Multi-tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits


The genetic architecture of psychiatric disorders is characterized by a large number of small-effect variants1 located primarily in non-coding regions, suggesting that the underlying causal effects may influence disease risk by modulating gene expression2,3,4. We provide comprehensive analyses using transcriptome data from an unprecedented collection of tissues to gain pathophysiological insights into the role of the brain, neuroendocrine factors (adrenal gland) and gastrointestinal systems (colon) in psychiatric disorders. In each tissue, we perform PrediXcan analysis and identify trait-associated genes for schizophrenia (n associations = 499; n unique genes = 275), bipolar disorder (n associations = 17; n unique genes = 13), attention deficit hyperactivity disorder (n associations = 19; n unique genes = 12) and broad depression (n associations = 41; n unique genes = 31). Importantly, both PrediXcan and summary-data-based Mendelian randomization/heterogeneity in dependent instruments analyses suggest potentially causal genes in non-brain tissues, showing the utility of these tissues for mapping psychiatric disease genetic predisposition. Our analyses further highlight the importance of joint tissue approaches as 76% of the genes were detected only in difficult-to-acquire tissues.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: PrediXcan and eQTL analysis of GWAS of psychiatric traits.
Fig. 2: Proposing causal variant and causal gene mechanism at known schizophrenia-associated loci (n = 145 loci; 179 index SNPs).
Fig. 3: Complexity of identifying the relevant gene mechanism in tissue of pathology.
Fig. 4: Genetically determined co-expression networks of disease-associated GReX.
Fig. 5: Tissue-specific GReX, joint-tissue eQTL mapping and tissue-specific or tissue-shared functional categories for schizophrenia.

Data availability

The protected data for the GTEx project (for example, genotype and RNA-sequence data) are available via access request to dbGaP accession number phs000424.v6.p1. Processed GTEx data (for example, gene expression and eQTLs) are available on the GTEx portal ( The URLs of the summary statistics datasets of all the GWAS meta-analyses analyzed in the paper can be found in Supplementary Table 1.


  1. 1.

    Gratten, J., Wray, N. R., Keller, M. C. & Visscher, P. M. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat. Neurosci. 17, 782–790 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Nicolae, D. L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 6, e1000888 (2010).

    Article  Google Scholar 

  3. 3.

    Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    Article  Google Scholar 

  4. 4.

    Gamazon, E. R. et al. The convergence of eQTL mapping, heritability estimation and polygenic modeling: emerging spectrum of risk variation in bipolar disorder. Preprint at (2013).

  5. 5.

    Geschwind, D. H. & Flint, J. Genetics and genomics of psychiatric disease. Science 349, 1489–1494 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Ozomaro, U., Wahlestedt, C. & Nemeroff, C. B. Personalized medicine in psychiatry: problems and promises. BMC Med. 11, 132 (2013).

    Article  Google Scholar 

  7. 7.

    Jansen, R. et al. Gene expression in major depressive disorder. Mol. Psychiatry 21, 339–347 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609.e3 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    Kato, T. A., Hayakawa, K., Monji, A. & Kanba, S. Missing and possible link between neuroendocrine factors, neuropsychiatric disorders, and microglia. Front. Integr. Neurosci. 7, 53 (2013).

    Article  Google Scholar 

  10. 10.

    Neale, B. M. et al. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 49, 884–897 (2010).

    Article  Google Scholar 

  11. 11.

    Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43, 977–983 (2011).

    Article  Google Scholar 

  12. 12.

    Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. A mega-analysis of genome-wide association studies for major depressive disorder. Mol. Psychiatry 18, 497–511 (2013).

    Article  Google Scholar 

  13. 13.

    Pardinas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715.e16 (2018).

    Article  Google Scholar 

  15. 15.

    Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Howard, D. M. et al. Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. Nat. Commun. 9, 1470 (2018).

    Article  Google Scholar 

  17. 17.

    Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

    CAS  Article  Google Scholar 

  18. 18.

    Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Huckins, L. M. et al. Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nat. Genet. 51, 659–674 (2017).

    Article  Google Scholar 

  20. 20.

    Foster, J. A. & McVey Neufeld, K. A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36, 305–312 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Leonard, B. E. The concept of depression as a dysfunction of the immune system. Curr. Immunol. Rev. 6, 205–212 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  Google Scholar 

  23. 23.

    Denny, J. C. et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat. Biotechnol. 31, 1102–1110 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Xiao, X. et al. Further evidence for the association between LRP8 and schizophrenia. Schizophr Res. (2017).

  25. 25.

    Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    CAS  Article  Google Scholar 

  26. 26.

    The GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  Google Scholar 

  27. 27.

    Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association studies. Nat. Genet. 51, 592–599 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat. Commun. 9, 2282 (2018).

    Article  Google Scholar 

  29. 29.

    Hauberg, M. E. et al. Large-scale identification of common trait and disease variants affecting gene expression. Am. J. Hum. Genet. 101, 157 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Schizophrenia Psychiatric Genome-Wide Association Study Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976 (2011).

    Article  Google Scholar 

  31. 31.

    Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Zhang, J. et al. Spatial clustering and common regulatory elements correlate with coordinated gene expression. PLoS Comput. Biol. 15, e1006786 (2019).

    Article  Google Scholar 

  33. 33.

    Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    Westra, H. J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Gamazon, E. R. et al. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat. Genet. 50, 956–967 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Gusev, A. et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat. Genet. 50, 538–548 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Jones, A. L., Mowry, B. J., Pender, M. P. & Greer, J. M. Immune dysregulation and self-reactivity in schizophrenia: do some cases of schizophrenia have an autoimmune basis? Immunol. Cell Biol. 83, 9–17 (2005).

    CAS  Article  Google Scholar 

  38. 38.

    Stringer, S., Kahn, R. S., de Witte, L. D., Ophoff, R. A. & Derks, E. M. Genetic liability for schizophrenia predicts risk of immune disorders. Schizophr. Res. 159, 347–352 (2014).

    Article  Google Scholar 

  39. 39.

    International Consortium for Blood Pressure Genome-Wide Association Studies. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    Article  Google Scholar 

  40. 40.

    Shi, H., Kichaev, G. & Pasaniuc, B. Contrasting the genetic architecture of 30 complex traits from summary association data. Am. J. Hum. Genet. 99, 139–153 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Gamazon, E. R., Cox, N. J. & Davis, L. K. Structural architecture of SNP effects on complex traits. Am. J. Hum. Genet. 95, 477–489 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    Barbeira, A. et al. Integrating tissue specific mechanisms into GWAS summary results. Preprint at bioRxiv (2017).

  43. 43.

    Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Chen, G. B. et al. Across-cohort QC analyses of GWAS summary statistics from complex traits. Eur. J. Hum. Genet. 25, 137–146 (2016).

    Article  Google Scholar 

  45. 45.

    Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    The GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  Google Scholar 

  47. 47.

    Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Shimodaira, H. Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling. Ann. Stat. 32, 2616–2641 (2004).

    Article  Google Scholar 

  49. 49.

    Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    CAS  Article  Google Scholar 

Download references


The GTEx Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health. Additional funds were provided by the National Cancer Institute (NCI), National Human Genome Research Institute (NHGRI), National Heart, Lung, and Blood Institute (NHLBI), National Institute on Drug Abuse (NIDA), National Institute of Mental Health (NIMH) and National Institute of Neurological Disorders and Stroke (NINDS). Donors were enrolled at Biospecimen Source Sites funded by NCI/SAIC-Frederick, Inc. SAIC-F subcontracts to the National Disease Research Interchange (grant no. 10XS170), Roswell Park Cancer Institute (grant no. 10XS171) and Science Care, Inc. (grant no. X10S172). The Laboratory, Data Analysis and Coordinating Center (LDACC) was funded through a contract (grant no. HHSN268201000029C) to The Broad Institute, Inc. Biorepository operations were funded through an SAIC-F subcontract to Van Andel Institute (grant no. 10ST1035). Additional data repository and project management were provided by SAIC-F (grant no. HHSN261200800001E). The Brain Bank was supported by supplements to University of Miami grants (nos. DA006227 and DA033684) and to contract no. N01MH000028. Statistical Methods development grants were made to the University of Geneva (nos. MH090941 and MH101814), the University of Chicago (nos. MH090951, MH090937, MH101820, MH101825), the University of North Carolina at Chapel Hill (nos. MH090936 and MH101819), Harvard University (no. MH090948), Stanford University (no. MH101782), Washington University St Louis (no. MH101810) and the University of Pennsylvania (no. MH101822). E.M.D. is supported by the Foundation Volksbond Rotterdam. E.R.G. is grateful to the President and Fellows of Clare Hall, University of Cambridge, for providing a stimulating intellectual home and benefited from a Fellowship in the College. E.R.G. also acknowledges support from the Academic Medical Center, University of Amsterdam, during the early stages of the study. E.R.G. and N.J.C. acknowledge support from grant no. NIMH R01MH113362. We acknowledge the Psychiatric Genomics Consortium groups for sharing the published meta-analysis data.

Author information




E.R.G. and E.M.D. conceived of and designed the study, analysed the data and drafted the manuscript. E.R.G., A.H.Z. and E.M.D. interpreted the data. N.J.C. and D.D. revised the manuscript critically for important intellectual content. All authors approved of the version of the manuscript to be published.

Corresponding authors

Correspondence to Eric R. Gamazon or Eske M. Derks.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gamazon, E.R., Zwinderman, A.H., Cox, N.J. et al. Multi-tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits. Nat Genet 51, 933–940 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing