Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

GENE REGULATION

Deciphering cis-regulatory grammar with deep learning

A new study builds a novel deep-learning approach to unravel the syntax of transcription-factor binding from high-resolution ChIP–nexus data. In silico simulations lead to experimental validation of complex sequence-based predictions: helical periodicity and directional cooperativity between transcription factors.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: BPNet simulations predict a soft TF-motif syntax in mouse embryonic stem cells.

References

  1. Lambert, S. A. et al. Cell 172, 650–665 (2018).

    CAS  Article  Google Scholar 

  2. Reiter, F., Wienerroither, S. & Stark, A. Curr. Opin. Genet. Dev. 43, 73–81 (2017).

    CAS  Article  Google Scholar 

  3. Lee, T. I. & Young, R. A. Cell 152, 1237–1251 (2013).

    CAS  Article  Google Scholar 

  4. Avsec, Ž. et al. Nat. Genet. https://doi.org/10.1038/s41588-021-00782-6 (2021).

  5. Gordân, R., Hartemink, A. J. & Bulyk, M. L. Genome Res. 19, 2090–2100 (2009).

    Article  Google Scholar 

  6. Starick, S. R. et al. Genome Res. 25, 825–835 (2015).

    CAS  Article  Google Scholar 

  7. Takahashi, K. & Yamanaka, S. Cell 126, 663–676 (2006).

    CAS  Article  Google Scholar 

  8. Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Nat. Biotechnol. 33, 831–838 (2015).

    CAS  Article  Google Scholar 

  9. Zhou, J. & Troyanskaya, O. G. Nat. Methods 12, 931–934 (2015).

    CAS  Article  Google Scholar 

  10. Kelley, D. R. et al. Genome Res. 28, 739–750 (2018).

    CAS  Article  Google Scholar 

  11. Shrikumar, A. et al. Preprint at https://arxiv.org/abs/1811.00416 (2018).

  12. Stormo, G. D. Methods Enzymol. 183, 211–221 (1990).

    CAS  Article  Google Scholar 

  13. Soufi, A. et al. Cell 161, 555–568 (2015).

    CAS  Article  Google Scholar 

  14. de Boer, C. G. et al. Nat. Biotechnol. 38, 56–65 (2020).

    Article  Google Scholar 

  15. ENCODE Project Consortium. Nature 489, 57–74 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew T. Weirauch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miraldi, E.R., Chen, X. & Weirauch, M.T. Deciphering cis-regulatory grammar with deep learning. Nat Genet 53, 266–268 (2021). https://doi.org/10.1038/s41588-021-00814-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-021-00814-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing