Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

3D GENOMICS

Chromatin architecture is a flexible foundation for gene expression

The structure of chromatin is associated with its function, but precisely how is unclear. New data show that the higher-order architecture of the genome is similar among cell types with widely variant fates and gene expression patterns, thus challenging the view that chromatin domains determine function in the genome.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The emergence of chromatin domains.

References

  1. Sexton, T. et al. Cell 148, 458–472 (2012).

    Article  CAS  Google Scholar 

  2. Stadler, M. R., Haines, J. E. & Eisen, M. B. eLife 6, e29550 (2017).

    Article  Google Scholar 

  3. Espinola, S. M. et al. Nat. Genet. https://doi.org/10.1038/s41588-021-00816-z (2021).

  4. Ing-Simmons, E. et al. Nat. Genet. https://doi.org/10.1038/s41588-021-00799-x (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cattoni, D. I. et al. Nat. Commun. 8, 1753 (2017).

    Article  Google Scholar 

  6. Finn, E. H. et al. Cell 176, 1502–1515.e10 (2019).

    Article  CAS  Google Scholar 

  7. Novo, C. L. et al. Cell Rep. 22, 2615–2627 (2018).

    Article  CAS  Google Scholar 

  8. Chapski, D. J., Rosa-Garrido, M., Hua, N., Alber, F. & Vondriska, T. M. Front. Cardiovasc. Med. 5, 186 (2019).

    Article  Google Scholar 

  9. Chen, H. et al. Nat. Genet. 50, 1296–1303 (2018).

    Article  CAS  Google Scholar 

  10. Shi, G., Liu, L., Hyeon, C. & Thirumalai, D. Nat. Commun. 9, 3161 (2018).

    Article  Google Scholar 

  11. Bintu, B. et al. Science 362, eaau1783 (2018).

    Article  Google Scholar 

  12. Heinz, S. et al. Cell 174, 1522–1536.e22 (2018).

    Article  CAS  Google Scholar 

  13. Brandão, H. B. et al. Proc. Natl Acad. Sci. USA 116, 20489–20499 (2019).

    Article  Google Scholar 

  14. Misteli, T. Cell 183, 28–45 (2020).

    Article  CAS  Google Scholar 

  15. Finn, E. H. & Misteli, T. Science 365, eaaw9498 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tom Misteli or Elizabeth H. Finn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misteli, T., Finn, E.H. Chromatin architecture is a flexible foundation for gene expression. Nat Genet 53, 426–427 (2021). https://doi.org/10.1038/s41588-021-00813-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-021-00813-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing