Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Release of paused RNA polymerase II at specific loci favors DNA double-strand-break formation and promotes cancer translocations


It is not clear how spontaneous DNA double-strand breaks (DSBs) form and are processed in normal cells, and whether they predispose to cancer-associated translocations. We show that DSBs in normal mammary cells form upon release of paused RNA polymerase II (Pol II) at promoters, 5′ splice sites and active enhancers, and are processed by end-joining in the absence of a canonical DNA-damage response. Logistic and causal-association models showed that Pol II pausing at long genes is the main predictor and determinant of DSBs. Damaged introns with paused Pol II-pS5, TOP2B and XRCC4 are enriched in translocation breakpoints, and map at topologically associating domain boundary-flanking regions showing high interaction frequencies with distal loci. Thus, in unperturbed growth conditions, release of paused Pol II at specific loci and chromatin territories favors DSB formation, leading to chromosomal translocations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Genome-wide mapping of digested AsiSI sites and endogenous DSBs in diploid mammary epithelial cells.
Fig. 2: Pol II-pS5 accumulates at fragile promoters.
Fig. 3: Effect of etoposide (Eto) treatment on TOP2B ChIP-seq signals, and ChIP-seq signals of Pol II-pS5 and DNA-repair factors around the TSSs of fragile and control promoters.
Fig. 4: Pol II-pS5, topoisomerases and DNA-repair factors at fragile and control promoters from different transcription classes, and effect of etoposide treatment on gene expression.
Fig. 5: In situ localization of TOP2B-XRCC4 interaction sites, and length of genes with fragile or control promoters.
Fig. 6: Mechanisms of endogenous DSB formation/processing, and effect of DRB administration and washout on Pol II-pS5 and XRCC4 ChIP-seq signals at fragile and control promoters.
Fig. 7: Characterization of fragile and control enhancers.
Fig. 8: Characterization of the damaged introns associated with translocation breakpoints.

Data availability

Raw and processed data are available under accession number GSE93040. Previously published data used in this work are: GRO-seq: E-MTAB-742; γH2AX ChIP-seq data of 4-OHT-treated cells (t = 2 h, replicate no. 1 in Supplementary Fig. 2a) are available under accession number GSE71447.


  1. 1.

    Aguilera, A. & Garcia-Muse, T. Causes of genome instability. Annu. Rev. Genet. 47, 1–32 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Kim, N. & Jinks-Robertson, S. Transcription as a source of genome instability. Nat. Rev. Genet. 13, 204–214 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Di Leonardo, A., Linke, S. P., Clarkin, K. & Wahl, G. M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540–2551 (1994).

    Article  Google Scholar 

  4. 4.

    Ishizaka, Y., Chernov, M. V., Burns, C. M. & Stark, G. R. p53-dependent growth arrest of REF52 cells containing newly amplified DNA. Proc. Natl Acad. Sci. USA 92, 3224–3228 (1995).

    CAS  Article  Google Scholar 

  5. 5.

    Huang, L. C., Clarkin, K. C. & Wahl, G. M. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc. Natl Acad. Sci. USA 93, 4827–4832 (1996).

    CAS  Article  Google Scholar 

  6. 6.

    Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Genet. 27, 247–254 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    Aparicio, T., Baer, R. & Gautier, J. DNA double-strand break repair pathway choice and cancer. DNA Repair (Amst.) 19, 169–175 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell Biol. 14, 8096–8106 (1994).

    CAS  Article  Google Scholar 

  9. 9.

    Iacovoni, J. S. et al. High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO J. 29, 1446–1457 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. & Greenberg, R. A. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141, 970–981 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Berkovich, E., Monnat, R. J. Jr. & Kastan, M. B. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat. Cell Biol. 9, 683–690 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    van Sluis, M. & McStay, B. A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage. Genes Dev. 29, 1151–1163 (2015).

    Article  Google Scholar 

  13. 13.

    Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    Ceccaldi, R., Rondinelli, B. & D’Andrea, A. D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26, 52–64 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Canela, A. et al. Genome organization drives chromosome fragility. Cell 170, 507–521.e18 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Wu, H. Y., Shyy, S. H., Wang, J. C. & Liu, L. F. Transcription generates positively and negatively supercoiled domains in the template. Cell 53, 433–440 (1988).

    CAS  Article  Google Scholar 

  17. 17.

    Ju, B. G. et al. A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312, 1798–1802 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    Haffner, M. C. et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat. Genet. 42, 668–675 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Bunch, H. et al. Transcriptional elongation requires DNA break-induced signalling. Nat. Commun. 6, 10191 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Madabhushi, R. et al. Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161, 1592–1605 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Puc, J. et al. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell 160, 367–380 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Bastus, N. C. et al. Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells. Cancer Res. 70, 9544–9548 (2010).

    Article  Google Scholar 

  23. 23.

    Chiarle, R. et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147, 107–119 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Crosetto, N. et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 10, 361–365 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Canela, A. et al. DNA breaks and end resection measured genome-wide by end sequencing. Mol. Cell 63, 898–911 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Lensing, S. V. et al. DSBCapture: in situ capture and sequencing of DNA breaks. Nat. Methods 13, 855–857 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Schwer, B. et al. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells. Proc. Natl Acad. Sci. USA 113, 2258–2263 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Ambrosio, S. et al. Cell cycle-dependent resolution of DNA double-strand breaks. Oncotarget 7, 4949–4960 (2016).

    Article  Google Scholar 

  29. 29.

    Yan, W. X. et al. BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat. Commun. 8, 15058 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Hsin, J. P. & Manley, J. L. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 26, 2119–2137 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Chakraborty, A. et al. Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes. Nat. Commun. 7, 13049 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Leuchowius, K. J., Weibrecht, I. & Soderberg, O. In situ proximity ligation assay for microscopy and flow cytometry. Curr. Protoc. Cytom. 56, 9.36.1–9.36.15 (2011).

    Article  Google Scholar 

  34. 34.

    Furia, L., Pelicci, P. G. & Faretta, M. A computational platform for robotized fluorescence microscopy (II): DNA damage, replication, checkpoint activation, and cell cycle progression by high-content high-resolution multiparameter image-cytometry. Cytometry A 83, 344–355 (2013).

    Article  Google Scholar 

  35. 35.

    Joshi, R. S., Pina, B. & Roca, J. Topoisomerase II is required for the production of long Pol II gene transcripts in yeast. Nucleic Acids Res. 40, 7907–7915 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    King, I. F. et al. Topoisomerases facilitate transcription of long genes linked to autism. Nature 501, 58–62 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Pannunzio, N. R. & Lieber, M. R. RNA polymerase collision versus DNA structural distortion: twists and turns can cause break failure. Mol. Cell 62, 327–334 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Zhu, Y. et al. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev. 11, 2622–2632 (1997).

    CAS  Article  Google Scholar 

  39. 39.

    Fraser, N. W., Sehgal, P. B. & Darnell, J. E. DRB-induced premature termination of late adenovirus transcription. Nature 272, 590–593 (1978).

    CAS  Article  Google Scholar 

  40. 40.

    Henriques, T. et al. Widespread transcriptional pausing and elongation control at enhancers. Genes Dev. 32, 26–41 (2018).

    CAS  Article  Google Scholar 

  41. 41.

    Yoshihara, K. et al. The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene 34, 4845–4854 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Dixon, J. R., Gorkin, D. U. & Ren, B. Chromatin domains: the unit of chromosome organization. Mol. Cell 62, 668–680 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Barutcu, A. R. et al. Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells. Genome Biol. 16, 214 (2015).

    Article  Google Scholar 

  44. 44.

    Gaillard, H. & Aguilera, A. Transcription as a threat to genome integrity. Annu. Rev. Biochem. 85, 291–317 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Mondal, N. & Parvin, J. D. DNA topoisomerase IIα is required for RNA polymerase II transcription on chromatin templates. Nature 413, 435–438 (2001).

    CAS  Article  Google Scholar 

  46. 46.

    Baranello, L. et al. RNA polymerase II regulates topoisomerase 1 activity to favor efficient transcription. Cell 165, 357–371 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Lin, C. et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139, 1069–1083 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    Gibson, B. A. et al. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science 353, 45–50 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Deweese, J. E. & Osheroff, N. The DNA cleavage reaction of topoisomerase II: wolf in sheep’s clothing. Nucleic Acids Res. 37, 738–748 (2009).

    CAS  Article  Google Scholar 

  50. 50.

    Ashour, M. E., Atteya, R. & El-Khamisy, S. F. Topoisomerase-mediated chromosomal break repair: an emerging player in many games. Nat. Rev. Cancer 15, 137–151 (2015).

    CAS  Article  Google Scholar 

  51. 51.

    Gomez-Herreros, F. et al. TDP2-dependent non-homologous end-joining protects against topoisomerase II-induced DNA breaks and genome instability in cells and in vivo. PLoS Genet. 9, e1003226 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    Furia, L., Pelicci, P. G. & Faretta, M. A computational platform for robotized fluorescence microscopy (I): high-content image-based cell-cycle analysis. Cytometry A 83, 333–343 (2013).

    Article  Google Scholar 

  53. 53.

    Marchesini, M. et al. PML is required for telomere stability in non-neoplastic human cells. Oncogene 35, 1811–1821 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    Dellino, G. I. et al. Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing. Genome Res. 23, 1–11 (2013).

    CAS  Article  Google Scholar 

  55. 55.

    Ostuni, R. et al. Latent enhancers activated by stimulation in differentiated cells. Cell 152, 157–171 (2013).

    CAS  Article  Google Scholar 

  56. 56.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  Article  Google Scholar 

  57. 57.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  58. 58.

    Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    CAS  Article  Google Scholar 

  59. 59.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  Article  Google Scholar 

  60. 60.

    Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  Google Scholar 

  61. 61.

    Quinlan, A. R. BEDTools: the Swiss-Army tool for genome feature analysis. Curr. Protoc. Bioinformatics 47, 11.12.1–11.12.34 (2014).

    Article  Google Scholar 

  62. 62.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  Article  Google Scholar 

  63. 63.

    Andrews, S. FastQC: a quality control tool for high throughput sequence data v.0.11.7 (Babraham Bioinformatics);

  64. 64.

    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  Google Scholar 

  65. 65.

    Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012).

    CAS  Article  Google Scholar 

  66. 66.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  Article  Google Scholar 

  67. 67.

    Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  Article  Google Scholar 

  68. 68.

    Python v.2.7.14 (Python Software Foundation);

  69. 69.

    van Rossum, G. The Python Language Reference Manual (Network Theory Ltd, 2011).

  70. 70.

    Xu, S., Grullon, S., Ge, K. & Peng, W. Spatial clustering for identification of ChIP-enriched regions (SICER) to map regions of histone methylation patterns in embryonic stem cells. Methods Mol. Biol. 1150, 97–111 (2014).

    CAS  Article  Google Scholar 

Download references


We thank R. Mirzazadeh for initial training on the BLISS method; I. Pallavicini and T. Kallas for technical assistance with cell culture; L. Rotta and T. Capra of the Sequencing Facility at the IEO Genomic Unit; E. Colombo for helpful discussions; and P. Dalton and S. Averaimo for critical review of the manuscript. F.P. was supported by a fellowship from Fondazione Umberto Veronesi (grant no. FUV 2018). N.C. acknowledges support from the Karolinska Institutet, the Swedish Research Council (grant no. 521-2014-2866), the Swedish Cancer Research Foundation (grant no. CAN 2015/585) and the Ragnar Söderberg Foundation. M.F. acknowledges support from Italian Ministry of Health grant no. RF-2011-02347946. This study was supported by European Research Council advanced grant no. 341131 (to P.G.P.).

Author information




R.P. and B.A.M.B. performed the BLISS assays under the supervision of N.C. R.P., G.I.D. and G.D.C. performed the ChIP-seq and RNA-seq assays. F.P. performed statistical analyses and machine learning-based approaches. G.I.D., F.P., L.L., G.M. and D.C. analyzed the sequencing data. A.M.C. and S.B. performed the Hi-C analyses under the supervision of M.N. D.G. contributed to the statistical analyses. L.G. aligned the sequencing data. L.F. performed the immunofluorescence. M.F. performed the imaging analyses. P.G.P. and G.I.D. wrote the manuscript. G.I.D. and P.G.P. contributed to study design and oversaw the study.

Corresponding authors

Correspondence to Gaetano Ivan Dellino or Pier Giuseppe Pelicci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Supplementary Tables 1–18 and Supplementary Note

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dellino, G.I., Palluzzi, F., Chiariello, A.M. et al. Release of paused RNA polymerase II at specific loci favors DNA double-strand-break formation and promotes cancer translocations. Nat Genet 51, 1011–1023 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing