Extended Data Fig. 10: Lung cancer evolutionary axes and their functional impact. | Nature Genetics

Extended Data Fig. 10: Lung cancer evolutionary axes and their functional impact.

From: Discovering functional evolutionary dependencies in human cancers

Extended Data Fig. 10

a) Oncoprint summarizing the alteration occurrences in TCGA lung cancer patients. Samples are sorted by the evolutionary axes and altered genes in each axis are shown separately. b) Number of TRACERx lung cancer patients with cancer genes functionally altered in the first clone (X axis) or in a subclone (Y axis), based on the trajectories inferred by the REVOLVER algorithm. c) Detailed gene essentiality scores in cell lines, based on the alteration status of PIK3CA and NFE2L2 upon knock-out of NFE2L2. Gene essentiality scores were taken from DRIVE (left, ndriver/driver = 6, ndriver/wt = 6, nwt/driver = 60, nwt/wt = 216) and DEMETER2 (right, ndriver/driver = 8, ndriver/wt = 11, nwt/driver = 108, nwt/wt = 374). Cell lines from lung cancer lineage are highlighted in red. d) Detailed representation of drug sensitivity values (EC50 concentrations, Y axis) to BRD-K34222889 for cancer cell lines from the KRAS-STK11-KEAP11 or NFE2L2-PIK3CA evolutionary axes (X axis, nKRAS+STK11+KEAP1 = 10, nKRAS_only = 87, nPIK3CA+NFE2L2 = 5, nPIK3CA_only = 68). Cell lines from lung cancer lineage are highlighted in blue. The thick central line of each box plot in all panels represents the median number of significant motifs, the bounding box corresponds to the 25th–75th percentiles and the whiskers extend up to 1.5 times the interquartile range.

Back to article page