Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A resource of targeted mutant mouse lines for 5,061 genes

The International Mouse Phenotyping Consortium reports the generation of new mouse mutant strains for more than 5,000 genes, including 2,850 novel null, 2,987 novel conditional-ready and 4,433 novel reporter alleles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Generation and effects of targeted alleles for 5,061 unique mouse genes.


  1. 1.

    Stoeger, T., Gerlach, M., Morimoto, R. I. & Nunes Amaral, L. A. PLoS Biol 16, e2006643 (2018).

    Article  Google Scholar 

  2. 2.

    Austin, C. P. et al. Nat Genet 36, 921–924 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    Auwerx, J. et al. Nat. Genet. 36, 925–927 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    Ashurst, J. L. et al. Nucleic Acids Res. 33, D459–D465 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    Skarnes, W. C. et al. Nature 474, 337–342 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Valenzuela, D. M. et al. Nat. Biotechnol. 21, 652–659 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    de Angelis, M. H. et al. Nat. Genet. 47, 969–978 (2015).

    Article  Google Scholar 

  8. 8.

    White, J. K. et al. Cell 154, 452–464 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    West, D. B. et al. Genome Res. 25, 598–607 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Bowl, M. R. et al. Nat. Commun. 8, 886 (2017).

    Article  Google Scholar 

  11. 11.

    Dickinson, M. E. et al. Nature 537, 508–514 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Karp, N. A. et al. Nat. Commun. 8, 15475 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Meehan, T. F. et al. Nat. Genet. 49, 1231–1238 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Muñoz-Fuentes, V. et al. Conserv. Genet. 19, 995–1005 (2018).

    Article  Google Scholar 

  15. 15.

    Rozman, J. et al. Nat. Commun. 9, 288 (2018).

    Article  Google Scholar 

  16. 16.

    Bult, C. J., Blake, J. A., Smith, C. L., Kadin, J. A. & Richardson, J. E. Nucleic Acids Res. 47, D801–D806 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    Pettitt, S. J. et al. Nat. Methods 6, 493–495 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    Codner, G.F. et al. Methods (2020).

  19. 19.

    Ryder, E. et al. Mamm. Genome 24, 286–294 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Ingham, N. J. et al. PLoS Biol. 17, e3000194 (2019).

    CAS  Article  Google Scholar 

  21. 21.

    Liu, X. et al. Nat. Genet. 49, 1152–1159 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Miyata, H. et al. Proc. Natl Acad. Sci. USA 113, 7704–7710 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Pol, A. et al. Nat. Genet. 50, 120–129 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Small, K. S. et al. Nat. Genet. 50, 572–580 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    Akawi, N. et al. Nat. Genet. 47, 1363–1369 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Bertero, A. et al. Genes Dev. 29, 702–717 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    de la Rosa, J. et al. Nat. Genet. 49, 730–741 (2017).

    Article  Google Scholar 

  28. 28.

    Kim, J. H. et al. Cell 156, 730–743 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Koch, S., Acebron, S. P., Herbst, J., Hatiboglu, G. & Niehrs, C. Cell 163, 1225–1236 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Kochubey, O., Babai, N. & Schneggenburger, R. Neuron 90, 984–999 (2016).

    CAS  Article  Google Scholar 

Download references


We thank all technical personnel at the different centers involved in this project for their contributions. We thank G. Clarke for support with illustrations. M.-C.B., G.P., M.W.-D., Y.H. and T.S. were supported by the Université de Strasbourg, the CNRS, the INSERM and the ‘Investissements d'avenir’ programs (ANR-10-IDEX-0002-02, ANR-10-LABX-0030-INRT and ANR-10-INBS-07 PHENOMIN); A.Y. and M.T. were supported by a RIKEN BioResource Research Center (BRC), Management Expenses Grant from the Ministry of Education, Culture, Sports, Science and Technology (MEXT); D.A., J.B., A. Bradley, W.B., B.D., S.N., R.R.S., B.R., E.R., W.S., K.S. and H.W.-J. were supported by the Wellcome Trust; S.B., S.C., G.C., M.F., S.W. and L.T. were supported by the Medical Research Council (A410); M.G., C.M. and L.N. were supported by Genome Canada and Ontario Genomics (OGI-051); H.L., Y.J.L., G.T.O. and J.K.S. were supported by the National Research Foundation (2014M3A9D5A01074636, 2014M3A9D5A01075128 and 2013M3A9D5072550), Republic of Korea (KMPC); M.B., A. Bradley, S.B., A. Bürger, W.B., F.C., M.F., A.G., M.H.d.A., R.K., S.N., G.P., R.R.S., B.R., E.R., J.S., W.S., C.S., T.S., G.T.-V., S.W., W.W. and L.T. were supported by the European Commission (EUCOMM (LSHM-CT-2005-018931), EUCOMMTOOLS (FP7-HEALTH-F4-2010-261492), EUMODIC, Infrafrontier 01KX1012 (M.H.d.A.) and EU Horizon 2020: IPAD-MD funding 653961 (M.H.d.A.)); R.S. and P.K. were supported by RVO 68378050 from the Academy of Sciences of the Czech Republic and by LM2015040 and LM2018126 (Czech Centre for Phenogenomics), CZ.1.05/2.1.00/19.0395 and CZ.1.05/1.1.00/02.0109 funded by the Ministry of Education, Youth and Sports and the European Regional Development Fund. Work was supported by the National Key R&D Program of China 2018YFA0801100 to Y.X. Research reported in this publication was supported by the NIH Common Fund, the Office of The Director and the National Human Genomic Research Institute of the National Institutes of Health (U42OD011174 supported A.L.B., J.B., A. Bradley, W.B., B.D., M.D., M.F., J. H., M.J., I.L., F.M., S.N., R.R.S., B.R., E.R., W.S., J.S., S.W. and L.T.; U42OD011175 supported M.G., C.M., L.N., B.W., J.W. and K.C.L.; U42OD011185 supported L.R.D., L.G., M.V.W. and S.A.M.; U54HG006370-02 supported A.G.-S., R.E.K., A.-M.M., T.M., V.M.F. and L.S.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information





M.-C.B., A.Y., S.A., J.B., A. Bürger, W.B., F.C., S.C., G.F.C., F.J.D., B.D., M.D.F., A.G., M.G., A.G.-S., L.O.G., P.K., R.E.K., R.K., H.L., Y.J.L., I.L., A.-M.M., T.F.M., V.M.F., S.N., L.M.J.N., G.T.O., G.P., R.R.-S., B.R., E.J.R., L.A.S., J.S., J.R.S., C.S., M.T., H.W.-J., M.W.-D., M.V.W., B.J.W., J.A.W., L.T., S.A.M. and the IMPC generated data, developed data tools and databases, and/or performed data and statistical analyses; A.Y., D.J.A., A.L.B., A. Bradley, S.D.M.B., H.-J.G.C., M.E.D., L.R.D., X.G., J.D.H., Y.H., M.H.d.A., S.-T.J., M.J.J., Z.L., K.C.K.L., C.M., A.-M.M., T.F.M., L.M.J.N., R.S., J.K.S., W.C.S., T.S., K.P.S., G.P.T.-V., C.-K.L.W., S.W., W.W., Y.X., L.T. and S.A.M. directed research at their respective institutions; M.-C.B., L.T. and S.A.M. wrote the paper.

Corresponding authors

Correspondence to Lydia Teboul or Stephen A. Murray.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–6, Tables 2 and 3, and Note

Supplementary Table

Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Birling, MC., Yoshiki, A., Adams, D.J. et al. A resource of targeted mutant mouse lines for 5,061 genes. Nat Genet 53, 416–419 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing