59. Meyer, K. Maximum likelihood procedures for estimating genetic parameters for later lactations of dairy cattle. J. Dairy Sci. 66, 1988–1997 (1983).

    Google Scholar 

  60. Meyer, K. & Hill, W. G. Mixed model analysis of a selection experiment for food intake in mice. Genetical Res. 57, 71–81 (1991).

    CAS  Google Scholar 

  61. Keightley, P. D. & Hill, W. G. Quantitative genetic-variation in body size of mice from new mutations. Genetics 131, 693–700 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kruuk, L. E. Estimating genetic parameters in natural populations using the ‘animal model’. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 873–890 (2004).

    PubMed  PubMed Central  Google Scholar 

  63. Visscher, P. M., Haley, C. S., Heath, S. C., Muir, W. J. & Blackwood, D. H. Detecting QTLs for uni- and bipolar disorder using a variance component method. Psychiatr. Genet 9, 75–84 (1999).

    CAS  PubMed  Google Scholar 

  64. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Brotherstone, S. & Hill, W. G. Heterogeneity of variance amongst herds for milk production. Anim. Prod. 42, 297–303 (1986).

    Google Scholar 

  66. Hill, W. G., Edwards, M. R., Ahmed, M. K. A. & Thompson, R. Heritability of milk yield and composition at different levels and variability of production. Anim. Prod. 36, 59–68 (1983).

    Google Scholar 

  67. Hill, W. G. On Selection among groups with heterogeneous variance. Anim. Prod. 39, 473–477 (1984).

    Google Scholar 

  68. Hill, W. G. & Mulder, H. A. Genetic analysis of environmental variation. Genet. Res. 92, 381–395 (2010).

    Google Scholar 

  69. Mulder, H. A., Bijma, P. & Hill, W. G. Prediction of breeding values and selection responses with genetic heterogeneity of environmental variance. Genetics 175, 1895–1910 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Young, A. I., Wauthier, F. L. & Donnelly, P. Identifying loci affecting trait variability and detecting interactions in genome-wide association studies. Nat. Genet. 50, 1608–1614 (2018).

    CAS  PubMed  Google Scholar 

  71. Yang, J. et al. FTO genotype is associated with phenotypic variability of body mass index. Nature 490, 267–272 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kirkpatrick, M., Hill, W. G. & Thompson, R. Estimating the covariance structure of traits during growth and aging, illustrated with lactation in dairy cattle. Genetical Res. 64, 57–69 (1994).

    CAS  Google Scholar 

  73. Meyer, K. & Hill, W. G. Estimation of genetic and phenotypic covariance functions for longitudinal or ‘repeated’ records by restricted maximum likelihood. Livest. Prod. Sci. 47, 185–200 (1997).

    Google Scholar 

  74. Wilson, A. J., Kruuk, L. E. & Coltman, D. W. Ontogenetic patterns in heritable variation for body size: using random regression models in a wild ungulate population. Am. Nat. 166, E177–E192 (2005).

    PubMed  Google Scholar 

  75. Ni, G. et al. Genotype-covariate correlation and interaction disentangled by a whole-genome multivariate reaction norm model. Nat. Commun. 10, 2239 (2019).

    PubMed  PubMed Central  Google Scholar 

  76. Walsh, B. & Lynch, M. Evolution and Selection of Quantitative Traits (Oxford University Press, 2018).

Download references

Acknowledgements

P.M.V. is supported by grants from the National Health and Medical Research Council (1113400) and the Australian Research Council (FL180100072). N.R.W. is supported by the National Health and Medical Research Council (1113400 and 1173790). K.M. was supported by Meat and Livestock Australia (grant L.GEN.2204). We thank J. Sidorenko and L. Yengo for help with the figures. We acknowledge the many friends and colleagues of Bill Hill who would have loved to contribute to this paper and who would have been qualified to do so.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Peter M. Visscher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Charlesworth, B., Goddard, M.E., Meyer, K. et al. From Mendel to quantitative genetics in the genome era: the scientific legacy of W. G. Hill. Nat Genet 54, 934–939 (2022). https://doi.org/10.1038/s41588-022-01103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-022-01103-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing