Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:


Deciphering cis-regulatory grammar with deep learning

A new study builds a novel deep-learning approach to unravel the syntax of transcription-factor binding from high-resolution ChIP–nexus data. In silico simulations lead to experimental validation of complex sequence-based predictions: helical periodicity and directional cooperativity between transcription factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BPNet simulations predict a soft TF-motif syntax in mouse embryonic stem cells.


  1. Lambert, S. A. et al. Cell 172, 650–665 (2018).

    Article  CAS  Google Scholar 

  2. Reiter, F., Wienerroither, S. & Stark, A. Curr. Opin. Genet. Dev. 43, 73–81 (2017).

    Article  CAS  Google Scholar 

  3. Lee, T. I. & Young, R. A. Cell 152, 1237–1251 (2013).

    Article  CAS  Google Scholar 

  4. Avsec, Ž. et al. Nat. Genet. (2021).

  5. Gordân, R., Hartemink, A. J. & Bulyk, M. L. Genome Res. 19, 2090–2100 (2009).

    Article  Google Scholar 

  6. Starick, S. R. et al. Genome Res. 25, 825–835 (2015).

    Article  CAS  Google Scholar 

  7. Takahashi, K. & Yamanaka, S. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  8. Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Nat. Biotechnol. 33, 831–838 (2015).

    Article  CAS  Google Scholar 

  9. Zhou, J. & Troyanskaya, O. G. Nat. Methods 12, 931–934 (2015).

    Article  CAS  Google Scholar 

  10. Kelley, D. R. et al. Genome Res. 28, 739–750 (2018).

    Article  CAS  Google Scholar 

  11. Shrikumar, A. et al. Preprint at (2018).

  12. Stormo, G. D. Methods Enzymol. 183, 211–221 (1990).

    Article  CAS  Google Scholar 

  13. Soufi, A. et al. Cell 161, 555–568 (2015).

    Article  CAS  Google Scholar 

  14. de Boer, C. G. et al. Nat. Biotechnol. 38, 56–65 (2020).

    Article  Google Scholar 

  15. ENCODE Project Consortium. Nature 489, 57–74 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Matthew T. Weirauch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miraldi, E.R., Chen, X. & Weirauch, M.T. Deciphering cis-regulatory grammar with deep learning. Nat Genet 53, 266–268 (2021).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research