Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale association analyses identify host factors influencing human gut microbiome composition

Abstract

To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P < 5 × 10−8) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 × 10−20), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 × 10−10 < P < 5 × 10−8) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diversity of microbiome composition across the MiBioGen cohorts.
Fig. 2: Heritability of microbiome taxa and its concordance with mbQTL mapping.
Fig. 3: Manhattan plot of the mbTL mapping meta-analysis results.
Fig. 4: Association of the LCT locus (rs182549) with the genus Bifidobacterium.
Fig. 5: Phenome-wide association study domain enrichment analysis.
Fig. 6: Mendelian randomization analysis.

Similar content being viewed by others

Data availability

Full GWAS summary statistics for mbQTLs are available at www.mibiogen.org, built using the MOLGENIS framework80.

16S data availability:

BSPSPC and FOCUS data is available from the Sequence Read Archive (SRA) under accession PRJNA673102.

All CARDIA data, including 16S rRNA sequencing, cannot be made publicly available due to the confidentiality restrictions. The data can be requested from CARDIA Study Data Coordinating Center at the University of Alabama at Birmingham, following CARDIA Confidentiality Certification rules. The process for obtaining data through CARDIA is outlined at https://www.cardia.dopm.uab.edu/publications-2/publications-documents.

COPSAC data are available on SRA (PRJNA683912).

DanFunD data are not deposited on the public databases due to legal and ethical restrictions. Access to the data and biological material can be granted by the DanFunD steering committee (https://www.frederiksberghospital.dk/ckff/sektioner/SBE/danfund/Sider/How-to-collaborate.aspx).

FGFP data are available on the European Genome-Phenome Archive (EGA) under accession EGAS00001004420.

GEM data are available on the SRA (PRJEB14839).

Generation R and Rotterdam Study data cannot be made publicly available due to ethical and legal restrictions; these data are available upon request to the data manager of the Rotterdam Study (f.vanrooij@erasmusmc.nl) or of the Generation R Study (c.kruithof@erasmusmc.nl), subject to local rules and regulations.

HCHS/SOL data are available from the European Nucleotide Archive (ENA) under accession ERP117287.

KSCS data are available at the public repository, Clinical and Omics data archives in the Korea National Institute of Health under accession R000635.

LLD and MIBS data are available from EGA (EGAS00001001704 and EGAS0000100924).

METSIM data are available on the SRA (SRP097785).

NGRC data are available on the ENA (ERP016332).

The NTR has a data access committee that reviews data requests and will make data available to interested researchers. The data come from extended twin families and pedigree structures with twins, which create privacy concerns and thus cannot be shared on publicly available databases. Researchers may contact eco.de.geus@vu.nl for data requests.

PNP is available on the ENA (PRJEB11532).

POPCOL is available on the EGA (EGAS00001004869).

SHIP and SHIP-TREND data can be obtained from the SHIP data management unit via an online data access application form (https://www.fvcm.med.uni-greifswald.de/dd_service/data_use_intro.php).

TwinsUK data are available on the ENA under accession ERP015317.

Code availability

All code used in the study is available on the Consortium GitHub (https://github.com/alexa-kur/miQTL_cookbook) or on the websites of corresponding software packages.

References

  1. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19, 731–743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat. Genet. 48, 1407–1412 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, J. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48, 1396–1406 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Turpin, W. et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 48, 1413–1417 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Kurilshikov, A., Wijmenga, C., Fu, J. & Zhernakova, A. Host genetics and gut microbiome: challenges and perspectives. Trends Immunol. 38, 633–647(2017).

  11. Wang, J. et al. Meta-analysis of human genome–microbiome association studies: the MiBioGen consortium initiative. Microbiome 6, 101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sinha, R., Abnet, C. C., White, O., Knight, R. & Huttenhower, C. The microbiome quality control project: baseline study design and future directions. Genome Biol. 16, 276 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vandeputte, D., Tito, R. Y., Vanleeuwen, R., Falony, G. & Raes, J. Practical considerations for large-scale gut microbiome studies. FEMS Microbiol. Rev. 41, S154–S167 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cole, J. R. et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Louis, P., Young, P., Holtrop, G. & Flint, H. J. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol. 12, 304–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Westra, H.-J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wason, J. M. S. & Dudbridge, F. A general framework for two-stage analysis of genome-wide association studies and its application to case–control studies. Am. J. Hum. Genet. 90, 760–773 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. Preprint at bioRxiv https://doi.org/10.1101/447367 (2018).

  21. Zhernakova, D. V. et al. Individual variations in cardiovascular-disease-related protein levels are driven by genetics and gut microbiome. Nat. Genet. 50, 1524–1532 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blekhman, R. et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 16, 191 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kashyap, P. C. et al. Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. Proc. Natl Acad. Sci. USA 110, 17059–17064 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Crost, E. H. et al. Mechanistic insights into the cross-feeding of Ruminococcus gnavus and Ruminococcus bromii on host and dietary carbohydrates. Front. Microbiol. 9, 2558 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yoshii, K., Hosomi, K., Sawane, K. & Kunisawa, J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front. Nutr. 6, 48 (2019).

  27. Haas, M. E. et al. Genetic association of albuminuria with cardiometabolic disease and blood pressure. Am. J. Hum. Genet. 103, 461–473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rowley, C. A. & Kendall, M. M. To B12 or not to B12: five questions on the role of cobalamin in host–microbial interactions. PLoS Pathog. 15, e1007479 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xu, Y. et al. Cobalamin (vitamin B12) induced a shift in microbial composition and metabolic activity in an in vitro colon simulation. Front. Microbiol. 9, 2780 (2018).

  30. Gysemans, C. et al. Interferon regulatory factor-1 is a key transcription factor in murine beta cells under immune attack. Diabetologia 52, 2374–2384 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Nicklas, T. A. et al. Self-perceived lactose intolerance results in lower intakes of calcium and dairy foods and is associated with hypertension and diabetes in adults. Am. J. Clin. Nutr. 94, 191–198 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Shin, S.-Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 543–550 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Suhre, K. et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS ONE 5, e13953 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Koeth, R. A. et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coit, P. & Sawalha, A. H. The human microbiome in rheumatic autoimmune diseases: a comprehensive review. Clin. Immunol. 170, 70–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G. & Cryan, J. F. Serotonin, tryptophan metabolism and the brain–gut–microbiome axis. Behav. Brain Res. 277, 32–48 (2015).

    Article  PubMed  Google Scholar 

  42. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Wade, K. H. & Hall, L. J. Improving causality in microbiome research: can human genetic epidemiology help? Wellcome Open Res. 4, 199 (2019).

    Article  PubMed  Google Scholar 

  44. Brooks, J. P. et al. The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol. 15, 66 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Coluccia, E. et al. Congruency of genetic predisposition to lactase persistence and lactose breath test. Nutrients 11, 1383 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  46. Lapides, R. A. & Savaiano, D. A. Gender, age, race and lactose intolerance: is there evidence to support a differential symptom response? a scoping review. Nutrients 10, 1956 (2018).

  47. Valles-Colomer, M. et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4, 623–632 (2019).

  48. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl. Med. 10, eaap8914 (2018).

    Article  PubMed  Google Scholar 

  50. Ottosson, F. et al. Connection between BMI-related plasma metabolite profile and gut microbiota. J. Clin. Endocrinol. Metab. 103, 1491–1501 (2018).

    Article  PubMed  Google Scholar 

  51. Tun, H. M. et al. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring. JAMA Pediatr. 172, 368–377 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Finnicum, C. T. et al. Metataxonomic analysis of individuals at BMI extremes and monozygotic twins discordant for BMI. Twin Res. Hum. Genet. 21, 203–213 (2018).

    Article  PubMed  Google Scholar 

  53. Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jia, J. et al. Assessment of causal direction between gut microbiota-dependent metabolites and cardiometabolic health: a bidirectional Mendelian randomization analysis. Diabetes 68, 1747–1755 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Yang, Q., Lin, S. L., Kwok, M. K., Leung, G. M. & Schooling, C. M. The roles of 27 genera of human gut microbiota in ischemic heart disease, type 2 diabetes mellitus, and their risk factors: a Mendelian randomization study. Am. J. Epidemiol. 187, 1916–1922 (2018).

    Article  PubMed  Google Scholar 

  56. Rinninella, E. et al. What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet and diseases. Microorganisms 7, 14 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  57. Plichta, D. R., Graham, D. B., Subramanian, S. & Xavier, R. J. Therapeutic opportunities in inflammatory bowel disease: mechanistic dissection of host–microbiome relationships. Cell 178, 1041–1056 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tursi, A. et al. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am. J. Gastroenterol. 105, 2218–2227 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Scher, J. U. et al. The lung microbiota in early rheumatoid arthritis and autoimmunity. Microbiome 4, 60 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 1, 457–470 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44, 955–959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Carmi, S. et al. Sequencing an Ashkenazi reference panel supports population-targeted personal genomics and illuminates Jewish and European origins. Nat. Commun. 5, 4835 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Deelen, P. et al. Genotype harmonizer: automatic strand alignment and format conversion for genotype data integration. BMC Res. Notes 7, 901 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Cochran, W. G. The combination of estimates from different experiments. Biometrics 10, 101–129 (1954).

    Article  Google Scholar 

  70. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  PubMed  Google Scholar 

  72. Pers, T. H., Timshel, P. & Hirschhorn, J. N. SNPsnap: a Web-based tool for identification and annotation of matched SNPs. Bioinformatics 31, 418–420 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 46, 1985–1998 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Verbanck, M., Chen, C.-Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shim, H. et al. A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 caucasians. PLoS ONE 10, e0120758 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Swertz, M. A. et al. The MOLGENIS toolkit: rapid prototyping of biosoftware at the push of a button. BMC Bioinformatics 11, S12 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Information on cohort funding and acknowledgements is available in the Supplementary Note. We thank J. Senior and K. McIntyre for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.K., A.Z., R. Kraaijr, C.M.-G., L.F. and J.R. conceived and designed the study. A.K., C.M.-G., R.B., D.R. and J.W. were responsible for coordinating and performing meta-analysis. A.D., C.L.R., J.A.R.G., C.T.F., X.L., D.Z. and M.J.B. led the specific downstream analyses and should be considered as shared second authors. Specifically, A.D. performed the PheWAS analysis, C.L.R. and C.T.F. performed the heritability analysis in TwinsUK and NTR cohorts, respectively, and J.A.R.G performed the age-related analysis of the LCT locus. X.L. ran and interpreted the FUMA analysis, and D.Z. ran and interpreted the MR analysis. M.J.B. substantially contributed to the development of the analysis pipeline and protocols. R.K., J.R. and A.Z. jointly supervised the project. A.v.d.G., A.C., H.-J.W., Urmo V., M.J.B., S.S. and L.F. developed the pipeline for the meta-analysis and contributed to the methodology and statistical analysis. K.W. contributed to the PheWAS enrichment analysis. A.K., C.M.-G., R.B., D.R., J.W., A.D., C.L.R., J.A.R.G., C.T.F., X.L., D.Z., M.J.B., M.D.A., S.S., R. Kraaij, J.R. and A.Z. wrote the manuscript, with contributions from all authors. K.A.M., L.J.L. and M.F. collected and managed the CARDIA cohort. A.D.P., J.A.R.G., K.C., L.B. and W.T. collected and managed the GEM cohort. H.B., J.S., J.T., S.A.S. and S.J.S collected and managed the COPSAC study. D.B., O.P., T.H., T.J. and T.H.H. collected and managed the DanFunD study. D.A.H., G.F., J.R., J.W., K.H.W., M.J., N.J.T., R.Y.T., R.B. and S.V.-S. collected, genotyped and managed the FGFP study. C.M.-G., F.R., H.A.M., L.D. and V.W.V.J. collected and managed the Generation R study. H.-N.K., H.S. and H.-L.K. collected and managed the KSCS study. C.W., J.F., A.Z., L.F., S.S. and A.K. collected and managed the LLD cohort. A.J.L., E.O., K.L., M. Laaksok and M.B. collected and managed the METSIM cohort. A.A.M.M., D.M.A.E.J., D.K. and Z.M. collected and managed the MIBS-CO cohort. H.P. and Z.D.W. collected and managed the NGRC cohort. C.T.F., D.I.B., E.J.C.G., G.E.D., G.W. and R.G.I. collected and managed the NTR cohort. D. Rothschild, E.B., E.S. and O.W. collected and managed the PNP cohort. A.A., L.A., M.D.A., S. Walter and X.L. collected and managed the PopCol cohort. A.F., C.B., M.C.R., M. Laudes and W.L. collected and managed the BSPSPC and FOCUS cohorts. A.G.U., C.Mv.D, D. Radjabzadeh and R. Kraaij collected and managed the RS cohort data. F.F., F.U.W., G.H., H.V., M.M.L., S. Weiss and U. Völker collected and managed the SHIP and TREND cohorts. L.Y.M., Q.Q., R. Knight, R.C.K. and R.D.B collected and managed the SOL cohort. C.I.L.R, C.J.S., J.T.B., M.A.J. and T.D.S. collected and managed the TwinsUK cohort. A.A.V. and J.S.-T. contributed to the discussion. All authors approved the final manuscript.

Corresponding authors

Correspondence to Alexander Kurilshikov or Alexandra Zhernakova.

Ethics declarations

Competing interests

All authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4 and Supplementary Figs. 1–5

Reporting Summary

Supplementary Tables 1–16

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurilshikov, A., Medina-Gomez, C., Bacigalupe, R. et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet 53, 156–165 (2021). https://doi.org/10.1038/s41588-020-00763-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-020-00763-1

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology