Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Renal plasticity revealed through reversal of polycystic kidney disease in mice

Abstract

Initiation of cyst formation in autosomal dominant polycystic kidney disease (ADPKD) occurs when kidney tubule cells are rendered null for either PKD1 or PKD2 by somatic ‘second hit’ mutations. Subsequent cyst progression remodels the organ through changes in tubule cell shape, proliferation and secretion. The kidney develops inflammation and fibrosis. We constructed a mouse model in which adult inactivation of either Pkd gene can be followed by reactivation of the gene at a later time. Using this model, we show that re-expression of Pkd genes in cystic kidneys results in rapid reversal of ADPKD. Cyst cell proliferation is reduced, autophagy is activated and cystic tubules with expanded lumina lined by squamoid cells revert to normal lumina lined by cuboidal cells. Increases in inflammation, extracellular matrix deposition and myofibroblast activation are reversed, and the kidneys become smaller. We conclude that phenotypic features of ADPKD are reversible and that the kidney has an unexpected capacity for plasticity controlled at least in part by ADPKD gene function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reactivation of Pkd2 reverses cyst formation.
Fig. 2: Serial imaging shows reduction in total kidney volume after PC2 re-expression.
Fig. 3: Changes of tubule cell shapes after re-expression of PC2.
Fig. 4: Decreased cyst cell proliferation after re-expression of PC2.
Fig. 5: Reversal of inflammatory changes in cystic kidneys after PC2-HA re-expression.
Fig. 6: Reversal of fibrotic changes in cystic kidneys after PC2-HA re-expression.
Fig. 7: Later-stage reactivation of Pkd2 reverses cyst formation but kidney repair is less complete.
Fig. 8: Reactivation of Pkd1 reverses cyst formation.

Similar content being viewed by others

Data availability

There are no accession codes, unique identifiers or weblinks for publicly available datasets associated with this publication. The figures do not have associated raw data. There are no restrictions on data availability associated with any part of this work. Full-length western blots supporting all the figures are provided as Source Data.

References

  1. Harris, P. C. & Torres, V. E. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J. Clin. Invest. 124, 2315–2324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Qian, F., Watnick, T. J., Onuchic, L. F. & Germino, G. G. The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87, 979–987 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Wu, G. et al. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93, 177–188 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Leonhard, W. N., Happe, H. & Peters, D. J. Variable cyst development in autosomal dominant polycystic kidney disease: the biologic context. J. Am. Soc. Nephrol. 27, 3530–3538 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Piontek, K., Menezes, L. F., Garcia-Gonzalez, M. A., Huso, D. L. & Germino, G. G. A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat. Med. 13, 1490–1495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lantinga-van Leeuwen, I. S. et al. Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Hum. Mol. Genet. 16, 3188–3196 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Davenport, J. R. et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr. Biol. 17, 1586–1594 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takakura, A. et al. Renal injury is a third hit promoting rapid development of adult polycystic kidney disease. Hum. Mol. Genet. 18, 2523–2531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Patel, V. et al. Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum. Mol. Genet. 17, 1578–1590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bastos, A. P. et al. Pkd1 haploinsufficiency increases renal damage and induces microcyst formation following ischemia/reperfusion. J. Am. Soc. Nephrol. 20, 2389–2402 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Formica, C. & Peters, D. J. M. Molecular pathways involved in injury-repair and ADPKD progression. Cell Signal. 72, 109648 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Karihaloo, A. et al. Macrophages promote cyst growth in polycystic kidney disease. J. Am. Soc. Nephrol. 22, 1809–1814 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, L. et al. Macrophage migration inhibitory factor promotes cyst growth in polycystic kidney disease. J. Clin. Invest. 125, 2399–2412 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Swenson-Fields, K. I. et al. Macrophages promote polycystic kidney disease progression. Kidney Int. 83, 855–864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cassini, M. F. et al. Mcp1 promotes macrophage-dependent cyst expansion in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 29, 2471–2481 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song, C. J., Zimmerman, K. A., Henke, S. J. & Yoder, B. K. Inflammation and fibrosis in polycystic kidney disease. Results Probl. Cell Differ. 60, 323–344 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cornec-Le Gall, E. et al. Type of PKD1 mutation influences renal outcome in ADPKD. J. Am. Soc. Nephrol. 24, 1006–1013 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fedeles, S. V. et al. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat. Genet. 43, 639–647 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hopp, K. et al. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J. Clin. Invest. 122, 4257–4273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Walz, G. et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 830–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Serra, A. L. et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 820–829 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Torres, V. E. et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 367, 2407–2418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Torres, V. E. et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N. Engl. J. Med. 377, 1930–1942 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Calvet, J. P. The role of calcium and cyclic AMP in PKD. in Polycystic Kidney Disease (ed. Li, X.) 169-196 (Codon Publications, 2015).

  25. Kakade, V. R. et al. A cAMP and CREB-mediated feed-forward mechanism regulates GSK3beta in polycystic kidney disease. J. Mol. Cell. Biol. 8, 464–476 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parnell, S. C. et al. A mutation affecting polycystin-1 mediated heterotrimeric G-protein signaling causes PKD. Hum. Mol. Genet. 27, 3313–3324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, B., Tran, U. & Wessely, O. Polycystin 1 loss of function is directly linked to an imbalance in G-protein signaling in the kidney. Development 145, dev158931 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tsiokas, L. Function and regulation of TRPP2 at the plasma membrane. Am. J. Physiol. Renal Physiol. 297, F1–F9 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kipp, K. R. et al. Comparison of folate-conjugated rapamycin versus unconjugated rapamycin in an orthologous mouse model of polycystic kidney disease. Am. J. Physiol. Renal Physiol. 315, F395–F405 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fantus, D., Rogers, N. M., Grahammer, F., Huber, T. B. & Thomson, A. W. Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat. Rev. Nephrol. 12, 587–609 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shillingford, J. M., Piontek, K. B., Germino, G. G. & Weimbs, T. Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J. Am. Soc. Nephrol. 21, 489–497 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. DeCaen, P. G., Delling, M., Vien, T. N. & Clapham, D. E. Direct recording and molecular identification of the calcium channel of primary cilia. Nature 504, 315–318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Delling, M., DeCaen, P. G., Doerner, J. F., Febvay, S. & Clapham, D. E. Primary cilia are specialized calcium signalling organelles. Nature 504, 311–314 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ha, K. et al. The heteromeric PC-1/PC-2 polycystin complex is activated by the PC-1 N-terminus. eLife 9, e60684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harskamp, L. R., Gansevoort, R. T., van Goor, H. & Meijer, E. The epidermal growth factor receptor pathway in chronic kidney diseases. Nat. Rev. Nephrol. 12, 496–506 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Bukanov, N. O. et al. CDK inhibitors R-roscovitine and S-CR8 effectively block renal and hepatic cystogenesis in an orthologous model of ADPKD. Cell Cycle 11, 4040–4046 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, K., Boctor, S., Barisoni, L. M. & Gusella, G. L. Inactivation of integrin-beta1 prevents the development of polycystic kidney disease after the loss of polycystin-1. J. Am. Soc. Nephrol. 26, 888–895 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Raman, A. et al. Integrin-linked kinase signaling promotes cyst growth and fibrosis in polycystic kidney disease. J. Am. Soc. Nephrol. 28, 2708–2719 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, X. Epigenetics in ADPKD: understanding mechanisms and discovering treatment. in Polycystic Kidney Disease (ed. Li, X.) 283-312 (Codon Publications, 2015).

  40. Chang, M. Y. & Ong, A. C. M. Targeting new cellular disease pathways in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 33, 1310–1316 (2017).

    Article  Google Scholar 

  41. Rowe, I. et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat. Med. 19, 488–493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chiaravalli, M. et al. 2-Deoxy-d-glucose ameliorates PKD progression. J. Am. Soc. Nephrol. 27, 1958–1969 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Padovano, V., Podrini, C., Boletta, A. & Caplan, M. J. Metabolism and mitochondria in polycystic kidney disease research and therapy. Nat. Rev. Nephrol. 14, 678–687 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Flowers, E. M. et al. Lkb1 deficiency confers glutamine dependency in polycystic kidney disease. Nat. Commun. 9, 814 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kim, S. et al. The polycystin complex mediates Wnt/Ca2+ signalling. Nat. Cell Biol. 18, 752–764 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma, M., Tian, X., Igarashi, P., Pazour, G. J. & Somlo, S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 45, 1004–1012 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takiar, V. & Caplan, M. J. Polycystic kidney disease: pathogenesis and potential therapies. Biochim. Biophys. Acta 1812, 1337–1343 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Avasthi, P., Maser, R.L. & Tran, P.V. in Kidney Development and Disease (ed. Miller, R.K.) 281–321 (Springer International Publishing, 2017).

  49. Ma, M., Gallagher, A. R. & Somlo, S. Ciliary mechanisms of cyst formation in polycystic kidney disease. Cold Spring Harb. Perspect. Biol. 9, a028209 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lao, Z., Raju, G. P., Bai, C. B. & Joyner, A. L. MASTR: a technique for mosaic mutant analysis with spatial and temporal control of recombination using conditional floxed alleles in mice. Cell Rep. 2, 386–396 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, M. & Kirsch, D. G. The generation and characterization of novel Col1a1FRT-Cre-ER-T2-FRT and Col1a1FRT-STOP-FRT-Cre-ER-T2 mice for sequential mutagenesis. Dis. Model Mech. 8, 1155–1166 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nishio, S. et al. Pkd1 regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation. J. Clin. Invest. 115, 910–918 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thomson, R. B. et al. Histopathological analysis of renal cystic epithelia in the Pkd2WS25/- mouse model of ADPKD. Am. J. Physiol. Renal Physiol. 285, F870–F880 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Stroope, A. et al. Hepato-renal pathology in Pkd2ws25/- mice, an animal model of autosomal dominant polycystic kidney disease. Am. J. Pathol. 176, 1282–1291 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Tang, C., Livingston, M. J., Liu, Z. & Dong, Z. Autophagy in kidney homeostasis and disease. Nat. Rev. Nephrol. 16, 489–508 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shibazaki, S. et al. Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1. Hum. Mol. Genet. 17, 1505–1516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Torres, J. A. et al. Ketosis ameliorates renal cyst growth in polycystic kidney disease. Cell Metab. 30, 1007–1023 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fragiadaki, M. et al. STAT5 drives abnormal proliferation in autosomal dominant polycystic kidney disease. Kidney Int. 91, 575–586 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Zerjatke, T. et al. Quantitative cell cycle analysis based on an endogenous all-in-one reporter for cell tracking and classification. Cell Rep. 19, 1953–1966 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, L. X. et al. Lysine methyltransferase SMYD2 promotes cyst growth in autosomal dominant polycystic kidney disease. J. Clin. Invest. 127, 2751–2764 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhang, C. et al. Cyclin-dependent kinase 1 activity is a driver of cyst growth in polycystic kidney disease. J. Am. Soc. Nephrol. 32, 41–51 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Zimmerman, K. A., Hopp, K. & Mrug, M. Role of chemokines, innate and adaptive immunity. Cell Signal. 73, 109647 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zheng, D. et al. Urinary excretion of monocyte chemoattractant protein-1 in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 14, 2588–2595 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Grantham, J. J. et al. Tolvaptan suppresses monocyte chemotactic protein-1 excretion in autosomal-dominant polycystic kidney disease. Nephrol. Dial. Transplant. 32, 969–975 (2017).

    CAS  PubMed  Google Scholar 

  66. Lannoy, M. et al. The positive effect of selective prostaglandin E2 receptor EP2 and EP4 blockade on cystogenesis in vitro is counteracted by increased kidney inflammation in vivo. Kidney Int. 98, 404–419 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Lakhia, R. et al. Interstitial microRNA miR-214 attenuates inflammation and polycystic kidney disease progression. JCI Insight 5, e133785 (2020).

    Article  PubMed Central  Google Scholar 

  68. Le Hir, M., Hegyi, I., Cueni-Loffing, D., Loffing, J. & Kaissling, B. Characterization of renal interstitial fibroblast-specific protein 1/S100A4-positive cells in healthy and inflamed rodent kidneys. Histochem. Cell Biol. 123, 335–346 (2005).

    Article  PubMed  Google Scholar 

  69. Österreicher, C. H. et al. Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc. Natl Acad. Sci. USA 108, 308–313 (2011).

    Article  PubMed  Google Scholar 

  70. Jo, S. K., Sung, S. A., Cho, W. Y., Go, K. J. & Kim, H. K. Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol. Dial. Transplant. 21, 1231–1239 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Durlacher-Betzer, K. et al. Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease. Kidney Int. 94, 315–325 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Kielar, M. L. et al. Maladaptive role of IL-6 in ischemic acute renal failure. J. Am. Soc. Nephrol. 16, 3315–3325 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Ravichandran, K., Zafar, I., Ozkok, A. & Edelstein, C. L. An mTOR kinase inhibitor slows disease progression in a rat model of polycystic kidney disease. Nephrol. Dial. Transplant. 30, 45–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Menon, V. et al. Inflammation, oxidative stress, and insulin resistance in polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 7–13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, X. et al. A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat. Med. 14, 863–868 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou, J. X., Fan, L. X., Li, X., Calvet, J. P. & Li, X. TNFalpha signaling regulates cystic epithelial cell proliferation through Akt/mTOR and ERK/MAPK/Cdk2 mediated Id2 signaling. PLoS ONE 10, e0131043 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. McGeough, M. D. et al. TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies. J. Clin. Invest. 127, 4488–4497 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jain, N., Sudhakar, C. & Swarup, G. Tumor necrosis factor-alpha-induced caspase-1 gene expression. Role of p73. FEBS J. 274, 4396–4407 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Alvarez, S. & Munoz-Fernandez, M. A. TNF-alpha may mediate inflammasome activation in the absence of bacterial infection in more than one way. PLoS ONE 8, e71477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mulay, S. R. et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion. J. Clin. Invest. 123, 236–246 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Knauf, F. et al. NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int. 84, 895–901 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Torres, J. A. et al. Crystal deposition triggers tubule dilation that accelerates cystogenesis in polycystic kidney disease. J. Clin. Invest. 130, 4506–4522 (2019).

    Article  Google Scholar 

  83. Mangos, S. et al. The ADPKD genes Pkd1a/b and Pkd2 regulate extracellular matrix formation. Dis. Model Mech. 3, 354–365 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hassane, S. et al. Elevated TGFbeta-Smad signalling in experimental Pkd1 models and human patients with polycystic kidney disease. J. Pathol. 222, 21–31 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Dwivedi, N. et al. Epithelial vasopressin type-2 receptors regulate myofibroblasts by a YAP-CCN2-dependent mechanism in polycystic kidney disease. J. Am. Soc. Nephrol. 31, 1697–1710 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Menezes, L. F., Lin, C. C., Zhou, F. & Germino, G. G. Fatty acid oxidation is impaired in an orthologous mouse model of autosomal dominant polycystic kidney disease. eBioMedicine 5, 183–192 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhu, P., Sieben, C. J., Xu, X., Harris, P. C. & Lin, X. Autophagy activators suppress cystogenesis in an autosomal dominant polycystic kidney disease model. Hum. Mol. Genet. 26, 158–172 (2017).

    CAS  PubMed  Google Scholar 

  89. Peintner, L. et al. Loss of PKD1/polycystin-1 impairs lysosomal activity in a CAPN (calpain)-dependent manner. Autophagy https://doi.org/10.1080/15548627.2020.1826716 (2020).

  90. Belibi, F. et al. Hypoxia-inducible factor-1alpha (HIF-1alpha) and autophagy in polycystic kidney disease (PKD). Am. J. Physiol. Renal Physiol. 300, F1235–F1243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chou, L. F. et al. Effect of trehalose supplementation on autophagy and cystogenesis in a mouse model of polycystic kidney disease. Nutrients 11, 42 (2018).

    Article  PubMed Central  Google Scholar 

  92. Criollo, A. et al. Polycystin-2-dependent control of cardiomyocyte autophagy. J. Mol. Cell. Cardiol. 118, 110–121 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Praetorius, H. A. The primary cilium as sensor of fluid flow: new building blocks to the model. A review in the theme: cell signaling: proteins, pathways and mechanisms. Am. J. Physiol. Cell Physiol. 308, C198–C208 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Grantham, J. J. et al. Volume progression in polycystic kidney disease. N. Engl. J. Med. 354, 2122–2130 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, S., Zhao, Y., Leiby, M. & Zhu, J. A new positive/negative selection scheme for precise BAC recombineering. Mol. Biotechnol. 42, 110–116 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Warming, S., Costantino, N., Court, D. L., Jenkins, N. A. & Copeland, N. G. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 33, e36 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cai, Y. et al. Altered trafficking and stability of polycystins underlie polycystic kidney disease. J. Clin. Invest. 124, 5129–5144 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zou, Z. et al. Linking receptor-mediated endocytosis and cell signaling: evidence for regulated intramembrane proteolysis of megalin in proximal tubule. J. Biol. Chem. 279, 34302–34310 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Cai, Y. et al. Identification and characterization of polycystin-2, the PKD2 gene product. J. Biol. Chem. 274, 28557–28565 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the George M. O’Brien Kidney Center at Yale (P30 DK079310) for assistance with BAC recombineering and BUN measurements. This work was supported by NIH/National Institute of Diabetes and Digestive and Kidney Diseases grants (nos. R01 DK121948 and RC1 DK086738 to S.S.) and a PKD Foundation grant (no. 196F14 to M.M.). We thank the Amy P. Goldman Foundation for their generous and steadfast support.

Author information

Authors and Affiliations

Authors

Contributions

K.D., C.Z., X.T. and M.M. performed the experiments. D.C. and F.H. performed and analyzed the MRI studies. S.S. conceived the study. K.D. and S.S. designed the study and analyzed the data. K.D. and S.S. prepared the figures. S.S. wrote the manuscript with input from all the authors.

Corresponding author

Correspondence to Stefan Somlo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Genetics thanks Bradley Yoder, Michael Köttgen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note, Tables 1 and 2, and Figs. 1–16 and source data for Supplementary Figures.

Reporting Summary

Peer Review Information

Source data

Source Data Fig. 1

Full-length, unprocessed gels or blots.

Source Data Fig. 3

Full-length, unprocessed gels or blots.

Source Data Fig. 4

Full-length, unprocessed gels or blots..

Source Data Fig. 5

Full-length, unprocessed gels or blots.

Source Data Fig. 6

Full-length, unprocessed gels or blots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, K., Zhang, C., Tian, X. et al. Renal plasticity revealed through reversal of polycystic kidney disease in mice. Nat Genet 53, 1649–1663 (2021). https://doi.org/10.1038/s41588-021-00946-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-021-00946-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing