Genome-wide association study identifies 30 loci associated with bipolar disorder


Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P < 1 × 10−4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (P < 5 × 10−8) in the discovery GWAS were not genome-wide significant in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis, 30 loci were genome-wide significant, including 20 newly identified loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including regulation of insulin secretion and endocannabinoid signaling. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential biological mechanisms for bipolar disorder.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Manhattan plot for our primary genome-wide association analysis of 20,352 cases and 31,358 controls.
Fig. 2: Association of BD1 and BD2 subtypes with SCZ and DEPR PRS.

Data availability

The PGC’s policy is to make genome-wide summary results public. Summary statistics for our meta-analysis are available through the PGC ( Data are accessible with collaborative analysis proposals through the Bipolar Disorder Working Group of the PGC (


  1. 1.

    Ferrari, A. J. et al. The prevalence and burden of bipolar disorder: findings from the global burden of disease study 2013. Bipolar Disord. 18, 440–450 (2016).

    Article  Google Scholar 

  2. 2.

    Lichtenstein, P. et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373, 234–239 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    Edvardsen, J. et al. Heritability of bipolar spectrum disorders. Unity or heterogeneity? J. Affect. Disord. 106, 229–240 (2008).

    Article  Google Scholar 

  4. 4.

    McGuffin, P. et al. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch. Gen. Psychiatry 60, 497–502 (2003).

    Article  Google Scholar 

  5. 5.

    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Association Publishing, 2013).

  6. 6.

    World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines (World Health Organization, 1992).

  7. 7.

    Craddock, N. & Owen, M. J. The Kraepelinian dichotomy—going, going… but still not gone. Br. J. Psychiatry 196, 92–95 (2010).

    Article  Google Scholar 

  8. 8.

    Lee, S. H. et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984–994 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Sklar, P. et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43, 977–983 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    Baum, A. E. et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol. Psychiatry 13, 197–207 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    Charney, A. W. et al. Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder. Transl. Psychiatry 7, e993 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Chen, D. T. et al. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol. Psychiatry 18, 195–205 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Cichon, S. et al. Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am. J. Hum. Genet. 88, 372–381 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Ferreira, M. A. R. et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat. Genet. 40, 1056–1058 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    Green, E. K. et al. Association at SYNE1 in both bipolar disorder and recurrent major depression. Mol. Psychiatry 18, 614–617 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Green, E. K. et al. Replication of bipolar disorder susceptibility alleles and identification of two novel genome-wide significant associations in a new bipolar disorder case-control sample. Mol. Psychiatry 18, 1302–1307 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Hou, L. et al. Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Hum. Mol. Genet. 25, 3383–3394 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Mühleisen, T. W. et al. Genome-wide association study reveals two new risk loci for bipolar disorder. Nat. Commun. 5, 3339 (2014).

    Article  Google Scholar 

  19. 19.

    Schulze, T. G. et al. Two variants in Ankyrin 3 (ANK3) are independent genetic risk factors for bipolar disorder. Mol. Psychiatry 14, 487–491 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Scott, L. J. et al. Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc. Natl Acad. Sci. USA 106, 7501–7506 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    Sklar, P. et al. Whole-genome association study of bipolar disorder. Mol. Psychiatry 13, 558–569 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    Smith, E. N. et al. Genome-wide association study of bipolar disorder in European American and African American individuals. Mol. Psychiatry 14, 755–763 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    Burton, P. R. et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    Gratten, J., Wray, N. R., Keller, M. C. & Visscher, P. M. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat. Neurosci. 17, 782–790 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Palmer, C. & Pe’er, I. Statistical correction of the winner’s curse explains replication variability in quantitative trait genome-wide association studies. PLoS Genet. 13, e1006916 (2017).

    Article  Google Scholar 

  28. 28.

    Zhong, H. & Prentice, R. L. Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies. Biostatistics 9, 621–634 (2008).

    Article  Google Scholar 

  29. 29.

    Holland, D. et al. Beyond SNP heritability: polygenicity and discoverability estimated for multiple phenotypes with a univariate gaussian mixture model. Preprint at biorXiv (2018).

  30. 30.

    Gao, X., Starmer, J. & Martin, E. R. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet. Epidemiol. 32, 361–369 (2008).

    Article  Google Scholar 

  31. 31.

    Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    Article  Google Scholar 

  32. 32.

    Ripke, S. et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 45, 1150–1159 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Okbay, A. et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet. 48, 624–633 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Cross-Disorder Group of the Psychiatric Genomics Consortium et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984–994 (2013).

    Article  Google Scholar 

  36. 36.

    Duncan, L. et al. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. Am. J. Psychiatry 174, 850–858 (2017).

    Article  Google Scholar 

  37. 37.

    Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol. Psychiatry 21, 1391–1399 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Gale, C. R. et al. Pleiotropy between neuroticism and physical and mental health: findings from 108 038 men and women in UK Biobank. Transl. Psychiatry 6, e791 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Rietveld, C. A. et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340, 1467–1471 (2013).

    CAS  Article  Google Scholar 

  40. 40.

    Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Benyamin, B. et al. Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Mol. Psychiatry 19, 253–258 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    Sniekers, S. et al. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat. Genet. 49, 1107–1112 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    MacArthur, J. et al. The new NHGRI-EBI catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Ikeda, M. et al. A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol. Psychiatry 23, 639–647 (2018).

    CAS  Article  Google Scholar 

  45. 45.

    Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Pavlides, J. M. W. et al. Predicting gene targets from integrative analyses of summary data from GWAS and eQTL studies for 28 human complex traits. Genome Med. 8, 84 (2016).

    Article  Google Scholar 

  49. 49.

    Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat. Commun. 9, 2282 (2018).

    Article  Google Scholar 

  50. 50.

    de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  Google Scholar 

  51. 51.

    Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715.e16 (2018).

    Article  Google Scholar 

  52. 52.

    Lee, S. H., Goddard, M. E., Wray, N. R. & Visscher, P. M. A better coefficient of determination for genetic profile analysis. Genet. Epidemiol. 36, 214–224 (2012).

    Article  Google Scholar 

  53. 53.

    Simonsen, C. et al. Neurocognitive dysfunction in bipolar and schizophrenia spectrum disorders depends on history of psychosis rather than diagnostic group. Schizophr. Bull. 37, 73–83 (2011).

    Article  Google Scholar 

  54. 54.

    Goes, F. S. et al. Genome-wide association of mood-incongruent psychotic bipolar disorder. Transl. Psychiatry 2, e180 (2012).

    CAS  Article  Google Scholar 

  55. 55.

    Allardyce, J. et al. Association between schizophrenia-related polygenic liability and the occurrence and level of mood-incongruent psychotic symptoms in bipolar disorder. JAMA Psychiatry 75, 28–35 (2018).

    Article  Google Scholar 

  56. 56.

    Palmer, C. & Pe’er, I. Statistical correction of the winner’s curse explains replication variability in quantitative trait genome-wide association studies. PLoS Genet. 13, e1006916 (2017).

    Article  Google Scholar 

  57. 57.

    Goes, F. S. et al. Genome-wide association study of schizophrenia in Ashkenazi Jews. Am. J. Med. Genet. B 168, 649–659 (2015).

    CAS  Article  Google Scholar 

  58. 58.

    Gaspar, H. A. & Breen, G. Drug enrichment and discovery from schizophrenia genome-wide association results: an analysis and visualisation approach. Sci. Rep. 7, 12460 (2017).

    CAS  Article  Google Scholar 

  59. 59.

    Camandola, S. & Mattson, M. P. Aberrant subcellular neuronal calcium regulation in aging and alzheimer’s disease. Biochim. Biophys. Acta Mol. Cell Res. 1813, 965–973 (2011).

    CAS  Article  Google Scholar 

  60. 60.

    Mertens, J. et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527, 95–99 (2015).

    CAS  Article  Google Scholar 

  61. 61.

    Yang, C.-P. et al. Comprehensive integrative analyses identify GLT8D1 and CSNK2B as schizophrenia risk genes. Nat. Commun. 9, 838 (2018).

    Article  Google Scholar 

  62. 62.

    Lee, S.-H., Zabolotny, J. M., Huang, H., Lee, H. & Kim, Y.-B. Insulin in the nervous system and the mind: functions in metabolism, memory, and mood. Mol. Metab. 5, 589–601 (2016).

    CAS  Article  Google Scholar 

  63. 63.

    McIntyre, R. S. et al. A randomized, double-blind, controlled trial evaluating the effect of intranasal insulin on neurocognitive function in euthymic patients with bipolar disorder. Bipolar Disord. 14, 697–706 (2012).

    CAS  Article  Google Scholar 

  64. 64.

    Desfossés, J., Stip, E., Bentaleb, L. A. & Potvin, S. Endocannabinoids and schizophrenia. Pharmaceuticals 3, 3101–3126 (2010).

    Article  Google Scholar 

  65. 65.

    Zamberletti, E., Rubino, T. & Parolaro, D. The endocannabinoid system and schizophrenia: integration of evidence. Curr. Pharm. Des. 18, 4980–4990 (2012).

    CAS  Article  Google Scholar 

  66. 66.

    Serra, G. & Fratta, W. A possible role for the endocannabinoid system in the neurobiology of depression. Clin. Pract. Epidemiol. Ment. Health 3, 25 (2007).

    Article  Google Scholar 

  67. 67.

    MacCabe, J. H. et al. Excellent school performance at age 16 and risk of adult bipolar disorder: national cohort study. Br. J. Psychiatry 196, 109–115 (2010).

    Article  Google Scholar 

  68. 68.

    Vreeker, A. et al. High educational performance is a distinctive feature of bipolar disorder: a study on cognition in bipolar disorder, schizophrenia patients, relatives and controls. Psychol. Med. 46, 807–818 (2016).

    CAS  Article  Google Scholar 

  69. 69.

    Ripke, S. Ricopili: a Tool for Visualizing Regions of Interest in Select GWAS Data Sets (Broad Institute, 2014).

  70. 70.

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS  Article  Google Scholar 

  71. 71.

    Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  Google Scholar 

  72. 72.

    Euesden, J., Lewis, C. M. & O’Reilly, P. F. PRSice: Polygenic Risk Score software. Bioinformatics 31, 1466–1468 (2015).

    CAS  Article  Google Scholar 

  73. 73.

    Finucane, H. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    CAS  Article  Google Scholar 

  74. 74.

    O’Dushlaine, C. et al. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat. Neurosci. 18, 199–209 (2015).

    Article  Google Scholar 

  75. 75.

    1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  76. 76.

    Olier, I., Vellido, A. & Giraldo, J. Kernel generative topographic mapping. In Proc. 18th European Symposium on Artificial Neural Networks (ed. Verleysen, M.) 481–486 (ESANN, 2010).

Download references


This paper is dedicated to the memory of Psychiatric Genomics Consortium (PGC) founding member and Bipolar Disorder Working Group co-chair Pamela Sklar. We thank the participants who donated their time, experiences and DNA to this research, and the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who comprise the PGC. Analyses were carried out on the NL Genetic Cluster Computer (, hosted by SURFsara, and the Mount Sinai high performance computing cluster ( PGC members have received major funding from the US National Institute of Mental Health. This work was funded in part by the Brain and Behavior Research Foundation, Stanley Medical Research Institute, University of Michigan, Pritzker Neuropsychiatric Disorders Research Fund L.L.C., Marriot Foundation and the Mayo Clinic Center for Individualized Medicine, the NIMH Intramural Research Program; Canadian Institutes of Health Research; the UK Maudsley NHS Foundation Trust, NIHR, NRS, MRC, Wellcome Trust; European Research Council; German Ministry for Education and Research, German Research Foundation IZKF of Münster, Deutsche Forschungsgemeinschaft, ImmunoSensation, the Dr Lisa-Oehler Foundation, University of Bonn; the Swiss National Science Foundation; French Foundation FondaMental and ANR; Spanish Ministerio de Economía, CIBERSAM, Industria y Competitividad, European Regional Development Fund (ERDF), Generalitat de Catalunya, EU Horizon 2020 Research and Innovation Programme; BBMRI-NL; South-East Norway Regional Health Authority and Mrs Throne-Holst; Swedish Research Council, Stockholm County Council, Söderström Foundation; Lundbeck Foundation, Aarhus University; Australia NHMRC, NSW Ministry of Health, Janette M. O’Neil and Betty C. Lynch. The views expressed are those of the authors and not necessarily those of their institutions or any funding or regulatory bodies. Additional acknowledgements, including funding sources, are presented in the Supplementary Note.

Author information





Writing group: E.A.S., G.B., A.J.F., A. McQuillin, S.R., J.R.I.C., N.M., N.R.W., A.D.F., H.J.E., S.C., R.A.O., L.J.S., O.A.A. and J.K. PGC BD principal investigator group: E.A.S., G.B., A.J.F., A. McQuillin, D. Curtis, R.H.P., R.A., I.A., M.A., L.B., B.T.B., F.B., W.H.B., J.M.B., D.H.R.B., M. Boehnke, A.D.B., A.C., N.C., U.D., T. Esko, B.E., M. Frye, J.M.F., E.S.G., M.G., F.G., M.G.-S., J.H., D.M.H., C.M.H., I.J., L.A.J., R.S.K., M. Landén, M. Leboyer, C.M.L., Q.S.L., J. Lissowska, N.G.M., S.L.M., A.M.M., F.J.M., I.M., A. Metspalu, P.B. Mitchell, G.M., O.M., P.B. Mortensen, B.M.-M., R.M.M., B.M.N., V.N., M.N., M.M.N., M.C.O’D., K.J.O., M.J.O., S.A.P., C.P., M.T.P., J.A.R.-Q., M. Ribasés, M. Rietschel, G.A.R., M. Schalling, P.R.S., T.G.S., A.S., J.W.S., H.S., K.S., E. Stordal, G.T., A.E.V., E.V., J.B.V., T.W., J.I.N., A.D.F., H.J.E., S.C., R.A.O., L.J.S., O.A.A., J.K. and P.S. Bioinformatics: E.A.S., G.B., A.J.F., J.R.I.C., H.A.G., P.A.H., S.E.B., D.W.C., V.E.-P., C.G., M.L.H., S.H., R. Karlsson, M. Leber, C. Liu, F. Meng, L.M.O.L., A.P.S.O., C.S.R., P.R., P.D.S., M. Steffens, S. Szelinger, T.E.T., S.X., P. Zandi, eQTLGen Consortium, BIOS Consortium, T. Esko, E.S.G., Q.S.L., G.A.R. and H.S. Clinical: A. McQuillin, M.M., E.A., N.A.-R., A.A., N.B., M. Bauer, C.B.P., E.B., M.P.B., M. Budde, M. Burmeister, W. Byerley, M.C., P.C., W.C., D. Curtis, P.M.C., J.R.D., T. Elvsåshagen, L. Forty, C.F., K.G., J. Garnham, M.G.P., K.G.-S., M.J.G., J. Grove, J.G.-P., M. Hautzinger, U.H., M. Hipolito, A.J., J.L.K., S.K.-S., M.K., R. Kupka, C. Lavebratt, J. Lawrence, W.B.L., S.L., D.J.M., P.B. Mahon, W.M., L. Martinsson, P.M., M.G.M., H.M., A.N.A., E.A.N., C.O’D., L.O., U.Ö., R.H.P., A. Perry, A. Pfennig, J.B.P., E.J.R., A.R., J.P.R., F.R., M. Rivera, W.A.S., C.S.W., E. Sigurdsson, C.S., O.B.S., J.L.S., A.T.S., D.S.C., J.S.S., F.S., J.S., R.C.T., H.V., T.W.W., A.H.Y., R.A., I.A., M.A., B.T.B., F.B., D.H.R.B., A.D.B., A.C., N.C., U.D., B.E., M. Frye, E.S.G., M.G., F.G., M.G.-S., J.H., I.J., L.A.J., R.S.K., G.K., M. Landén, J. Lissowska, N.G.M., F. Mayoral, S.L.M., A.M.M., F.J.M., I.M., P.B. Mitchell, G.M., O.M., P.B. Mortensen, V.N., M.C.O’D., K.J.O., M.J.O., C.P., M.T.P., J.A.R.-Q., M. Rietschel, T.G.S., A.S., J.W.S., E. Stordal, A.E.V., E.V., J.I.N. and A.D.F. Genomic assays/data generation: G.B., A.J.F., E.A., D.A., M.B.-H., C.B.P., J.B.-G., T.-K.C., D.W.C., C. Cruceanu, F.D., J.D.-F., S.D., S.B.F., J.F., M.G.P., E.K.G., P.H., S.J., R. Kandaswamy, A.C.K., S.E.L., A. Maaser, J.D.M., L. Milani, G.W.M., D.W.M., T.W.M., E.R., C.S.-M., T.S., C.S.H., S. Szelinger, J.T., S.H.W., P. Zhang, A.C., T. Esko, J.M.F., E.S.G., M.G., D.M.H., R.M.M., M.M.N., M. Ribasés, G.A.R., G.T. and S.C. Obtained funding for BD samples: G.B., H.A., N.A.-R., J.D.B., W. Bunney, J.R.D., N.B.F., L. Frisén, M.J.G., S.J., J.A.K., C. Lavebratt, S.L., P.M., G.W.M., U.Ö., J.B.P., M. Rivera, A.F.S., C.S.W., S.J.W., T.W.W., A.H.Y., M.A., B.T.B., W.H.B., J.M.B., M.Boehnke, A.D.B., A.C., N.C., M. Frye, J.M.F., E.S.G., M.G., M.G.-S., I.J., L.A.J., M. Landén, M. Leboyer, C.M.L., N.G.M., A. Metspalu, P.B. Mitchell, O.M., P.B. Mortensen, B.M.N., M.N., M.M.N., M.C.O’D., M.J.O., C.P., M.T.P., M. Rietschel, G.A.R., P.R.S., T.G.S., J.W.S., G.T., J.B.V., T.W., J.I.N., H.J.E., R.A.O. and P.S. Statistical analysis: E.A.S., G.B., S.R., V.T., M.M., Y.W., J.R.I.C., H.A.G., C.A.d.L., S. Steinberg, J.M.W.P., M.T., E.M.B., T.H.P., P.A.H., A.L.R., L.A., N.A.-R., T.D.A., V.A., S.A., J.A.B., R.B., S.E.B., J.B., F.C., K.C., A.W.C., D. Chen, C. Churchhouse, A.M.D., S.d.J., A.L.D., A.D., V.E.-P., C.C.F., M. Flickinger, T.M.F., D.G., C.G., J. Goldstein, S.D.G., T.A.G., J. Grove, W.G., M.L.H., D.H., L.H., J.S.J., R. Karlsson, M. Leber, P.H.L., J.Z.L., S.M., S.E.M., D.W.M., N.M., H.N., C.M.N., L.M.O.L., A.P.S.O., S.M.P., C.S.R., P.R., D.M.R., N.J.S., O.B.S., T.E.T., W.W., W.X., P. Zandi, P. Zhang, S.Z., eQTLGen Consortium, BIOS Consortium, J.M.B., A.D.B., M.J.D., E.S.G., F.G., Q.S.L., B.M.-M., D.P., H.S., P.F.S., N.R.W. and P.S.

Corresponding authors

Correspondence to Eli A. Stahl or John Kelsoe.

Ethics declarations

Competing interests

T.E.T., S. Steinberg, H.S. and K.S. are employed by deCODE Genetics/Amgen. Multiple additional authors work for pharmaceutical or biotechnology companies in a manner directly analogous to academic co-authors and collaborators. A.H.Y. has given paid lectures and is on advisory boards for the following companies with drugs used in affective and related disorders: Astra Zeneca, Eli Lilly, Janssen, Lundbeck, Sunovion, Servier, Livanova. A.H.Y. is Lead Investigator for Embolden Study (Astra Zeneca), BCI Neuroplasticity Study and Aripiprazole Mania Study, which are investigator-initiated studies from Astra Zeneca, Eli Lilly, Lundbeck and Wyeth. J.N. is an investigator for Janssen. P.F.S. reports the following potentially competing interests: Lundbeck (advisory committee), Pfizer (Scientific Advisory Board member) and Roche (grant recipient, speaker reimbursement). G.B. reports consultancy and speaker fees from Eli Lilly and Illumina and grant funding from Eli Lilly. O.A.A. has received speaker fees from Lundbeck. J.A.R.-Q. was on the speakers’ bureau and/or acted as consultant for Eli Lilly, Janssen-Cilag, Novartis, Shire, Lundbeck, Almirall, Braingaze, Sincrolab and Rubió in the last 5 years. He also received travel awards (air tickets and hotel) for taking part in psychiatric meetings from Janssen-Cilag, Rubió, Shire and Eli Lilly. The Department of Psychiatry chaired by him received unrestricted educational and research support from the following companies in the last 5 years: Eli Lilly, Lundbeck, Janssen-Cilag, Actelion, Shire, Ferrer, Oryzon, Roche, Psious and Rubió. E.V. has received grants and served as consultant, advisor or CME speaker for the following entities: AB-Biotics, Abbott, Allergan, Angelini, Astra Zeneca, Bristol-Myers Squibb, Dainippon Sumitomo Pharma, Farmindustria, Ferrer, Forest Research Institute, Gedeon Richter, Glaxo-Smith-Kline, Janssen, Lundbeck, Otsuka, Pfizer, Roche, SAGE, Sanofi-Aventis, Servier, Shire, Sunovion, Takeda, the Brain and Behaviour Foundation, the Catalan Government (AGAUR and PERIS), the Spanish Ministry of Science, Innovation, and Universities (AES and CIBERSAM), the Seventh European Framework Programme and Horizon 2020 and the Stanley Medical Research Institute. T. Elvsåshagen has received speaker fees from Lundbeck. All other authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Supplementary Notes

Reporting Summary

Supplementary Tables

Supplementary Tables 1–18

Supplementary Data 1

Regional association plots for all 31 lead SNPs in the 30 genome-wide-significant loci.

Supplementary Data 2

Forest plots of the 32 primary GWAS datasets for all 31 lead SNPs in the 30 genome-wide-significant loci.

Supplementary Data 3

Forest plots of the 7 follow-up datasets for all 31 lead SNPs in the 30 genome-wide-significant loci.

Rights and permissions

Reprints and Permissions

About this article