Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways


Insomnia is the second most prevalent mental disorder, with no sufficient treatment available. Despite substantial heritability, insight into the associated genes and neurobiological pathways remains limited. Here, we use a large genetic association sample (n = 1,331,010) to detect novel loci and gain insight into the pathways, tissue and cell types involved in insomnia complaints. We identify 202 loci implicating 956 genes through positional, expression quantitative trait loci, and chromatin mapping. The meta-analysis explained 2.6% of the variance. We show gene set enrichments for the axonal part of neurons, cortical and subcortical tissues, and specific cell types, including striatal, hypothalamic, and claustrum neurons. We found considerable genetic correlations with psychiatric traits and sleep duration, and modest correlations with other sleep-related traits. Mendelian randomization identified the causal effects of insomnia on depression, diabetes, and cardiovascular disease, and the protective effects of educational attainment and intracranial volume. Our findings highlight key brain areas and cell types implicated in insomnia, and provide new treatment targets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: SNP-based results from the GWAS meta-analysis on insomnia in 1,331,010 individuals.
Fig. 2: Gene-based and gene set analyses of insomnia in 1,331,010 individuals.
Fig. 3: Genome-wide analyses of six sleep-related traits.
Fig. 4: Genetic overlap of insomnia with other sleep-related traits and psychiatric and metabolic traits.
Fig. 5: Overview of brain tissues and cell types associated with insomnia based on the GWAS results in 1,331,010 individuals.

Data availability

The data analyzed in the current study were partly provided by the UK Biobank Study (, received under UK Biobank application no. 16406. Our policy is to make genome-wide summary statistics (sumstats) publicly available. Sumstats from the GWAS conducted are available for download from the CNCR Complex Trait Genetics lab at; see also Note that our freely available meta-analytic sumstats (insomnia and morningness) represent results excluding the 23andMe sample. This is a non-negotiable clause in the 23andMe data transfer agreement, intended to protect the privacy of the 23andMe research participants. To fully recreate our meta-analytic results for insomnia and morningness: (1) obtain insomnia and morningness sumstats from 23andMe; (2) conduct a meta-analysis of our sumstats with the 23andMe sumstats. 23andMe participant data are shared according to community standards that have been developed to protect against breaches of privacy. Currently, these standards allow for the sharing of summary statistics for at most 10,000 SNPs. The full set of summary statistics can be made available to qualified investigators who enter into an agreement with 23andMe that protects participants’ confidentiality. Interested investigators should email for more information.


  1. 1.

    Wittchen, H. U. et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21, 655–679 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Morin, C. M. et al. Insomnia disorder. Nat. Rev. Dis. Primers 1, 15026 (2015).

    Article  Google Scholar 

  3. 3.

    Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 5th edn (American Psychiatric Association Publishing, Washington, DC, 2013).

  4. 4.

    Morphy, H., Dunn, K. M., Lewis, M., Boardman, H. F. & Croft, P. R. Epidemiology of insomnia: a longitudinal study in a UK population. Sleep 30, 274–280 (2007).

    PubMed  Google Scholar 

  5. 5.

    Lind, M. J., Aggen, S. H., Kirkpatrick, R. M., Kendler, K. S. & Amstadter, A. B. A longitudinal twin study of insomnia symptoms in adults. Sleep 38, 1423–1430 (2015).

    Article  Google Scholar 

  6. 6.

    Hammerschlag, A. R. et al. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits. Nat. Genet. 49, 1584–1592 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Lane, J. M. et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat. Genet. 49, 274–281 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Schormair, B. et al. Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurol. 16, 898–907 (2017).

    Article  Google Scholar 

  9. 9.

    Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  Google Scholar 

  10. 10.

    Eriksson, N. et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet. 6, e1000993 (2010).

    Article  Google Scholar 

  11. 11.

    Tung, J. Y. et al. Efficient replication of over 180 genetic associations with self-reported medical data. PLoS ONE 6, e23473 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Benjamins, J. S. et al. Insomnia heterogeneity: characteristics to consider for data-driven multivariate subtyping. Sleep Med. Rev. 36, 71–81 (2017).

    Article  Google Scholar 

  13. 13.

    Paparrigopoulos, T. et al. Insomnia and its correlates in a representative sample of the Greek population. BMC Public Health 10, 531 (2010).

    Article  Google Scholar 

  14. 14.

    Cho, Y. W. et al. Epidemiology of insomnia in Korean adults: prevalence and associated factors. J. Clin. Neurol. 5, 20–23 (2009).

    Article  Google Scholar 

  15. 15.

    Zhang, B. & Wing, Y.-K. Sex differences in insomnia: a meta-analysis. Sleep 29, 85–93 (2006).

    Article  Google Scholar 

  16. 16.

    Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  Google Scholar 

  19. 19.

    Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Sniekers, S. et al. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat. Genet. 49, 1107–1112 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Laramie, J. M. et al. Polymorphisms near EXOC4 and LRGUK on chromosome 7q32 are associated with type 2 Diabetes and fasting glucose; the NHLBI Family Heart Study. BMC Med. Genet. 9, 46 (2008).

    Article  Google Scholar 

  23. 23.

    Butler, M. G., Rafi, S. K. & Manzardo, A. M. High-resolution chromosome ideogram representation of currently recognized genes for autism spectrum disorders. Int. J. Mol. Sci. 16, 6464–6495 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  Google Scholar 

  25. 25.

    Kripke, D. F. et al. Genetic variants associated with sleep disorders. Sleep Med. 16, 217–224 (2015).

    Article  Google Scholar 

  26. 26.

    Stefansson, H. et al. A genetic risk factor for periodic limb movements in sleep. N. Engl. J. Med. 357, 639–647 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Janik, P., Berdyński, M., Safranow, K. & Żekanowski, C. The BTBD9 gene polymorphisms in Polish patients with Gilles de la Tourette syndrome. Acta Neurobiol Exp (Wars) 74, 218–226 (2014).

    Google Scholar 

  28. 28.

    Freeman, A. et al. Sleep fragmentation and motor restlessness in a Drosophila model of Restless Legs Syndrome. Curr. Biol. 22, 1142–1148 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    DeAndrade, M. P. et al. Motor restlessness, sleep disturbances, thermal sensory alterations and elevated serum iron levels in Btbd9 mutant mice. Hum. Mol. Genet. 21, 3984–3992 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    DeAndrade, M. P. et al. Enhanced hippocampal long-term potentiation and fear memory in Btbd9 mutant mice. PLoS ONE 7, e35518 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Suzuki, A., Sinton, C. M., Greene, R. W. & Yanagisawa, M. Behavioral and biochemical dissociation of arousal and homeostatic sleep need influenced by prior wakeful experience in mice. Proc. Natl Acad. Sci. USA 110, 10288–10293 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Ardlie, K. G. et al. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  Google Scholar 

  34. 34.

    Toffoli, M. et al. SNCA 3′UTR genetic variants in patients with Parkinson’s disease and REM sleep behavior disorder. Neurol. Sci. 38, 1233–1240 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Edwards, T. L. et al. Genome‐wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann. Hum. Genet. 74, 97–109 (2010).

    CAS  Article  Google Scholar 

  36. 36.

    McDowell, K. A., Shin, D., Roos, K. P. & Chesselet, M.-F. Sleep dysfunction and EEG alterations in mice overexpressing alpha-synuclein. J. Parkinsons Dis. 4, 531–539 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    Colombo, M. A. et al. Wake high-density electroencephalographic spatiospectral signatures of insomnia. Sleep 39, 1015–1027 (2016).

    Article  Google Scholar 

  38. 38.

    Harris, M. A. et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258–D261 (2004).

    CAS  Article  Google Scholar 

  39. 39.

    Skene, N. G. et al. Genetic identification of brain cell types underlying schizophrenia. Nat. Genet. 50, 825–833 (2018).

  40. 40.

    Saper, C. B., Scammell, T. E. & Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263 (2005).

    CAS  Article  Google Scholar 

  41. 41.

    Lane, J. M. et al. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nat. Commun. 7, 10889 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Hu, Y. et al. GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. Nat. Commun. 7, 10448 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Jones, S. E. et al. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. PLoS Genet. 12, e1006125 (2016).

    Article  Google Scholar 

  44. 44.

    Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).

    Article  Google Scholar 

  45. 45.

    Vetrivelan, R., Qiu, M.-H., Chang, C. & Lu, J. Role of basal ganglia in sleep–wake regulation: neural circuitry and clinical significance. Front. Neuroanat. 4, 145 (2010).

    Article  Google Scholar 

  46. 46.

    Lazarus, M., Huang, Z.-L., Lu, J., Urade, Y. & Chen, J.-F. How do the basal ganglia regulate sleep–wake behavior? Trends Neurosci. 35, 723–732 (2012).

    CAS  Article  Google Scholar 

  47. 47.

    Swardfager, W., Rosenblat, J. D., Benlamri, M. & McIntyre, R. S. Mapping inflammation onto mood: inflammatory mediators of anhedonia. Neurosci. Biobehav. Rev. 64, 148–166 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Wilson, C. J. & Groves, P. M. Spontaneous firing patterns of identified spiny neurons in the rat neostriatum. Brain Res. 220, 67–80 (1981).

    CAS  Article  Google Scholar 

  49. 49.

    Qiu, M., Vetrivelan, R., Fuller, P. M. & Lu, J. Basal ganglia control of sleep–wake behavior and cortical activation. Eur. J. Neurosci. 31, 499–507 (2010).

    Article  Google Scholar 

  50. 50.

    Wassing, R. et al. Slow dissolving of emotional distress contributes to hyperarousal. Proc. Natl Acad. Sci. USA 113, 2538–2543 (2016).

    CAS  Article  Google Scholar 

  51. 51.

    Feige, B. et al. Insomnia—perchance a dream? Results from a NREM/REM sleep awakening study in good sleepers and patients with insomnia. Sleep 41, 10.1093/sleep/zsy032 (2018).

  52. 52.

    Krystal, A. D., Edinger, J. D., Wohlgemuth, W. K. & Marsh, G. R. NREM sleep EEG frequency spectral correlates of sleep complaints in primary insomnia subtypes. Sleep 25, 630–640 (2002).

    PubMed  Google Scholar 

  53. 53.

    Johann, A. F. et al. Insomnia with objective short sleep duration is associated with longer duration of insomnia in the Freiburg Insomnia Cohort compared to insomnia with normal sleep duration, but not with hypertension. PLoS ONE 12, e0180339 (2017).

    Article  Google Scholar 

  54. 54.

    Stoffers, D. et al. The caudate: a key node in the neuronal network imbalance of insomnia? Brain 137, 610–620 (2014).

    Article  Google Scholar 

  55. 55.

    Altena, E. et al. Prefrontal hypoactivation and recovery in insomnia. Sleep 31, 1271–1276 (2008).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Dai, X.-J. et al. Altered intrinsic regional brain spontaneous activity and subjective sleep quality in patients with chronic primary insomnia: a resting-state fMRI study. Neuropsychiatr. Dis. Treat. 10, 2163–2175 (2014).

    Article  Google Scholar 

  57. 57.

    Nagel, M. et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways.Nat. Genet. 50, 920–927 (2018).

    CAS  Article  Google Scholar 

  58. 58.

    Mathur, B. N. The claustrum in review. Front. Syst. Neurosci. 8, 48 (2014).

    Article  Google Scholar 

  59. 59.

    Wei, Y. et al. I keep a close watch on this heart of mine: increased interoception in insomnia. Sleep 39, 2113–2124 (2016).

    Article  Google Scholar 

  60. 60.

    Renouard, L. et al. The supramammillary nucleus and the claustrum activate the cortex during REM sleep. Sci. Adv. 1, e1400177 (2015).

    Article  Google Scholar 

  61. 61.

    Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nat. Neurosci. 18, 1832–1844 (2015).

    CAS  Article  Google Scholar 

  62. 62.

    Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    CAS  Article  Google Scholar 

  63. 63.

    de Leeuw, C. A., Neale, B. M., Heskes, T. & Posthuma, D. The statistical properties of gene-set analysis. Nat. Rev. Genet. 17, 353–364 (2016).

    CAS  Article  Google Scholar 

  64. 64.

    Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    CAS  Article  Google Scholar 

  65. 65.

    Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  Google Scholar 

  66. 66.

    Westra, H.-J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    CAS  Article  Google Scholar 

  67. 67.

    Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    CAS  Article  Google Scholar 

  68. 68.

    Zhernakova, D. V. et al. Identification of context-dependent expression quantitative trait loci in whole blood. Nat. Genet. 49, 139–145 (2017).

    CAS  Article  Google Scholar 

  69. 69.

    Schmitt, A. D. et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 17, 2042–2059 (2016).

    CAS  Article  Google Scholar 

  70. 70.

    MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).

    CAS  Article  Google Scholar 

  71. 71.

    Vilhjálmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 97, 576–592 (2015).

    Article  Google Scholar 

  72. 72.

    Euesden, J., Lewis, C. M. & O’Reilly, P. F. PRSice: Polygenic Risk Score software. Bioinformatics 31, 1466–1468 (2015).

    CAS  Article  Google Scholar 

Download references


This work was funded by The Netherlands Organization for Scientific Research (NWO Brain and Cognition 433-09-228, NWO MagW VIDI 452-12-014, NWO VICI 435-13-005 and 453-07-001, and NWO 645-000-003). P.R.J. was funded by the Sophia Foundation for Scientific Research (S14-27), E.J.W.V.S. was funded by the European Research Council (grant no. ERC-ADG-2014-671084 INSOMNIA), and J.B. was funded by the Swiss National Science Foundation (grant no. P2GEP3_165049). N.G.S. was supported by the Wellcome Trust (grant no. 108726/Z/15/Z). J.H.L. was funded by the Swedish Research Council (Vetenskapsrådet, award no. 2014-3863), the Swedish Brain Foundation (Hjärnfonden) and the Wellcome Trust (grant no. 108726/Z/15/Z). Analyses were carried out on the Genetic Cluster Computer, which is financed by the NWO (480-05-003), by the VU University, Amsterdam, and by the Dutch Brain Foundation, and is hosted by the Dutch National Computing and Networking Services SurfSARA. This research has been conducted using the UK Biobank Resource (application no. 16406). We thank the UK Biobank and 23andMe research participants and employees for making this work possible.

Author information





D.P. and E.J.W.V.S. conceived the study. D.P. supervised the pre- and post-GWAS analysis pipeline. P.R.J. and K.W. performed the analyses. S.St. performed the quality control on the UKB data and wrote the analysis pipeline. K.W. wrote the online platform (FUMA) that was used for the follow-up analyses. C.d.L. conducted conditional gene-set analyses. J.B., N.S., A.M.M., and J.H.L. contributed single-cell RNA sequencing information. J.Y.T., D.A.H., V.V., X.W., and the 23andMe Research Team contributed and analyzed the 23andMe cohort data. D.P., E.J.W.V.S., and P.R.J. wrote the paper. A.R.H., J.S.B., M.N., J.E.S., P.F.S., S.v.d.S., T.J.C.P. conducted part of the analyses. A.B.S. interpreted the findings in biological context and commented on the manuscript. H.T. and T.W. read the manuscript. All authors discussed the results and approved the final version of the paper.

Corresponding author

Correspondence to Danielle Posthuma.

Ethics declarations

Competing interests

P.F.S. is a grant recipient and advisor to Lundbeck A/G. D.A.H., J.Y.T., V.V., and X.W. are employees of 23andMe.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Note and Supplementary Figs. 1–9

Reporting Summary

Supplementary Tables

Supplementary Tables 1–33

Supplementary Dataset 1

Regional association plots of 202 genome-wide-significant loci in the insomnia meta-analysis in 1,331,010 individuals.

Supplementary Dataset 2

Chromatin interaction maps based on significant loci in the insomnia meta-analysis in 1,331,010 individuals.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jansen, P.R., Watanabe, K., Stringer, S. et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat Genet 51, 394–403 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing