Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chromatin interaction analyses elucidate the roles of PRC2-bound silencers in mouse development


Lineage-specific gene expression is modulated by a balance between transcriptional activation and repression during animal development. Knowledge about enhancer-centered transcriptional activation has advanced considerably, but silencers and their roles in normal development remain poorly understood. Here, we performed chromatin interaction analyses of Polycomb repressive complex 2 (PRC2), a key inducer of transcriptional gene silencing, to uncover silencers, their molecular identity and associated chromatin connectivity. Systematic analysis of cis-regulatory silencer elements reveals their chromatin features and gene-targeting specificity. Deletion of certain PRC2-bound silencers in mice results in transcriptional derepression of their interacting genes and pleiotropic developmental phenotypes, including embryonic lethality. While some PRC2-bound elements function as silencers in pluripotent cells, they can transition into active tissue-specific enhancers during development, highlighting their regulatory versatility. Our study characterizes the molecular profile of silencers and their associated chromatin architectures, and suggests the possibility of targeted reactivation of epigenetically silenced genes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: ChIA–PET analysis defines PRC2 interactome in mESCs.
Fig. 2: PRC2 mediates extensive chromatin looping in genes with low transcriptional activity.
Fig. 3: Intergenic anchors function as transcriptional silencers.
Fig. 4: Mice with PRC2-bound silencer deletion display pleiotropic developmental defects.
Fig. 5: Intergenic anchors exhibit a poised chromatin state and acquire enhancer signature during differentiation.

Data availability

All data described in this study have been deposited in NCBI’s Gene Expression Omnibus under accession GSE120393. Source data for Figs. 2–4 and Extended Data Fig. 8 are provided with the paper.

Code availability

For ChIA–PET Utilities, the code is available at For ChiaSigScaled, the code is available at


  1. 1.

    Young, R. A. Control of the embryonic stem cell state. Cell 144, 940–954 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Cook, P. R. A model for all genomes: the role of transcription factories. J. Mol. Biol. 395, 1–10 (2010).

    CAS  PubMed  Google Scholar 

  3. 3.

    Saurin, A. J. et al. The human Polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain. J. Cell Biol. 142, 887–898 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Zhang, Y. et al. Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504, 306–310 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Chakalova, L. & Fraser, P. Organization of transcription. Cold Spring Harb. Perspect. Biol. 2, a000729 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Maston, G. A., Evans, S. K. & Green, M. R. Transcriptional regulatory elements in the human genome. Annu. Rev. Genomics Hum. Genet. 7, 29–59 (2006).

    CAS  PubMed  Google Scholar 

  7. 7.

    Ogbourne, S. & Antalis, T. M. Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochem. J. 331, 1–14 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Feuerborn, A. & Cook, P. R. Why the activity of a gene depends on its neighbors. Trends Genet. 31, 483–490 (2015).

    CAS  PubMed  Google Scholar 

  9. 9.

    Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    CAS  PubMed  Google Scholar 

  10. 10.

    Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Chamberlain, S. J., Yee, D. & Magnuson, T. Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells 26, 1496–1505 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Pasini, D., Bracken, A. P., Hansen, J. B., Capillo, M. & Helin, K. The Polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell Biol. 27, 3769–3779 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Faust, C., Lawson, K. A., Schork, N. J., Thiel, B. & Magnuson, T. The Polycomb-group gene eed is required for normal morphogenetic movements during gastrulation in the mouse embryo. Development 125, 4495–4506 (1998).

    CAS  PubMed  Google Scholar 

  14. 14.

    O’Carroll, D. et al. The Polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell Biol. 21, 4330–4336 (2001).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E. & Helin, K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23, 4061–4071 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Tiwari, V. K. et al. PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol. 6, 2911–2927 (2008).

    CAS  PubMed  Google Scholar 

  17. 17.

    Ogiyama, Y., Schuettengruber, B., Papadopoulos, G. L., Chang, J. M. & Cavalli, G. Polycomb-dependent chromatin looping contributes to gene silencing during Drosophila development. Mol. Cell 71, 73–88 e5 (2018).

    CAS  PubMed  Google Scholar 

  18. 18.

    Bantignies, F. et al. Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144, 214–226 (2011).

    CAS  PubMed  Google Scholar 

  19. 19.

    Tiwari, V. K., Cope, L., McGarvey, K. M., Ohm, J. E. & Baylin, S. B. A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations. Genome Res. 18, 1171–1179 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Schoenfelder, S. et al. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat. Genet. 47, 1179–1186 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Denholtz, M. et al. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and Polycomb proteins in genome organization. Cell Stem Cell 13, 602–616 (2013).

    CAS  PubMed  Google Scholar 

  22. 22.

    Vieux-Rochas, M., Fabre, P. J., Leleu, M., Duboule, D. & Noordermeer, D. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc. Natl Acad. Sci. USA 112, 4672–4677 (2015).

    CAS  PubMed  Google Scholar 

  23. 23.

    Wani, A. H. et al. Chromatin topology is coupled to Polycomb group protein subnuclear organization. Nat. Commun. 7, 10291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Kundu, S. et al. Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation. Mol. Cell 65, 432–446 e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572 e24 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Tolhuis, B. et al. Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet. 7, e1001343 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Li, L. et al. Widespread rearrangement of 3D chromatin organization underlies Polycomb-mediated stress-induced silencing. Mol. Cell 58, 216–231 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Fullwood, M. J. et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462, 58–64 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Margueron, R. et al. Role of the Polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Oksuz, O. et al. Capturing the onset of PRC2-mediated repressive domain formation. Mol. Cell 70, 1149–1162 e5 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Cruz-Molina, S. et al. PRC2 facilitates the regulatory topology required for poised enhancer function during pluripotent stem cell differentiation. Cell Stem Cell 20, 689–705 e9 (2017).

    CAS  PubMed  Google Scholar 

  32. 32.

    Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    CAS  PubMed  Google Scholar 

  33. 33.

    Zentner, G. E., Tesar, P. J. & Scacheri, P. C. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res. 21, 1273–1283 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Shin, H. et al. TopDom: an efficient and deterministic method for identifying topological domains in genomes. Nucleic Acids Res. 44, e70 (2016).

    PubMed  Google Scholar 

  35. 35.

    Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Shen, X. et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 32, 491–502 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Brand, A. H., Breeden, L., Abraham, J., Sternglanz, R. & Nasmyth, K. Characterization of a “silencer” in yeast: a DNA sequence with properties opposite to those of a transcriptional enhancer. Cell 41, 41–48 (1985).

    CAS  PubMed  Google Scholar 

  38. 38.

    Gray, S. & Levine, M. Transcriptional repression in development. Curr. Opin. Cell Biol. 8, 358–364 (1996).

    CAS  PubMed  Google Scholar 

  39. 39.

    Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Meehan, T. F. et al. Disease model discovery from 3,328 gene knockouts by the international mouse phenotyping consortium. Nat. Genet. 49, 1231–1238 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Zerbino, D. R., Wilder, S. P., Johnson, N., Juettemann, T. & Flicek, P. R. The ensembl regulatory build. Genome Biol. 16, 56 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    CAS  PubMed  Google Scholar 

  44. 44.

    Gardiner-Garden, M. & Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261–282 (1987).

    CAS  PubMed  Google Scholar 

  45. 45.

    Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Ku, M. et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 4, e1000242 (2008).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L. A. VISTA Enhancer Browser–a database of tissue-specific human enhancers. Nucleic Acids Res. 35, D88–D92 (2007).

    CAS  PubMed  Google Scholar 

  48. 48.

    Arner, E. et al. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347, 1010–1014 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Google Scholar 

  50. 50.

    Guan, C., Ye, C., Yang, X. & Gao, J. A review of current large-scale mouse knockout efforts. Genesis 48, 73–85 (2010).

    CAS  PubMed  Google Scholar 

  51. 51.

    Lloyd, K. C. A knockout mouse resource for the biomedical research community. Ann. N. Y. Acad. Sci. 1245, 24–26 (2011).

    PubMed  Google Scholar 

  52. 52.

    Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554, 239–243 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Shim, S., Kwan, K. Y., Li, M., Lefebvre, V. & Sestan, N. Cis-regulatory control of corticospinal system development and evolution. Nature 486, 74–79 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Sur, I. K. et al. Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors. Science 338, 1360–1363 (2012).

    CAS  PubMed  Google Scholar 

  55. 55.

    Kazanets, A., Shorstova, T., Hilmi, K., Marques, M. & Witcher, M. Epigenetic silencing of tumor suppressor genes: paradigms, puzzles, and potential. Biochim. Biophys. Acta 1865, 275–288 (2016).

    CAS  PubMed  Google Scholar 

  56. 56.

    Crea, F., Paolicchi, E., Marquez, V. E. & Danesi, R. Polycomb genes and cancer: time for clinical application? Crit. Rev. Oncol. Hematol. 83, 184–193 (2012).

    PubMed  Google Scholar 

  57. 57.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Tang, Z. et al. CTCF-Mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163, 1611–1627 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Wang, W., Zhang, Y. & Wang, H. Generating mouse models using zygote electroporation of nucleases (ZEN) technology with high efficiency and throughput. Methods Mol. Biol. 1605, 219–230 (2017).

    CAS  PubMed  Google Scholar 

  60. 60.

    Tunster, S. J. Genetic sex determination of mice by simplex PCR. Biol. Sex Differ. 8, 31 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Kurbatova, N., Mason, J. C., Morgan, H., Meehan, T. F. & Karp, N. A. PhenStat: a tool kit for standardized analysis of high throughput phenotypic data. PLoS ONE 10, e0131274 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  63. 63.

    Li, G. et al. ChIA–PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol. 11, R22 (2010).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at (2013).

  66. 66.

    Paulsen, J., Rodland, E. A., Holden, L., Holden, M. & Hovig, E. A statistical model of ChIA–PET data for accurate detection of chromatin 3D interactions. Nucleic Acids Res. 42, e143 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Liu, T. Use model-based analysis of ChIP-Seq (MACS) to analyze short reads generated by sequencing protein–DNA interactions in embryonic stem cells. Methods Mol. Biol. 1150, 81–95 (2014).

    CAS  PubMed  Google Scholar 

  68. 68.

    Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  Google Scholar 

  70. 70.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Servant, N. et al. HiTC: exploration of high-throughput ‘C’ experiments. Bioinformatics 28, 2843–2844 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank R. Tewhey and C. Robinett for their feedback and comments on the manuscript, J. Denegre for coordinating mouse KO model generation and A. Lau for assistance with art images. Research reported in this publication was partially supported by the 4DN (grant no. U54 DK107967) and ENCODE (grant no. UM1 HG009409) consortia. C.-L.W. is supported by NIGMS (grant no. R01 GM127531-01A1). C.-L.W. and C.Y.N. are supported by NCI under award no. P30CA034196. A portion of this work was conducted with support from the US Department of Energy Joint Genome Institute by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231.

Author information




C.Y.N., C.H.W., H.T. and C.-L.W. designed the studies and wrote the manuscript. C.Y.N., C.C., J. Lin, J.C., J. Lim and M.L. performed wet lab experiments. C.H.W., H.T. and R.L.G. performed informatic analysis. C.H.W. led the development of the ChIA–PET data processing pipeline. W.W., B.U., H.H., V.P., S.A.M. and H.W. performed CRISPR–Cas9 knockout, phenotyping experiments and analysis. L.G. supported the validation experiments. All co-authors read and approved the manuscript.

Corresponding author

Correspondence to Chia-Lin Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Reproducibility of PRC2 ChIA-PET analysis.

a, Pearson correlation coefficient, r, between individual ChIA-PET replicates for EED (n=6), EZH2 (n=7), SUZ12 (n=11) and the combined PRC2 libraries between three subunits. See Supplementary Table 1 for sample details. b, PRC2 chromatin interactions and binding profile across chr4:139,536,779-140,286,920. Tracks from the top: BA interaction, PRC2 binding profiles and SA interactions. Y-axis: interaction frequency represented by PET counts. c. Distribution of interaction frequency among BA and SA interactions. Each box represents first quartile (bottom) and third quartile (top) with median in the middle. Whiskers represent data range defined as 1.5 times interquartile from median (Q2 ± 1.5*(Q3-Q1)).

Extended Data Fig. 2 Extensive chromatin interactions between DREs and PRC2 bound genes.

a, Examples of the multiple co-occurred chromatin looping patterns (P-P, P-G, P-I and intra-G interactions) in the Wnt6-Ihh (chr1:74,751,523-74,968,999) and Hoxb (chr11:96,161,617-96,425,610) regions are shown from EED (red), EZH2 (purple), SUZ12 (blue) and PRC2 (black) ChIA-PET libraries, respectively. b, Percentages of genes exhibit single, 2-type, 3-type and all 4-type of interactions. For example, among the 4,372 genes with P-P interactions, 14% of them have all 4-type of interactions (P-P, P-I, P-G and intra-G looping). c, Proposed model on how DREs can connect to their target genes and function as either enhancers or silencers by binding to RNAPII or PRC2.

Extended Data Fig. 3 Experimental validation of intergenic silencers in vivo.

a, Schematic overview of generating heterozygous founder mice strains and ES clones carrying deletion in the intergenic anchors by CRISPR/Cas9. b, Schematic description of genotype strategy and primer design used in screening of KO mice and derived ES clones.

Extended Data Fig. 4 Intergenic anchors deleted in the mouse KO strains by CRISPR-Cas9.

PRC2 interactions and binding profiles from 5 of the 6 KO regions (si-Δchr9 is shown in Fig. 3a). Selective genes connected by the KO regions through the PRC2 loops are labelled. Chromosome location (from top to bottom) are as follow; chr11:118,861,894-119,194,521, chr5:28,100,320-28,484,061, chr3:107,423,514-107,782,737, chr7:143,061,554-143,537,289 and chr2:18,568,747-19,024,016.

Extended Data Fig. 5 Validation of KO.

a, Genotype confirmation by Sanger sequencing of the PCR products for all six successfully generated KO clones. b, PCR genotyping of KO derived mES clones to confirm deletion (deleted region on chromosome 9) in si-Δchr9 derived F1 and G9 clones, in triplicate (only representative results are shown here) in two independent experiments.. Additional primer R26 was designed to confirm heteroallelic deletion. Panel on the right determination of the gender of the KO clones are XY while wild type ES line is XX (refers to Methods). c, Genotyping by PCR to confirm deletion (deleted region on chromosome 7) in si-Δchr7 derived mES D4 and F4 clones.

Extended Data Fig. 6 The loss of connectivity triggers genes reactivation.

a, Heatmap showing connectivity in previous study using Hi-C and current study using ChIA-PET. Example shown is chr1:36,282,810-192,258,731. b, Topological-associated domain analysis showed no difference in si-Δchr9, si-Δchr7 compared to wildtype. c, Loss of connecting loops in si-Δchr7 clones D4 and F4. Shown are chr7:142,557,623-14,3646,256 and zoom in region chr7:143,127,114-14,3550,277. d, Genes expression of connected of si-Δchr7 and non-connected genes from flanking 500kb and 1Mb regions. Only clone D4 is shown. n indicates number of genes in each category. See details in Supplementary Table 8B.

Extended Data Fig. 7 Upregulation of genes associated with si-Δchr7.

PRC2 interaction and binding profiles of the 1 Mb Igf2/Kcnq1 imprinting region. The si-Δchr7 (chr7:143,440,438-143,450,716) is marked in red. Three of the 10 genes with P-I interactions to this KO region located 15.5 Mb upstream. b, Normalized RNA-seq counts of the connected genes in wild type (+/+) (n=3) and 2 independent homozygous KO (-/-) ES clones D4 (n=3) and F4 (n=3). Gm44732 has no expression. N indicates number of biologically independent samples.

Extended Data Fig. 8 Upregulation of genes associated with si-Δchr9.

a, Venn diagram of differentially upregulated genes in si-Δchr9 clones F1 and G9. Differentially expressed genes in homozygous KO (-/-) ES clones G9 (n=3) compared with wild type (+/+) ESC (n=3) shown in volcano plot (p-value vs. fold change). Dysregulated genes found in both F1 and G9 (red), F1 only (orange) and G9 only (blue) are color labelled. Selected genes with the most striking upregulation are labelled. b, Circos plot shows the inter-chromosomal connectivity (iPET counts > 10) between the KO allele with the 29 upregulated gene loci. c, The distribution of interaction frequencies between the si-Δchr9 KO silencer locus and random background #1 (Left) or #2 (Right). TIFs between si-Δchr9 and the dysregulated genes are shown as red lines.

Source data

Extended Data Fig. 9 Histone profiles of PRC2 interaction anchors.

a, Enrichment fold of four histone modifications, RNAPII and CTCF binding over input across ±10Kb of promoter (P) and Gene (G)- anchor regions. b, Enrichment of H3K4me3 and ATAC-seq profile across ± 10 Kb of the promoter (P), gene (G) and intergenic (I) interaction anchors.

Extended Data Fig. 10 Features of intergenic anchors in developmental stages.

a, Heat maps H3K27me3, H3K27ac, H3K9me3 normalized signals of the 1,800 I-anchors through progressive developmental stages of kidney, limbs, hindbrain and liver. The color scales represented the fold enrichment of the ChIP vs input at log2 scale. b, Expression of eRNA in distal regulatory elements (DREs) and those overlapped with PRC2-bound silencers. Each box represents first quartile (bottom) and third quartile (top) with median in the middle. Whiskers represent data range defined as 1.5 times interquartile from median (Q2 ± 1.5*(Q3-Q1)). Points above whiskers represent outliers.

Supplementary information

Supplementary Information

Supplementary Tables 2, 6 and 11

Reporting Summary

Supplementary Tables

Supplementary Tables 1, 3–5, 7–10 and 12–14

Source data

Source Data Fig. 2

Statistical source data for Fig. 2c,d.

Source Data Fig. 3

Statistical source data for Fig. 3f.

Source Data Fig. 4

Statistical source data for Fig. 4f.

Source Data Extended Data Fig. 8

Statistical source data for Extended Data Fig. 8b.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ngan, C.Y., Wong, C.H., Tjong, H. et al. Chromatin interaction analyses elucidate the roles of PRC2-bound silencers in mouse development. Nat Genet 52, 264–272 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing