Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk

Abstract

We address the challenge of detecting the contribution of noncoding mutations to disease with a deep-learning-based framework that predicts the specific regulatory effects and the deleterious impact of genetic variants. Applying this framework to 1,790 autism spectrum disorder (ASD) simplex families reveals a role in disease for noncoding mutations—ASD probands harbor both transcriptional- and post-transcriptional-regulation-disrupting de novo mutations of significantly higher functional impact than those in unaffected siblings. Further analysis suggests involvement of noncoding mutations in synaptic transmission and neuronal development and, taken together with previous studies, reveals a convergent genetic landscape of coding and noncoding mutations in ASD. We demonstrate that sequences carrying prioritized mutations identified in probands possess allele-specific regulatory activity, and we highlight a link between noncoding mutations and heterogeneity in the IQ of ASD probands. Our predictive genomics framework illuminates the role of noncoding mutations in ASD and prioritizes mutations with high impact for further study, and is broadly applicable to complex human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The increased effect burden of noncoding regulatory mutations in ASD.
Fig. 2: Analysis of the effects of noncoding mutations converges on brain-specific signals and neurodevelopmental processes.
Fig. 3: Allele-specific transcriptional activity of ASD noncoding mutations.

Similar content being viewed by others

Data availability

ASD WGS data can be obtained from the Simons Foundation Autism Research Initiative (SFARI). All variant predicted scores have been made available as supplementary material and an interactive web interface is available at https://hb.flatironinstitute.org/asdbrowser/.

Code availability

The code used in this study is available from https://hb.flatironinstitute.org/asdbrowser/help.

References

  1. Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    Article  CAS  Google Scholar 

  2. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    Article  CAS  Google Scholar 

  3. Yuen, R. K. C. et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 20, 602–611 (2017).

    Article  CAS  Google Scholar 

  4. Bernstein, B. E. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  5. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  Google Scholar 

  6. Stenson, P. D. et al. The human gene mutation database: 2008 update. Genome Med. 1, 13 (2009).

    Article  Google Scholar 

  7. Feigin, M. E. et al. Recurrent noncoding regulatory mutations in pancreatic ductal adenocarcinoma. Nat. Genet. 49, 825–833 (2017).

    Article  CAS  Google Scholar 

  8. Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).

    Article  CAS  Google Scholar 

  9. Brandler, W. M. et al. Paternally inherited cis-regulatory structural variants are associated with autism. Science 360, 327–331 (2018).

    Article  CAS  Google Scholar 

  10. Turner, T. N. et al. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. Am. J. Hum. Genet. 98, 58–74 (2016).

    Article  CAS  Google Scholar 

  11. Turner, T. N. et al. Genomic patterns of de novo mutation in simplex autism. Cell 171, 710–722 (2017).

    Article  CAS  Google Scholar 

  12. Yuen, R. K. C. et al. Genome-wide characteristics of de novo mutations in autism. NPJ Genom. Med. 1, 16027 (2016).

    Article  Google Scholar 

  13. Yuen, R. K. C. et al. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat. Med. 21, 185–191 (2015).

    Article  CAS  Google Scholar 

  14. Michaelson, J. J. et al. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151, 1431–1442 (2012).

    Article  CAS  Google Scholar 

  15. Jiang, Y. et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am. J. Hum. Genet. 93, 249–263 (2013).

    Article  CAS  Google Scholar 

  16. Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471–475 (2012).

    Article  CAS  Google Scholar 

  17. Werling, D. M. et al. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat. Genet. 50, 727–736 (2018).

    Article  CAS  Google Scholar 

  18. An, J. Y. et al. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science 362, eaat6576 (2018).

    Article  Google Scholar 

  19. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  Google Scholar 

  20. Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article  CAS  Google Scholar 

  21. Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12, 931–934 (2015).

    Article  CAS  Google Scholar 

  22. Ule, J., Hwang, H.-W. & Darnell, R. B. The future of cross-linking and immunoprecipitation (CLIP). Cold Spring Harb. Perspect. Biol. 10, a032243 (2018).

    Article  Google Scholar 

  23. 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  24. Kosmicki, J. A. et al. Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat. Genet. 49, 504–510 (2017).

    Article  CAS  Google Scholar 

  25. Aguet, F. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  Google Scholar 

  26. Packer, A. Neocortical neurogenesis and the etiology of autism spectrum disorder. Neurosci. Biobehav. Rev. 64, 185–195 (2016).

    Article  Google Scholar 

  27. Krishnan, A. et al. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat. Neurosci. 19, 1454–1462 (2016).

    Article  CAS  Google Scholar 

  28. Greene, C. S. et al. Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet. 47, 569–576 (2015).

    Article  CAS  Google Scholar 

  29. Iossifov, I. et al. Low load for disruptive mutations in autism genes and their biased transmission. Proc. Natl Acad. Sci. USA 112, E5600–E5607 (2015).

    Article  CAS  Google Scholar 

  30. Valente, E. M. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    Article  CAS  Google Scholar 

  31. Kageyama, R. & Ohtsuka, T. The Notch–Hes pathway in mammalian neural development. Cell Res. 9, 179–188 (1999).

    Article  CAS  Google Scholar 

  32. Bertrand, N., Castro, D. S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530 (2002).

    Article  CAS  Google Scholar 

  33. Crosnier, C., Stamataki, D. & Lewis, J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat. Rev. Genet. 7, 349–359 (2006).

    Article  CAS  Google Scholar 

  34. Eckler, M. J. & Chen, B. Fez family transcription factors: controlling neurogenesis and cell fate in the developing mammalian nervous system. BioEssays 36, 788–797 (2014).

    Article  CAS  Google Scholar 

  35. Hormozdiari, F., Penn, O., Borenstein, E. & Eichler, E. E. The discovery of integrated gene networks for autism and related disorders. Genome Res. 25, 142–154 (2015).

    Article  CAS  Google Scholar 

  36. Saied-Santiago, K. & Blow, H. E. Diverse roles for glycosaminoglycans in neural patterning. Dev. Dyn. 247, 54–74 (2017).

    Article  Google Scholar 

  37. Chang, W.-H. et al. Smek1/2 is a nuclear chaperone and cofactor for cleaved Wnt receptor Ryk, regulating cortical neurogenesis. Proc. Natl Acad. Sci. USA 114, E10717–E10725 (2017).

    Article  CAS  Google Scholar 

  38. Walsh, C. A., Morrow, E. M. & Rubenstein, J. L. R. Autism and brain development. Cell 135, 396–400 (2008).

    Article  CAS  Google Scholar 

  39. Weiner, D., Wigdor, E., Ripke, S. & Robinson, E. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat. Genet. 49, 978–985 (2017).

    Article  CAS  Google Scholar 

  40. Liu, Y., Li, B., Tan, R., Zhu, X. & Wang, Y. A gradient-boosting approach for filtering de novo mutations in parent–offspring trios. Bioinformatics 30, 1830–1836 (2014).

    Article  CAS  Google Scholar 

  41. Smit, A., Hubley, R. & Green, P. RepeatMasker Open-4.0 (2013).

  42. Moore, M. J. et al. Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat. Protoc. 9, 263–293 (2014).

    Article  CAS  Google Scholar 

  43. Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    Article  CAS  Google Scholar 

  44. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017).

    Article  Google Scholar 

  45. Wright, C. F. et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet 385, 1305–1314 (2015).

    Article  Google Scholar 

  46. Cotney, J. et al. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nat. Commun. 6, 6404 (2015).

    Article  CAS  Google Scholar 

  47. Sugathan, A. et al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc. Natl Acad. Sci. USA 111, E4468–E4477 (2014).

    Article  CAS  Google Scholar 

  48. Harrow, J. et al. GENCODE: the reference human genome annotation for the ENCODE project. Genome Res. 22, 1760–1774 (2012).

    Article  CAS  Google Scholar 

  49. Forrest, A. R. R. et al. A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014).

    Article  CAS  Google Scholar 

  50. Yan, Q. et al. Systematic discovery of regulated and conserved alternative exons in the mammalian brain reveals NMD modulating chromatin regulators. Proc. Natl Acad. Sci. USA 112, 3445–3450 (2015).

    Article  CAS  Google Scholar 

  51. Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049–D1056 (2015).

    Article  Google Scholar 

  52. Mi, H. et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 45, D183–D189 (2017).

    Article  CAS  Google Scholar 

  53. Geifman, N., Monsonego, A. & Rubin, E. The neural/immune Gene Ontology: clipping the gene ontology for neurological and immunological systems. BMC Bioinformatics 11, 458 (2010).

    Article  Google Scholar 

  54. Van Der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 620, 267–284 (2008).

    Google Scholar 

Download references

Acknowledgements

We are grateful to the families participating in the SFARI SSC. This work is supported by NIH grants R01HG005998, U54HL117798 and R01GM071966, HHS grant HHSN272201000054C and Simons Foundation grant 395506 to O.G.T.; NIH grants 1UM1HG008901, NS034389, NS081706 and NS097404 and Simons Foundation grant SFARI 240432 to R.B.D.; and STARR Cancer Consortium Award I10-0056 to C.Y.P. and R.B.D. O.G.T. is a senior fellow of the Genetic Networks program of the Canadian Institute for Advanced Research (CIFAR). R.B.D. is an Investigator of the Howard Hughes Medical Institute. The authors acknowledge all members of the Troyanskaya and Darnell laboratory for helpful discussions. We also thank the SFARI, Simons Foundation and Flatiron Institute, in particular N. Volfovsky and M. Benedetti. We are pleased to acknowledge that a substantial portion of the work in this paper was performed at the TIGRESS high-performance computer center at Princeton University, which is jointly supported by the Princeton Institute for Computational Science and Engineering and the Princeton University Office of Information Technology’s Research Computing department. O.G.T. is a CIFAR fellow.

Author information

Authors and Affiliations

Authors

Contributions

J.Z., C.Y.P., C.L.T., R.B.D. and O.G.T. conceived and designed the study. J.Z. and C.Y.P. developed the computational methods and performed the analyses. J.Z. developed the DNA model and C.Y.P. developed the RNA model. C.L.T. designed and performed luciferase assay experiments. Y.Y., C.S., J.J.F. and Y.T. designed and performed the minigene splicing assay and RBP experiments. A.K.W., J.F. and K.Y. developed the web interface. A.P. contributed ideas and insights. J.Z., C.Y.P., C.L.T., R.B.D. and O.G.T. wrote the manuscript.

Corresponding authors

Correspondence to Robert B. Darnell or Olga G. Troyanskaya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note and Supplementary Figures 1–16

Reporting Summary

Supplementary Table 1

All de novo mutations identified from the WGS cohort with predicted disease impact scores

Supplementary Table 2

Genomic variant set analysis of mutational burden for transcriptional and post-transcriptional disruptions

Supplementary Table 3

NDEA significance levels of proband excess for all genes

Supplementary Table 4

NDEA significance levels of proband excess for all gene sets

Supplementary Table 5

Cluster-specific gene set enrichment for top NDEA significant genes

Supplementary Table 6

Genomic sequences tested in luciferase assays (plasmid backbone pGL4.23)

Supplementary Table 7

List of chromatin profiles used in this study

Supplementary Table 8

List of RBP profiles used in this study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Park, C.Y., Theesfeld, C.L. et al. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat Genet 51, 973–980 (2019). https://doi.org/10.1038/s41588-019-0420-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-019-0420-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research