Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels

Article metrics


Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Trans-ancestry GWAS meta-analysis identifies 183 loci associated with serum urate.
Fig. 2: A GRS for serum urate improves gout risk prediction.
Fig. 3: Serum urate shows widespread genetic correlations with cardiometabolic risk factors and diseases.
Fig. 4: Genes expressed in urate-associated loci are enriched in kidney tissue and pathways.
Fig. 5: Prioritization of p.Thr139Ile at HNF4A and functional study of HNF4A regulation of ABCG2 transcription.
Fig. 6: Colocalization of urate association signals with gene expression in cis in kidney tissues.

Data availability

Genome-wide summary statistics for this study are available at the CKDGen Consortium ( and will be made publicly available through the database of Genotypes and Phenotypes accession no. phs000930.v6.p1.


  1. 1.

    Kuo, C. F., Grainge, M. J., Zhang, W. & Doherty, M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 11, 649–662 (2015).

  2. 2.

    Li, X. et al. Serum uric acid levels and multiple health outcomes: umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ 357, j2376 (2017).

  3. 3.

    Jinno, S., Hasegawa, K., Neogi, T., Goto, T. & Dubreuil, M. Trends in emergency department visits and charges for gout in the United States between 2006 and 2012. J. Rheumatol. 43, 1589–1592 (2016).

  4. 4.

    Kuo, C. F., Grainge, M. J., Mallen, C., Zhang, W. & Doherty, M. Rising burden of gout in the UK but continuing suboptimal management: a nationwide population study. Ann. Rheum. Dis. 74, 661–667 (2015).

  5. 5.

    Mikuls, T. R., Farrar, J. T., Bilker, W. B., Fernandes, S. & Saag, K. G. Suboptimal physician adherence to quality indicators for the management of gout and asymptomatic hyperuricaemia: results from the UK General Practice Research Database (GPRD). Rheumatology (Oxford) 44, 1038–1042 (2005).

  6. 6.

    Yang, Q. et al. Genome-wide search for genes affecting serum uric acid levels: the Framingham Heart Study. Metabolism 54, 1435–1441 (2005).

  7. 7.

    Vitart, V. et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat. Genet. 40, 437–442 (2008).

  8. 8.

    Pilia, G. et al. Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet. 2, e132 (2006).

  9. 9.

    Wang, W. et al. Heritability and genome-wide association analyses of serum uric acid in middle and old-aged Chinese twins. Front. Endocrinol. (Lausanne) 9, 75 (2018).

  10. 10.

    MacCluer, J. W. et al. Heritability of measures of kidney disease among Zuni Indians: the Zuni Kidney Project. Am. J. Kidney Dis. 56, 289–302 (2010).

  11. 11.

    Rule, A. D. et al. Genome-wide linkage analysis for uric acid in families enriched for hypertension. Nephrol. Dial. Transplant. 24, 2414–2420 (2009).

  12. 12.

    Enomoto, A. et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417, 447–452 (2002).

  13. 13.

    Li, S. et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet 3, e194 (2007).

  14. 14.

    Döring, A. et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat. Genet. 40, 430–436 (2008).

  15. 15.

    Dehghan, A. et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372, 1953–1961 (2008).

  16. 16.

    Kolz, M. et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 5, e1000504 (2009).

  17. 17.

    Yang, Q. et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ. Cardiovasc. Genet. 3, 523–530 (2010).

  18. 18.

    Tin, A. et al. Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Hum. Mol. Genet. 20, 4056–4068 (2011).

  19. 19.

    Woodward, O. M. et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl Acad. Sci. USA 106, 10338–10342 (2009).

  20. 20.

    Major, T. J., Dalbeth, N., Stahl, E. A. & Merriman, T. R. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 14, 341–353 (2018).

  21. 21.

    Köttgen, A. et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45, 145–154 (2013).

  22. 22.

    Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50, 390–400 (2018).

  23. 23.

    Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018).

  24. 24.

    Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

  25. 25.

    Kamatani, Y. et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat. Genet. 42, 210–215 (2010).

  26. 26.

    Okada, Y. et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat. Genet. 44, 904–909 (2012).

  27. 27.

    Merriman, T. R. Population heterogeneity in the genetic control of serum urate. Semin. Nephrol. 31, 420–425 (2011).

  28. 28.

    Roddy, E. & Choi, H. K. Epidemiology of gout. Rheum. Dis. Clin. North Am. 40, 155–175 (2014).

  29. 29.

    Phipps-Green, A.J. et al. Twenty-eight loci that influence serum urate levels: analysis of association with gout. Ann. Rheum. Dis. 75, 124–130 (2016).

  30. 30.

    George, R.L. & Keenan, R.T. Genetics of hyperuricemia and gout: implications for the present and future. Curr. Rheumatol. Rep. 15, 309 (2013).

  31. 31.

    Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

  32. 32.

    Feig, D. I., Kang, D. H. & Johnson, R. J. Uric acid and cardiovascular risk. N. Engl. J. Med. 359, 1811–1821 (2008).

  33. 33.

    Keenan, T. et al. Causal assessment of serum urate levels in cardiometabolic diseases through a Mendelian randomization study. J. Am. Coll. Cardiol. 67, 407–416 (2016).

  34. 34.

    Jordan, D. M. et al. No causal effects of serum urate levels on the risk of chronic kidney disease: a Mendelian randomization study. PLoS Med. 16, e1002725 (2019).

  35. 35.

    Lyngdoh, T. et al. Serum uric acid and adiposity: deciphering causality using a bidirectional Mendelian randomization approach. PLoS ONE 7, e39321 (2012).

  36. 36.

    White, J. et al. Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis. Lancet Diabetes Endocrinol. 4, 327–336 (2016).

  37. 37.

    Benner, C. et al. Prospects of fine-mapping trait-associated genomic regions by using summary statistics from genome-wide association studies. Am. J. Hum. Genet. 101, 539–551 (2017).

  38. 38.

    Wakefield, J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007).

  39. 39.

    Gaulton, K. J. et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat. Genet. 47, 1415–1425 (2015).

  40. 40.

    Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

  41. 41.

    Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

  42. 42.

    Pao, S. S., Paulsen, I. T. & Saier, M. H. Jr. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34 (1998).

  43. 43.

    Asano, T. et al. The role of N-glycosylation of GLUT1 for glucose transport activity. J. Biol. Chem. 266, 24632–24636 (1991).

  44. 44.

    Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

  45. 45.

    Prestin, K. et al. Regulation of PDZ domain-containing 1 (PDZK1) expression by hepatocyte nuclear factor-1α (HNF1α) in human kidney. Am. J. Physiol. Renal Physiol. 313, F973–F983 (2017).

  46. 46.

    Maher, J. M. et al. Alterations in transporter expression in liver, kidney, and duodenum after targeted disruption of the transcription factor HNF1α. Biochem. Pharmacol. 72, 512–522 (2006).

  47. 47.

    Sulem, P. et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat. Genet. 43, 1127–1130 (2011).

  48. 48.

    Togawa, N., Miyaji, T., Izawa, S., Omote, H. & Moriyama, Y. A Na+-phosphate cotransporter homologue (SLC17A4 protein) is an intestinal organic anion exporter. Am. J. Physiol. Cell Physiol. 302, C1652–C1660 (2012).

  49. 49.

    Kirby, A. et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 45, 299–303 (2013).

  50. 50.

    Kraus, M. R. et al. Two mutations in human BICC1 resulting in Wnt pathway hyperactivity associated with cystic renal dysplasia. Hum. Mutat. 33, 86–90 (2012).

  51. 51.

    Hart, T. C. et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J. Med. Genet. 39, 882–892 (2002).

  52. 52.

    Sodini, S. M., Kemper, K. E., Wray, N. R. & Trzaskowski, M. Comparison of genotypic and phenotypic correlations: Cheverud’s conjecture in humans. Genetics 209, 941–948 (2018).

  53. 53.

    Lindgren, D. et al. Cell-type-specific gene programs of the normal human nephron define kidney cancer subtypes. Cell Rep. 20, 1476–1489 (2017).

  54. 54.

    Prestin, K. et al. Transcriptional regulation of urate transportosome member SLC2A9 by nuclear receptor HNF4α. Am. J. Physiol. Renal Physiol. 307, F1041–F1051 (2014).

  55. 55.

    Ketharnathan, S. et al. A non-coding genetic variant maximally associated with serum urate levels is functionally linked to HNF4A-dependent PDZK1 expression. Hum. Mol. Genet. 27, 3964–3973 (2018).

  56. 56.

    Marable, S. S., Chung, E., Adam, M., Potter, S. S. & Park, J. S. Hnf4a deletion in the mouse kidney phenocopies Fanconi renotubular syndrome. JCI Insight 3, 97497 (2018).

  57. 57.

    Matsuo, H. et al. ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Sci. Rep. 4, 3755 (2014).

  58. 58.

    Daigo, K. et al. Proteomic analysis of native hepatocyte nuclear factor-4α (HNF4α) isoforms, phosphorylation status, and interactive cofactors. J. Biol. Chem. 286, 674–686 (2011).

  59. 59.

    Chandra, V. et al. Multidomain integration in the structure of the HNF-4α nuclear receptor complex. Nature 495, 394–398 (2013).

  60. 60.

    Zhu, Q. et al. T130I mutation in HNF-4α gene is a loss-of-function mutation in hepatocytes and is associated with late-onset Type 2 diabetes mellitus in Japanese subjects. Diabetologia 46, 567–573 (2003).

  61. 61.

    Heinz, L. X. et al. The death domain-containing protein Unc5CL is a novel MyD88-independent activator of the pro-inflammatory IRAK signaling cascade. Cell Death Differ. 19, 722–731 (2012).

  62. 62.

    Saxena, R. et al. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. Am. J. Hum. Genet. 90, 410–425 (2012).

  63. 63.

    Kooner, J. S. et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet. 43, 984–989 (2011).

  64. 64.

    Van Gennip, A. H., Van Bree-Blom, E. J., Grift, J., DeBree, P. K. & Wadman, S. K. Urinary purines and pyrimidines in patients with hyperammonemia of various origins. Clin. Chim. Acta 104, 227–239 (1980).

  65. 65.

    Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7, 10023 (2016).

  66. 66.

    van Meurs, J. B. et al. Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. Am. J. Clin. Nutr. 98, 668–676 (2013).

  67. 67.

    Raffler, J. et al. Genome-wide association study with targeted and non-targeted NMR metabolomics identifies 15 novel loci of urinary human metabolic individuality. PLoS Genet. 11, e1005487 (2015).

  68. 68.

    Beer, N. L. et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum. Mol. Genet. 18, 4081–4088 (2009).

  69. 69.

    McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

  70. 70.

    Abecasis, G. R. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

  71. 71.

    Fuchsberger, C., Taliun, D., Pramstaller, P. P. & Pattaro, C. GWAtoolbox: an R package for fast quality control and handling of genome-wide association studies meta-analysis data. Bioinformatics 28, 444–445 (2012).

  72. 72.

    Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499–511 (2010).

  73. 73.

    Haller, T., Kals, M., Esko, T., Mägi, R. & Fischer, K. RegScan: a GWAS tool for quick estimation of allele effects on continuous traits and their combinations. Brief. Bioinform. 16, 39–44 (2015).

  74. 74.

    Zhan, X., Hu, Y., Li, B., Abecasis, G. R. & Liu, D. J. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics 32, 1423–1426 (2016).

  75. 75.

    Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

  76. 76.

    Aulchenko, Y. S., Struchalin, M. V. & van Duijn, C. M. ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 11, 134 (2010).

  77. 77.

    Chen, M. H. & Yang, Q. GWAF: an R package for genome-wide association analyses with family data. Bioinformatics 26, 580–581 (2010).

  78. 78.

    Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).

  79. 79.

    Li, Y., Willer, C. J., Ding, J., Scheet, P. & Abecasis, G. R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).

  80. 80.

    Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

  81. 81.

    Devlin, B., Roeder, K. & Wasserman, L. Genomic control, a new approach to genetic-based association studies. Theor. Popul. Biol. 60, 155–166 (2001).

  82. 82.

    Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).

  83. 83.

    Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

  84. 84.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).

  85. 85.

    Pattaro, C. et al. The Cooperative Health Research in South Tyrol (CHRIS) study: rationale, objectives, and preliminary results. J. Transl. Med. 13, 348 (2015).

  86. 86.

    Noce, D. et al. Sequential recruitment of study participants may inflate genetic heritability estimates. Hum. Genet. 136, 743–757 (2017).

  87. 87.

    Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).

  88. 88.

    Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

  89. 89.

    Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

  90. 90.

    Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).

  91. 91.

    O’Connor, L. J. & Price, A. L. Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nat. Genet. 50, 1728–1734 (2018).

  92. 92.

    Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

  93. 93.

    Frey, B. J. & Dueck, D. Clustering by passing messages between data points. Science 315, 972–976 (2007).

  94. 94.

    Bodenhofer, U., Kothmeier, A. & Hochreiter, S. APCluster: an R package for affinity propagation clustering. Bioinformatics 27, 2463–2464 (2011).

  95. 95.

    Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019).

  96. 96.

    Sheffield, N. C. et al. Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range interactions. Genome Res. 23, 777–788 (2013).

  97. 97.

    Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

  98. 98.

    Arnold, M., Raffler, J., Pfeufer, A., Suhre, K. & Kastenmüller, G. SNiPA: an interactive, genetic variant-centered annotation browser. Bioinformatics 31, 1334–1336 (2015).

  99. 99.

    Dong, C. et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 24, 2125–2137 (2015).

  100. 100.

    Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

  101. 101.

    Li, J. et al. Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res. 46, 7793–7804 (2018).

  102. 102.

    Gillies, C. E. et al. An eQTL landscape of kidney tissue in human nephrotic syndrome. Am. J. Hum. Genet. 103, 232–244 (2018).

  103. 103.

    Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

  104. 104.

    Ko, Y. A. et al. Genetic-variation-driven gene-expression changes highlight genes with important functions for kidney disease. Am. J. Hum. Genet. 100, 940–953 (2017).

  105. 105.

    Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D1284 (2018).

  106. 106.

    Sandelin, A., Alkema, W., Engström, P., Wasserman, W. W. & Lenhard, B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 32, D91–D94 (2004).

  107. 107.

    Xie, Y. et al. Functional cyclic AMP response element in the breast cancer resistance protein (BCRP/ABCG2) promoter modulates epidermal growth factor receptor pathway- or androgen withdrawal-mediated BCRP/ABCG2 transcription in human cancer cells. Biochim. Biophys. Acta 1849, 317–327 (2015).

  108. 108.

    Lee, C. & Huang, C. H. LASAGNA-Search 2.0: integrated transcription factor binding site search and visualization in a browser. Bioinformatics 30, 1923–1925 (2014).

  109. 109.

    Vesuna, F., Winnard, P. Jr. & Raman, V. Enhanced green fluorescent protein as an alternative control reporter to Renilla luciferase. Anal. Biochem. 342, 345–347 (2005).

Download references


We thank D. Di Domizio (Eurac Research) and J. Knaus (University of Freiburg) for IT assistance, and T. Johnson (GlaxoSmithKline) for sharing his code and for the discussion about fine-mapping a credible set and the colocalization analysis. This research was conducted using the UKBB Resource (application no. 20272). Study-specific acknowledgements and funding sources are listed in the Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute, the National Institutes of Health (NIH) or the US Department of Health and Human Services.

Author information

A.Tin, J.M., V.L.H.K., Y.L., M.Wuttke, H.K., K.B.S., C.Q., M.Gorski, M.Scholz, A.M.H., A.Teumer, C.P., O.M.W., V.V. and A.Köttgen wrote the manuscript. A.Tin, J.M., M.Wuttke, M.Gorski, C.F., A.Teumer, C.P., O.M.W., V.V. and A.Köttgen designed the study. A.S.B., A.M.H., A.Teumer, A.P., A.P.J.D.V., A.B.Z., A.D.G., A.Metspalu, A.A.H., A.Tönjes, A.Köttgen, A.P., A.Krajčoviechová, A.R., A.C., B.Ponte, B.K.K., B.J., B.W.J.H.P., B.M.P., C.H., C.A.B., C.N.S., C.G., C.J.O.D., C.M.V.D., C.P., D.T., D.C., D.M., E.B., E.I., F.K., G.S., G.E., G.W., G.B., G.N.N., G.W.M., H.S., H.Schmidt, I.R., J.M.G., J.F.W., J.G.W., J.S.K., J.O.C., J.Thiery, J.Tremblay, J.B.W., J.C.C., J.C., K.-U.E., K.L.M., K.Stefansson, K.Ho, K.M., K.Strauch, M.A.I., M.E.K., M.C., M.P., M.L., M.Scholz, M.H.D.B., M.Waldenberger, M.Stumvoll, M.K.E., M.K., M. Kähönen, M.B., M.R., N.G.M., O.D., O.T.R., O.P., P.G., P.P.P., P.V., P.V.D.H., Q.Y., R.C., R.Rettig, R.S., R.D.M., R.J.C., R.T.G., R.J.F.L., S.A.P., S.H.W., S.J.L.B., T.B.H., T.L., T.Perls, T.J.R., U.V., V.Giedraitis, V.Gudnason, W.Z., W.Kiess, W.M., W.Koenig, Y. L. and Y.M. managed an individual contributing study. A.S.B., A.M.H., A.Tin, A.P., A.P.J.D.V., A.B.Z., A.V.S., A.Teumer, A.G.U., A.Tönjes, A.Köttgen, A.P., A.H., A.Körner, A.Krajčoviechová, A.R., A.Mahajan, A.Y.C., A.G., B.K.K., B.J., B.N., B.Prins, B.W.J.H.P., B.K., B.M.P., C.H., C.A.B., C.N.S., C.Q., C.M., C.F., C.G., C.J.O.D., C.P., D.F.G., D.R., D.M., D.O.M.-K., E.I., E.P.B., E.Catamo, F.K., G.S., G.B., G.G., G.N.N., G.D., G.W.M., H.S., H.C., H.J., H.H., I.R., I.M.N., I.J., I.M.H., J.F.W., J.G.W., J.J., J.Tremblay, J.B.W., J.M., J.C., K.-U.E., K.L.M., K.E., K.B.S., K.Susztak, K.M.R., K.Ho, K.N., K.Strauch, L.M.R., L.-P.L., L.A.L., L.J.O.C., M.L., M.E.K., M.Ciullo, M.L., M.Scholz, M.H.D.B., M.La Bianca, M.M.-N., M.L.Biggs, M.Gorski, M.N., M.Wuttke, M.Waldenberger, M.H.P., M.K.E., M.Kähönen, M.A.N., M.R., N.G.M., N.V., N.H.-K., N.B., O.D., O.T.R., O.D.W., O.P., P.S., P.H., P.K.J., P.V.D.H., Q.Y., R.C., R.Rettig, R.M.L., R.N., R.D.M., R.J.F.L., S.G., S.C.F., S.M.T., S.S., S.A.P., S.H.W., S.D.G., S.-J.H., S.M.K., S.J.L.B., T.B.H., T.N., T.L., T.S.B., T.M., T.L.E., T.J.R., U.T., U.V., V.V., W.H., W.M., W.Koenig, Y.L. and Z.Y. critically reviewed the manuscript. A.V.S., A.Teumer, A. Tin, A.Köttgen, A.H., A.Mahajan, A.Y.C., A.D., A.G., B.J., B.N., B.Prins, B.K., C.A.B., C.N.S., C.Q., C.H.L.T., C.F., C.P., D.N., D.F.G., E.H., E.S., F.R., G.S., G.B., G.D., H.K., I.M.N., I.M.H., J.J., J.Tremblay, J.M., J.L., K.B.S., K.Susztak, K.A.R., K.Horn, K.M.R., L.M.R., L.-P.L., L.A.L., M.L., M.Brumat, M.E.K., M.P.C., M.Scholz, M.Gögele, M.L.Biggs, M.Kanai, M.A., M.Cocca, M.Gorski, M.N., M.Wuttke, M.H.P., M.A.N., M.R., N.S.J., N.P., N.V., N.M., P.P.M., P.H., P.J.V.D.M., P.K.J., P.V.D.H., Q.Y., R.N., R.Rueedi, R.J.C., S.G., S.M.T., S.S., S.A.P., S.-J.H., T.C., T.N., T.S.B., T.L.E., T.H., V.V., W.Z., W.M., Y.S., Y.X., Y.K., Y.L. and Y.O. carried out the statistical methods and analysis. A.P.J.D.V., A.B.Z., A.Teren, A.Metspalu, A.Tönjes, A.K., A.C., B.Ponte, B.J., B.H.S., B.W.J.H.P., C.A.B., C.M., C.P., D.R., D.C., D.J.P., E.P.B., F.K., G.W., H.C., H.J., I.R., I.O., J.F.W., J.G.W., J.S.K., J.Ä., J.Tremblay, J.B.W., J.C.C., K.D., K.N., K.M., M.Ciullo, M.K.E., M.K., M.Kähönen, M.R., N.G.M., N.H.-K., O.T.R., O.P., P.S., P.V., R.S., R.D.M., R.T.G., S.A., S.P., S.A.P., S.H.W., S.V., T.Poulain, T.L., T.J.R., V.Gudnason, W.H. and W.M. recruited the participants. A.V.S., A.K., A.H., A.Y.C., A.G., B.L., B.Prins, C.A.B., C.N.S., C.Q., C.M.S., D.B., D.O.M.-K., E.H., E.Campana, E.S., F.R., G.E., G.P., H.K., I.M.H., J.F.W., J.J., J.Tremblay, J.M., K.L.M., K.B.S., K.Susztak, K.Horn, L.-P.L., M.L., M.E.K., M.P.C., M.Scholz, M.Cocca, M.Gorski, M.Wuttke, M.H.P., N.S.J., N.P., P.P.M., P.H., P.J.V.D.M., R.N., R.M., R.Rueedi, R.J.C., S.G., S.S., S.A.P., S.D.G., S.B., T.C., T.N., W.Z., W.M., Y.S., Y.X., Y.L., Y. M. and Z.Y. carried out the bioinformatics analysis. A.Tin, A.Teumer, A.G.U., A.K., A.G., B.J., C.A.B., C.N.S., C.Q., C.G., C.J.O.D., C.P., H.J., H.K., I.M.H., J.Tremblay, J.M., K.L.M., K.E., K.B.S., K.D., K.Susztak, K.Horn, K.Ho, L.J.O.C., M.L., M.Scholz, M.Gorski, M.Wuttke, M.R., N.V., O.M.W., P.H, P.V.D.H., S.G., S.S., S.A.P., S.-J.H., V.V., V.L.H.K., W.H., W.Koenig, Y.X. and Y.L. interpreted the results. A.B.Z., A.Teumer, A.G.U., A.Köttgen, A.C., A.D., B.H.S., B.W.J.H.P., C.H., C.A.B., C.N.S., C.F., C.M.V.D., D.B., D.R., D.T., D.J.P., D.O.M.-K., E.I., E.S., F.R., F.K., G.E., G.W.M., H.C., J.F.W., J.G.W., J.S.K., J.Ä., J.Tremblay, J.C.C., K.L.M., L.-P.L., L.A.L., M.E.K., M.Waldenberger, M.H.P., M.K.E., M.K., M.Kähönen, M.A.N., N.A., N.M., O.T.R., P.S., P.H., P.K., P.V.D.H., R.B., R.T.G., S.M.T., S.P., S.D.G., S.V., T.L., T.M., U.V., W.H., W.M., W.Koenig, and Y.M. carried out the genotyping. V.H.K., R.L. and O.M.W. carried out the functional study.

Correspondence to Adrienne Tin or Anna Köttgen.

Ethics declarations

Competing interests

D.O.M.-K. works as a part-time clinical research consultant for METABOLON. B.W.J.H.P. has received research funding (unrelated to the work reported in this article) from Jansen Research and Boehringer Ingelheim. K.B.S is full-time employee of GlaxoSmithKline. G.S., D.F.G., I.J., H.H., P.S., U.T. and K.Stefansson are full time employees of deCODE genetics and Amgen. A.Y.C. is an employee of Merck & Co. W.Koenig received modest consultation fees for advisory board meetings from Amgen, DalCor Pharmaceuticals, Kowa, Novartis, Pfizer and Sanofi, and modest personal fees for lectures from Amgen, AstraZeneca, Novartis, Pfizer and Sanofi. D.C. is scientific consultant for Bio4Dreams. W.M. is employed by Synlab Services GmbH and holds shares of Synlab Holding Deutschland GmbH. M.A.N.’s participation in this project is supported by a consulting contract between Data Tecnica International, the National Institute on Aging and NIH, and consults or has consulted during this time for Lysosomal Therapeutics, Neuron23, Illumina, the Michael J. Fox Foundation and the University of California Healthcare. O.P. is an owner of Gen-info. K.Ho has disclosed a research and financial relationship with Sanofi Genzyme. B.M.P. serves on the Data and Safety Monitoring Board of a clinical trial funded by the manufacturer (Zoll Lifecor) and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. A.S.B. received grants from MSD, Pfizer, Novartis, Biogen and Bioverativ and personal fees from Novartis. F.R. is a scientific consultant for ePhood. M.Scholz consults for and received grant support not related to this project from Merck Serono. A.Köttgen received grant support not related to this project from Grünenthal. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note and Figs. 1–8

Reporting Summary

Supplementary Dataset

Regional association plots of 183 genome‐wide significant loci from trans‐ethnic meta‐analysis.

Supplementary Tables

Supplementary Tables 1–22

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark