Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals

A Publisher Correction to this article was published on 16 March 2021

This article has been updated

Abstract

Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10−8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design for single-variant discovery.
Fig. 2: New BP associations.
Fig. 3: Annotation of BP loci.
Fig. 4: Phenome-wide associations of the new BP loci.
Fig. 5: Causal association of BP with stroke and CAD.

Similar content being viewed by others

Data availability

Summary association results for all the traits are available to download from https://app.box.com/s/1ev9iakptips70k8t4cm8j347if0ef2u and from CHARGE dbGaP Summary (https://www.ncbi.nlm.nih.gov/gap/) under accession number phs000930.

Change history

References

  1. Forouzanfar, M. H. et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA 317, 165–182 (2017).

    PubMed  Google Scholar 

  2. Newton-Cheh, C. et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet. 41, 666–676 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cho, Y. S. et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 41, 527–534 (2009).

    CAS  PubMed  Google Scholar 

  4. Levy, D. et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41, 677–687 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kato, N. et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat. Genet. 43, 531–538 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wain, L. V. et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat. Genet. 43, 1005–1011 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. International Consortium for Blood Pressure Genome-Wide Association Studies. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    Google Scholar 

  8. Johnson, A. D. et al. Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension 57, 903–910 (2011).

    CAS  PubMed  Google Scholar 

  9. Johnson, T. et al. Blood pressure loci identified with a gene-centric array. Am. J. Hum. Genet. 89, 688–700 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tragante, V. et al. Gene-centric meta-analysis in 87,736 individuals of European ancestry identifies multiple blood-pressure-related loci. Am. J. Hum. Genet. 94, 349–360 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Simino, J. et al. Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen and ICBP Consortia. Am. J. Hum. Genet. 95, 24–38 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kato, N. et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat. Genet. 47, 1282–1293 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Surendran, P. et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet. 48, 1151–1161 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet. 48, 1162–1170 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ehret, G. B. et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat. Genet. 48, 1171–1184 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoffmann, T. J. et al. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat. Genet. 49, 54–64 (2017).

    CAS  PubMed  Google Scholar 

  17. Warren, H. R. et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat. Genet. 49, 403–415 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kraja, A. T. et al. New blood pressure-associated loci identified in meta-analyses of 475,000 individuals. Circ. Cardiovasc. Genet. 10, e001778 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wain, L. V. et al. Novel blood pressure locus and gene discovery using genome-wide association study and expression datasets from blood and the kidney. Hypertension 70, e4–e19 (2017).

  20. Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Giri, A. et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat. Genet. 51, 51–62 (2019).

    CAS  PubMed  Google Scholar 

  22. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–−82 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu, M. C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. Nature 542, 186–190 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, D. J. et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat. Genet. 49, 1758–1766 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Turcot, V. et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat. Genet. 50, 26–41 (2018).

    CAS  PubMed  Google Scholar 

  31. Finan, C. et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 9, eaag1166 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Foley, C. N. et al. A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits. Preprint at bioRxiv https://doi.org/10.1101/592238 (2019).

  33. Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. & Smoller, J. W. Pleiotropy in complex traits: challenges and strategies. Nat. Rev. Genet. 14, 483–495 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, X. et al. Molecular insights into genome-wide association studies of chronic kidney disease-defining traits. Nat. Commun. 9, 4800 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Rowland, J. et al. Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. Kidney Int. 95, 624–635 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Staley, J. R. et al. PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics 32, 3207–3209 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Vishram, J. K. et al. Impact of age on the importance of systolic and diastolic blood pressures for stroke risk: the MOnica, Risk, Genetics, Archiving and Monograph Project. Hypertension 60, 1117–1123 (2012).

    CAS  PubMed  Google Scholar 

  38. Messaoudi, S. et al. Endothelial Gata5 transcription factor regulates blood pressure. Nat. Commun. 6, 8835 (2015).

    CAS  PubMed  Google Scholar 

  39. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Z. et al. Phospholipase C beta3 deficiency leads to macrophage hypersensitivity to apoptotic induction and reduction of atherosclerosis in mice. J. Clin. Invest. 118, 195–204 (2008).

    CAS  PubMed  Google Scholar 

  41. Hoeppner, L. H. et al. Revealing the role of phospholipase Cβ3 in the regulation of VEGF-induced vascular permeability. Blood 120, 2167–2173 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, M. et al. SOS2 and ACP1 loci identified through large-scale exome chip analysis regulate kidney development and function. J. Am. Soc. Nephrol. 28, 981–994 (2017).

    CAS  PubMed  Google Scholar 

  43. Tidyman, W. E. & Rauen, K. A. Pathogenetics of the RASopathies. Hum. Mol. Genet. 25, R123–R132 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, J. H. et al. Functional role of the polymorphic 647 T/C variant of ENT1 (SLC29A1) and its association with alcohol withdrawal seizures. PLoS ONE 6, e16331 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Best, K. A., Bone, D. B., Vilas, G., Gros, R. & Hammond, J. R. Changes in aortic reactivity associated with the loss of equilibrative nucleoside transporter 1 (ENT1) in mice. PLoS ONE 13, e0207198 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Zaidi, S. et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498, 220–223 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jin, S. C. et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 49, 1593–1601 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nielsen, J. B. et al. Genome-wide study of atrial fibrillation identifies seven risk loci and highlights biological pathways and regulatory elements involved in cardiac development. Am. J. Hum. Genet. 102, 103–115 (2018).

    CAS  PubMed  Google Scholar 

  49. Zhu, X. et al. Meta-analysis of correlated traits via summary statistics from GWAS with an application in hypertension. Am. J. Hum. Genet. 96, 21–36 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Newton-Cheh, C. et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat. Genet. 41, 348–353 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tobin, M. D., Sheehan, N. A., Scurrah, K. J. & Burton, P. R. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat. Med. 24, 2911–2935 (2005).

    PubMed  Google Scholar 

  52. Mahajan, A. et al. Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus. PLoS Genet. 11, e1004876 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Grove, M. L. et al. Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium. PLoS ONE 8, e68095 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Fadista, J., Manning, A. K., Florez, J. C. & Groop, L. The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur. J. Hum. Genet. 24, 1202–1205 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. Flannick, J. et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature 570, 71–76 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mahajan, A. et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat. Genet. 50, 559–571 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. van der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122, 433–443 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. Burgess, S. et al. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur. J. Epidemiol. 30, 543–552 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pierce, B. L., Ahsan, H. & Vanderweele, T. J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 40, 740–752 (2011).

    PubMed  Google Scholar 

  65. Lawlor, D. A., Tilling, K. & Davey Smith, G. Triangulation in aetiological epidemiology. Int. J. Epidemiol. 45, 1866–1886 (2016).

    PubMed  Google Scholar 

  66. Sanderson, E., Davey Smith, G., Windmeijer, F. & Bowden, J. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int. J. Epidemiol. 48, 713–727 (2019).

    PubMed  Google Scholar 

  67. Di Angelantonio, E. et al. Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45,000 donors. Lancet 390, 2360–2371 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167, e19 (2016).

    Google Scholar 

  69. Day, N. et al. EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br. J. Cancer 80, 95–103 (1999).

    PubMed  Google Scholar 

  70. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. Iotchkova, V. et al. Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps. Nat. Genet. 48, 1303–1312 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Iotchkova, V. et al. GARFIELD classifies disease-relevant genomic features through integration of functional annotations with association signals. Nat. Genet. 51, 343–353 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P. Surendran is supported by a Rutherford Fund Fellowship from the Medical Research Council (grant no. MR/S003746/1). N.L. is supported by the Foundation “De Drie Lichten’ in the Netherlands and the Netherlands Cardiovascular Research Initiative, an initiative supported by the Dutch Heart Foundation (CVON2012-10 PREDICT and CVON2018-30 PREDICT2). S. Karthikeyan and B.P. are funded by a BHF Programme Grant (RG/18/13/33946). J.N.H. was supported by the Vanderbilt Molecular and Genetic Epidemiology of Cancer (MAGEC) Training Program (T32CA160056, PI X.-O.S.). N.F. is supported by the National Institute of Health awards HL140385, MD012765 and DK117445. E.Y.-D. was funded by the Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge Joint Research Grants Scheme. R.C. is funded by a Medical Research Council-Newton Project Grant to study genetic risk factors of cardiovascular disease among Southeast Asians and a UK Research and Innovation-Global Challenges Research Fund Project Grant (CAPABLE) to study risk factors of non-communicable diseases in Bangladesh. F.W.A. is supported by UCL Hospitals NIHR Biomedical Research Centre. P.D. was supported by the British Heart Foundation (BHF) grant RG/14/5/30893. R.J.F.L. is funded by grants R01DK110113, U01HG007417, R01DK101855 and R01DK107786. C.H. is supported by MRC University Unit Programme grants MC_UU_00007/10 (QTL in Health and Disease) and MC_PC_U127592696. M.I.M* was a Wellcome Senior Investigator (098381; 212259) and an NIHR Senior Investigator (NF-SI-0617-10090). The research was supported by the NIHR Oxford Biomedical Research Centre (BRC) and by the Wellcome Trust (090532, 106130, 098381, 203141 and 212259). The views expressed by C.Y., S.H., J.R. and G.J.P. are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the US Department of Health and Human Services. T.F.* is supported by the NIHR Biomedical Research Centre in Oxford. M.J. is supported by PrevMetSyn/SALVE, H2020 DynaHEALTH action (grant agreement 633595), EU H2020-HCO-2004 iHEALTH Action (grant agreement 643774). K.-H.H. is supported by PrevMetSyn/SALVE, H2020 DynaHEALTH action (grant agreement 633595) and EU H2020-HCO-2004 iHEALTH Action (grant agreement 643774). N.S. is supported by the British Heart Foundation Research Excellence Award (RE/18/6/34217). J.P. is supported by a UKRI Innovation Fellowship at Health Data Research UK. N.F. is supported by NIH awards R01-DK117445, R01-MD012765 and R21-HL140385. G.D.S., T.R.G. and C.L.R. work in the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, which is supported by the Medical Research Council (MC_UU_00011/1, 4 & 5). S.T. holds a Junior 1 Clinical Research Scholar award from the Fonds de Recherche du Québec-Santé (FRQS). M.T. is supported by the BHF (PG/17/35/33001 and PG/19/16/34270) and Kidney Research UK (RP_017_20180302). V.S.R. is supported in part by the Evans Medical Foundation and the Jay and Louis Coffman Endowment from the Department of Medicine, Boston University School of Medicine. J.D.* holds a British Heart Foundation Professorship and a National Institute for Health Research Senior Investigator Award. C.M.L.* is supported by the Li Ka Shing Foundation, WT-SSI/John Fell funds and by the NIHR Biomedical Research Centre, by Widenlife and the National Institutes of Health (5P50HD028138-27). J.M.M.H.* was funded by the NIHR (Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust). *The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. Full acknowledgements and full lists of consortia members are provided in the Supplementary Note.

Author information

Authors and Affiliations

Authors