Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology

Abstract

Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manhattan plot of genome-wide association meta-analysis of 41,917 BD cases and 371,549 controls.
Fig. 2: Phenotypic variance in BD explained by PRSs.
Fig. 3: Relationships between BD and modifiable risk factors based on genetic correlations, GSMR and bivariate gaussian mixture modeling.

Similar content being viewed by others

Data availability

GWAS summary statistics are publicly available on the PGC website (https://www.med.unc.edu/pgc/results-and-downloads). Individual-level data are accessible through collaborative analysis proposals to the Bipolar Disorder Working Group of the PGC (https://www.med.unc.edu/pgc/shared-methods/how-to/). This study included some publicly available datasets accessed through dbGaP (PGC bundle phs001254) and the HRC reference panel v1.0 (http://www.haplotype-reference-consortium.org/home). Databases used: Drug–Gene Interaction Database DGIdb v.2 (https://www.dgidb.org); Psychoactive Drug Screening Database Ki DB (https://pdsp.unc.edu/databases/kidb.php); DrugBank 5.0 (https://www.drugbank.ca); LD Hub (http://ldsc.broadinstitute.org); FUMA (https://fuma.ctglab.nl).

Code availability

All software used is publicly available at the URLs or references cited.

References

  1. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1211–1259 (2017).

    Article  Google Scholar 

  2. Plans, L. et al. Association between completed suicide and bipolar disorder: a systematic review of the literature. J. Affect. Disord. 242, 111–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Association Publishing, 2013).

  4. Merikangas, K. R. et al. Lifetime and 12-month prevalence of bipolar spectrum disorder in the national comorbidity survey replication. Arch. Gen. Psychiatry 64, 543–552 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Merikangas, K. R. et al. Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch. Gen. Psychiatry 68, 241–251 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Craddock, N. & Sklar, P. Genetics of bipolar disorder. Lancet 381, 1654–1662 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Song, J. et al. Bipolar disorder and its relation to major psychiatric disorders: a family-based study in the Swedish population. Bipolar Disord. 17, 184–193 (2015).

    Article  PubMed  Google Scholar 

  8. Bienvenu, O. J., Davydow, D. S. & Kendler, K. S. Psychiatric ‘diseases’ versus behavioral disorders and degree of genetic influence. Psychol. Med. 41, 33–40 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43, 977–983 (2011).

    Article  CAS  Google Scholar 

  10. Baum, A. E. et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol. Psychiatry 13, 197–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Charney, A. W. et al. Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder. Transl. Psychiatry 7, e993 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, D. T. et al. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol. Psychiatry 18, 195–205 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Cichon, S. et al. Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am. J. Hum. Genet. 88, 372–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferreira, M. A. R. et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat. Genet. 40, 1056–1058 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Green, E. K. et al. Association at SYNE1 in both bipolar disorder and recurrent major depression. Mol. Psychiatry 18, 614–617 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Green, E. K. et al. Replication of bipolar disorder susceptibility alleles and identification of two novel genome-wide significant associations in a new bipolar disorder case–control sample. Mol. Psychiatry 18, 1302–1307 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Hou, L. et al. Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Hum. Mol. Genet. 25, 3383–3394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mühleisen, T. W. et al. Genome-wide association study reveals two new risk loci for bipolar disorder. Nat. Commun. 5, 3339 (2014).

    Article  PubMed  CAS  Google Scholar 

  19. Schulze, T. G. et al. Two variants in Ankyrin 3 (ANK3) are independent genetic risk factors for bipolar disorder. Mol. Psychiatry 14, 487–491 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Scott, L. J. et al. Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc. Natl Acad. Sci. USA 106, 7501–7506 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sklar, P. et al. Whole-genome association study of bipolar disorder. Mol. Psychiatry 13, 558–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith, E. N. et al. Genome-wide association study of bipolar disorder in European American and African American individuals. Mol. Psychiatry 14, 755–763 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

    Article  CAS  Google Scholar 

  24. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, S.-H., Zabolotny, J. M., Huang, H., Lee, H. & Kim, Y.-B. Insulin in the nervous system and the mind: functions in metabolism, memory, and mood. Mol. Metab. 5, 589–601 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McIntyre, R. S. et al. A randomized, double-blind, controlled trial evaluating the effect of intranasal insulin on neurocognitive function in euthymic patients with bipolar disorder. Bipolar Disord. 14, 697–706 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Nurnberger, J. I. Jr et al. Identification of pathways for bipolar disorder: a meta-analysis. JAMA Psychiatry 71, 657–664 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gordovez, F. J. A. & McMahon, F. J. The genetics of bipolar disorder. Mol. Psychiatry 25, 544–559 (2020).

    Article  PubMed  Google Scholar 

  29. Zhang, C., Xiao, X., Li, T. & Li, M. Translational genomics and beyond in bipolar disorder. Mol. Psychiatry 26, 186–202 (2021).

    Article  PubMed  Google Scholar 

  30. Pedersen, C. B. et al. The iPSYCH2012 case–cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol. Psychiatry 1, 6–14 (2018).

    Article  Google Scholar 

  31. Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Leitsalu, L. et al. Cohort Profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int. J. Epidemiol. 44, 1137–1147 (2015).

    Article  PubMed  Google Scholar 

  33. Krokstad, S. et al. Cohort Profile: the HUNT Study, Norway. Int. J. Epidemiol. 42, 968–977 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association for biobank-scale datasets. Nat. Genet. 50, 906–908 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bryois, J. et al. Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease. Nat. Genet. 52, 482–493 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wagner, A. H. et al. DGIdb 2.0: mining clinically relevant drug–gene interactions. Nucleic Acids Res. 44, D1036–D1044 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Roth, B. L., Lopez, E., Patel, S. & Kroeze, W. K. The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrassment of riches? Neuroscientist 6, 252–262 (2000).

    Article  CAS  Google Scholar 

  41. Gaspar, H. A. & Breen, G. Drug enrichment and discovery from schizophrenia genome-wide association results: an analysis and visualisation approach. Sci. Rep. 7, 12460 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mancuso, N. et al. Probabilistic fine-mapping of transcriptome-wide association studies. Nat. Genet. 51, 675–682 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Wu, Y. et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat. Commun. 9, 918 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. Preprint at bioRxiv https://doi.org/10.1101/447367 (2018).

  48. Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Frei, O. et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat. Commun. 10, 2417 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Holland, D. et al. Beyond SNP heritability: polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model. PLoS Genet. 16, e1008612 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Steardo, L. Jr et al. Sleep disturbance in bipolar disorder: neuroglia and circadian rhythms. Front. Psychiatry 10, 501 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hunt, G. E., Malhi, G. S., Cleary, M., Lai, H. M. X. & Sitharthan, T. Prevalence of comorbid bipolar and substance use disorders in clinical settings, 1990–2015: systematic review and meta-analysis. J. Affect. Disord. 206, 331–349 (2016).

    Article  PubMed  Google Scholar 

  54. Heffner, J. L., Strawn, J. R., DelBello, M. P., Strakowski, S. M. & Anthenelli, R. M. The co-occurrence of cigarette smoking and bipolar disorder: phenomenology and treatment considerations. Bipolar Disord. 13, 439–453 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vreeker, A. et al. High educational performance is a distinctive feature of bipolar disorder: a study on cognition in bipolar disorder, schizophrenia patients, relatives and controls. Psychol. Med. 46, 807–818 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. MacCabe, J. H. et al. Excellent school performance at age 16 and risk of adult bipolar disorder: national cohort study. Br. J. Psychiatry 196, 109–115 (2010).

    Article  PubMed  Google Scholar 

  57. Broome, M. R., Saunders, K. E. A., Harrison, P. J. & Marwaha, S. Mood instability: significance, definition and measurement. Br. J. Psychiatry 207, 283–285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ward, J. et al. The genomic basis of mood instability: identification of 46 loci in 363,705 UK Biobank participants, genetic correlation with psychiatric disorders, and association with gene expression and function. Mol. Psychiatry 25, 3091–3099 (2020).

    Article  PubMed  Google Scholar 

  59. Ikeda, M. et al. A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol. Psychiatry 23, 639–647 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Smeland, O. B., Frei, O., Dale, A. M. & Andreassen, O. A. The polygenic architecture of schizophrenia – rethinking pathogenesis and nosology. Nat. Rev. Neurol. 16, 366–379 (2020).

    Article  PubMed  Google Scholar 

  63. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. GTEx Consortium et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  PubMed Central  Google Scholar 

  65. Brainstorm Consortium et al. Analysis of shared heritability in common disorders of the brain. Science 360, eaap8757 (2018).

    Article  CAS  Google Scholar 

  66. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  67. Lewis, K. J. S. et al. Comparison of genetic liability for sleep traits among individuals with bipolar disorder I or II and control participants. JAMA Psychiatry 77, 303–310 (2020).

    Article  PubMed  Google Scholar 

  68. Zhou, H. et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat. Neurosci. 23, 809–818 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vermeulen, J. M. et al. Smoking and the risk for bipolar disorder: evidence from a bidirectional Mendelian randomisation study. Br. J. Psychiatry 218, 88–94 (2021).

    Article  PubMed  Google Scholar 

  71. Peyrot, W. J. et al. The association between lower educational attainment and depression owing to shared genetic effects? Results in ~25 000 subjects. Mol. Psychiatry 20, 735–743 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Swanson, C. L. Jr, Gur, R. C., Bilker, W., Petty, R. G. & Gur, R. E. Premorbid educational attainment in schizophrenia: association with symptoms, functioning, and neurobehavioral measures. Biol. Psychiatry 44, 739–747 (1998).

    Article  PubMed  Google Scholar 

  73. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Mizuno, A. & Okada, Y. Biological characterization of expression quantitative trait loci (eQTLs) showing tissue-specific opposite directional effects. Eur. J. Hum. Genet. 27, 1745–1756 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Schrode, N. et al. Synergistic effects of common schizophrenia risk variants. Nat. Genet. 51, 1475–1485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jiang, X. et al. Sodium valproate rescues expression of TRANK1 in iPSC-derived neural cells that carry a genetic variant associated with serious mental illness. Mol. Psychiatry 24, 613–624 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Huckins, L. M. et al. Transcriptomic imputation of bipolar disorder and bipolar subtypes reveals 29 novel associated genes. Preprint at bioRxiv https://doi.org/10.1101/222786 (2017).

  78. Finan, C. et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 9, eaag1166 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. von Wegerer, J., Hesslinger, B., Berger, M. & Walden, J. A calcium antagonistic effect of the new antiepileptic drug lamotrigine. Eur. Neuropsychopharmacol. 7, 77–81 (1997).

    Article  Google Scholar 

  80. Cipriani, A. et al. A systematic review of calcium channel antagonists in bipolar disorder and some considerations for their future development. Mol. Psychiatry 21, 1324–1332 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Harrison, P. J., Tunbridge, E. M., Dolphin, A. C. & Hall, J. Voltage-gated calcium channel blockers for psychiatric disorders: genomic reappraisal. Br. J. Psychiatry 216, 250–253 (2020).

    Article  PubMed  Google Scholar 

  82. Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat. Neurosci. 18, 199–209 (2015).

    Article  CAS  Google Scholar 

  83. Forstner, A. J. et al. Identification of shared risk loci and pathways for bipolar disorder and schizophrenia. PLoS ONE 12, e0171595 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  85. Lee, Y., Zhang, Y., Kim, S. & Han, K. Excitatory and inhibitory synaptic dysfunction in mania: an emerging hypothesis from animal model studies. Exp. Mol. Med. 50, 1–11 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. Skene, N. G. et al. Genetic identification of brain cell types underlying schizophrenia. Nat. Genet. 50, 825–833 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lewis, C. M. & Vassos, E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 12, 44 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Duncan, L. et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun. 10, 3328 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Coleman, J. R. I. et al. The genetics of the mood disorder spectrum: genome-wide association analyses of more than 185,000 cases and 439,000 controls. Biol. Psychiatry 88, 169–184 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Moon, S. et al. The Korea Biobank Array: design and identification of coding variants associated with blood biochemical traits. Sci. Rep. 9, 1382 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Bigdeli, T. B. et al. Contributions of common genetic variants to risk of schizophrenia among individuals of African and Latino ancestry. Mol. Psychiatry 25, 2455–2467 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Lam, M. et al. RICOPILI: Rapid Imputation for COnsortias PIpeLIne. Bioinformatics 36, 930–933 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Loh, P.-R. et al. Reference-based phasing using the haplotype reference consortium panel. Nat. Genet. 48, 1443–1448 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Nievergelt, C. M. et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat. Commun. 10, 4558 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Purves, K. L. et al. A major role for common genetic variation in anxiety disorders. Mol. Psychiatry 25, 3292–3303 (2020).

    Article  PubMed  CAS  Google Scholar 

  104. Yu, D. et al. Interrogating the genetic determinants of Tourette’s syndrome and other tic disorders through genome-wide association studies. Am. J. Psychiatry 176, 217–227 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Watson, H. J. et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat. Genet. 51, 1207–1214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. 1000 Genomes Project Consortium. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  CAS  Google Scholar 

  114. Kamitaki, N. et al. Complement genes contribute sex-biased vulnerability in diverse disorders. Nature 582, 577–581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee, S. H., Goddard, M. E., Wray, N. R. & Visscher, P. M. A better coefficient of determination for genetic profile analysis. Genet. Epidemiol. 36, 214–224 (2012).

    Article  PubMed  Google Scholar 

  118. Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 13, e1007081 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 7, e34408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Verbanck, M., Chen, C.-Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hübel, C. et al. Genomics of body fat percentage may contribute to sex bias in anorexia nervosa. Am. J. Med. Genet. B Neuropsychiatr. Genet. 180, 428–438 (2019).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the participants who donated their time, life experiences and DNA to this research and the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who make up the PGC. The PGC has received major funding from the US National Institute of Mental Health (PGC3: U01 MH109528; PGC2: U01 MH094421; PGC1: U01 MH085520). Statistical analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org) hosted by SURFsara and the Mount Sinai high-performance computing cluster (http://hpc.mssm.edu), which is supported by the Office of Research Infrastructure of the National Institutes of Health under award numbers S10OD018522 and S10OD026880. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Full acknowledgements are included in the Supplementary Note.

Author information

Authors and Affiliations

Authors