Article | Published:

An atlas of genetic influences on osteoporosis in humans and mice

Nature Geneticsvolume 51pages258266 (2019) | Download Citation


Osteoporosis is a common aging-related disease diagnosed primarily using bone mineral density (BMD). We assessed genetic determinants of BMD as estimated by heel quantitative ultrasound in 426,824 individuals, identifying 518 genome-wide significant loci (301 novel), explaining 20% of its variance. We identified 13 bone fracture loci, all associated with estimated BMD (eBMD), in ~1.2 million individuals. We then identified target genes enriched for genes known to influence bone density and strength (maximum odds ratio (OR) = 58, P = 1 × 10−75) from cell-specific features, including chromatin conformation and accessible chromatin sites. We next performed rapid-throughput skeletal phenotyping of 126 knockout mice with disruptions in predicted target genes and found an increased abnormal skeletal phenotype frequency compared to 526 unselected lines (P < 0.0001). In-depth analysis of one gene, DAAM2, showed a disproportionate decrease in bone strength relative to mineralization. This genetic atlas provides evidence linking associated SNPs to causal genes, offers new insight into osteoporosis pathophysiology, and highlights opportunities for drug development.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

Human genotype and phenotype data on which the results of this study were based are available upon application from the UK Biobank ( GWAS summary statistics for eBMD and fracture can be downloaded from the GEFOS website ( RNA-seq and ATAC-seq data generated for human osteoblast cell lines, including re-called DHS peaks from human primary osteoblasts, can be downloaded from the Gene Expression Omnibus (accession number GSE120755). Mouse phenotype data are available online from the IMPC ( and OBCD (

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 15 April 2019

    In the version of this article initially published, in Fig. 5a, the data in the right column of ‘DAAM2 gRNA1’ were incorrectly plotted as circles indicating ‘untreated’ rather than as squares indicating ‘treated’. The error has been corrected in the HTML and PDF versions of the article.


  1. 1.

    World Health Organization. Consensus development conference: Prophylaxis and treatment of osteoporosis. Osteoporos. Int. 1, 114–117 (1991).

  2. 2.

    Richards, J. B., Zheng, H.-F. & Spector, T. D. Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat. Rev. Genet. 13, 576–588 (2012).

  3. 3.

    Johnell, O. et al. Predictive value of BMD for hip and other fractures. J. Bone Miner. Res. 20, 1185–1194 (2005).

  4. 4.

    Kemp, J. P. et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat. Genet. 49, 1468–1475 (2017).

  5. 5.

    Arden, N. K., Baker, J., Hogg, C., Baan, K. & Spector, T. D. The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J. Bone Miner. Res. 11, 530–534 (1996).

  6. 6.

    Hunter, D. J. et al. Genetic variation in bone mineral density and calcaneal ultrasound: A study of the influence of menopause using female twins. Osteoporos. Int. 12, 406–411 (2001).

  7. 7.

    Bauer, D. C. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. Arch. Intern. Med. 157, 629 (1997).

  8. 8.

    Bauer, D. C. et al. Quantitative ultrasound predicts hip and non-spine fracture in men: The MrOS study. Osteoporos. Int. 18, 771–777 (2007).

  9. 9.

    Karasik, D. et al. Mapping of quantitative ultrasound of the calcaneus bone to chromosome 1 by genome-wide linkage analysis. Osteoporos. Int. 13, 796–802 (2002).

  10. 10.

    Medina-Gomez, C. et al. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am. J. Hum. Genet. 102, 88–102 (2018).

  11. 11.

    McCloskey, E. V. et al. Predictive ability of heel quantitative ultrasound for incident fractures: an individual-level meta-analysis. Osteoporos. Int. 26, 1979–1987 (2015).

  12. 12.

    Timpson, N. J., Greenwood, C. M. T., Soranzo, N., Lawson, D. J. & Richards, J. B. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 19, 110–124 (2018).

  13. 13.

    Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

  14. 14.

    Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

  15. 15.

    Benner, C. et al. FINEMAP: Efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

  16. 16.

    Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

  17. 17.

    Rivadeneira, F. & Mäkitie, O. Osteoporosis and bone mass disorders: from gene pathways to treatments. Trends. Endocrinol. Metab. 27, 262–281 (2016).

  18. 18.

    Watanabe, K., Taskesen, E., Van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

  19. 19.

    Kutmon, M. et al. WikiPathways: Capturing the full diversity of pathway knowledge. Nucleic Acids Res. 44, D488–D494 (2016).

  20. 20.

    Dallas, S. L. & Bonewald, L. F. Dynamics of the transition from osteoblast to osteocyte. Ann. NY Acad. Sci. 1192, 437–443 (2010).

  21. 21.

    Youlten, S. et al. Osteocytes express a unique transcriptome that underpins skeletal homeostasis.J. Bone Min. Res. 32 (Suppl 1), S55–S56 (2017).

  22. 22.

    Lee, H. K. & Deneen, B. Daam2 Is required for dorsal patterning via modulation of canonical Wnt signaling in the developing spinal cord. Dev. Cell. 22, 183–196 (2012).

  23. 23.

    Lee, H. K. et al. Daam2-PIP5K is a regulatory pathway for Wnt signaling and therapeutic target for remyelination in the CNS. Neuron 85, 1227–1243 (2015).

  24. 24.

    Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

  25. 25.

    Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

  26. 26.

    Bone, H. G. et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 5, 513–523 (2017).

  27. 27.

    Lawlor, D. A., Tilling, K. & Smith, G. D. Triangulation in aetiological epidemiology. Int. J. Epidemiol. 45, 1866–1886 (2016).

  28. 28.

    Moayyeri, A. et al. Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporos. Int. 23, 143–153 (2012).

  29. 29.

    Grundberg, E. et al. Population genomics in a disease targeted primary cell model. Genome Res. 19, 1942–1952 (2009).

  30. 30.

    Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

  31. 31.

    Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

  32. 32.

    Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

  33. 33.

    Winkler, T. W. et al. EasyStrata: Evaluation and visualization of stratified genome-wide association meta-Analysis data. Bioinformatics 31, 259–261 (2015).

  34. 34.

    Cochran, W. G. The combination of estimates from different experiments. Biometrics 10, 101 (1954).

  35. 35.

    Willer, C. J., Li, Y. & Abecasis, G. R. METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

  36. 36.

    Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

  37. 37.

    Bulik-Sullivan, B. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

  38. 38.

    Witte, J. S., Visscher, P. M. & Wray, N. R. The contribution of genetic variants to disease depends on the ruler. Nat. Rev. Genet. 15, 765–776 (2014).

  39. 39.

    Chapman, J. M., Cooper, J. D., Todd, J. A. & Clayton, D. G. Detecting disease associations due to linkage disequilibrium using haplotype tags: a class of tests and the determinants of statistical power. Hum. Hered. 56, 18–31 (2003).

  40. 40.

    Spencer, C. C. A., Su, Z., Donnelly, P. & Marchini, J. Designing genome-wide association studies: Sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 5, e1000477 (2009).

  41. 41.

    Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

  42. 42.

    Hart, T., Komori, H. K., LaMere, S., Podshivalova, K. & Salomon, D. R. Finding the active genes in deep RNA-seq gene expression studies. BMC Genomics 14, 778 (2013).

  43. 43.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

  44. 44.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

  45. 45.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

  46. 46.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

  47. 47.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

  48. 48.

    Schmitt, A. D. et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Reports 17, 2042–2059 (2016).

  49. 49.

    Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

  50. 50.

    Belaghzal, H., Dekker, J. & Gibcus, J. H. Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation. Methods 123, 56–65 (2017).

  51. 51.

    Servant, N. et al. HiC-Pro: An optimized and flexible pipeline for Hi-C data processing. Genome. Biol. 16, 259 (2015).

  52. 52.

    Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

  53. 53.

    Mifsud, B. et al. GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data. PLoS One 12, e0174744 (2017).

  54. 54.

    Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

  55. 55.

    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

  56. 56.

    Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

  57. 57.

    Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

  58. 58.

    Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome. Biol. 17, 148 (2016).

Download references


This research has been conducted using the UK Biobank Resource (accession IDs: 24268, 12703 and 4580). J.B.R. was supported by the Canadian Institutes of Health Research, the Canadian Foundation for Innovation and the Fonds de Recherche Santé Québec (FRSQ), and a FRQS Clinical Research Scholarship. TwinsUK is funded by the Wellcome Trust, Medical Research Council, European Union, the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility, and Biomedical Research Centre based at Guy’s and St Thomas’s NHS Foundation Trust in partnership with King’s College London. J.A.M. was funded by the Canadian Institutes of Health Research. D.M.E. was funded by a National Health and Medical Research Council Senior Research Fellowship (APP1137714) and funded by a Medical Research Council Programme Grant (MC_UU_12013/4). J.P.K. was funded by a University of Queensland Development Fellowship (UQFEL1718945). C.L.G. was funded by Arthritis Research UK (ref; 20000). G.R.W., J.H.D.B., and P.I.C. were funded by the Wellcome Trust (Strategic Award grant number 101123; project grant 094134), and P.I.C. was also funded by the Mrs. Janice Gibson and the Ernest Heine Family Foundation. D.K. was supported by Israel Science Foundation grant #1283/14. Y-H.H. was funded by US NIH NIAMS 1R01AR072199. F.R., C.M-G., and K.T. were funded by the Netherlands Organization for Health Research and Development (ZonMw VIDI 016.136.361 grant). C.L.A-B. was funded by NIH/NIAMS AR063702 AR060981. D.P.K. was funded by grants from the National Institute of Arthritis Musculoskeletal and Skin Diseases R01 AR041398, R01 AR072199. S.Y. was funded by the Australian Government Research Training Program Scholarship. J.R. and S.K. were funded by the Genetic Factors of Osteoporosis-GEFOS EU FP7 Integrated Project Grant Reference: 201865 2008-12 and 2007-12 UK NIHR Biomedical Research Centre Grant (Musculoskeletal theme) to Cambridge Clinical School. C.O. was supported by the Swedish Research Council, Swedish Foundation for Strategic Research, ALF/LUA research grant from the Sahlgrenska University Hospital, Lundberg Foundation, European Calcified Tissue Society, Torsten and Ragnar Söderberg’s Foundation, Novo Nordisk Foundation, and Knut and Alice Wallenberg Foundation. M.T.M. was supported by NIH grant R35 GM119703. We thank M. Schull for assistance with high-performance computing at the University of Queensland Diamantina Institute and T. Winkler for invaluable technical support for the EasyStrata Software used in this study. We thank the Sanger Institute’s Research Support Facility, Mouse Pipelines and Mouse Informatics Group who generated the mice and collected materials for this manuscript. We would like to thank the research participants and employees of 23andMe, Inc. for making this work possible.

Author information

Author notes

  1. These authors contributed equally: John A. Morris, John P. Kemp.

  2. These authors jointly supervised this work: David M. Evans, J. Brent Richards.


  1. Department of Human Genetics, McGill University, Montréal, Québec, Canada

    • John A. Morris
    •  & J. Brent Richards
  2. Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada

    • John A. Morris
    • , Laetitia Laurent
    • , Vincenzo Forgetta
    •  & J. Brent Richards
  3. University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia

    • John P. Kemp
    • , Thomas A. D. Hassall
    •  & David M. Evans
  4. MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK

    • John P. Kemp
    •  & David M. Evans
  5. Garvan Institute of Medical Research, Sydney, New South Wales, Australia

    • Scott E. Youlten
    • , Ryan C. Chai
    • , Sindhu T. Mohanty
    • , C. Marcelo Sergio
    • , Julian Quinn
    • , Paul Baldock
    •  & Peter I. Croucher
  6. Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK

    • John G. Logan
    • , Elena J. Ghirardello
    • , Natalie C. Butterfield
    • , Katharine F. Curry
    • , Victoria D. Leitch
    • , Penny C. Sparkes
    • , Anne-Tounsia Adoum
    • , Naila S. Mannan
    • , Davide S. K. Komla-Ebri
    • , Andrea S. Pollard
    • , Hannah F. Dewhurst
    • , Graham R. Williams
    •  & J. H. Duncan Bassett
  7. Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA

    • Nicholas A. Vulpescu
    •  & Matthew T. Maurano
  8. Department of Research, 23andMe, Inc., Mountain View, CA, USA

    • Aaron Kleinman
    • , Michelle Agee
    • , Babak Alipanahi
    • , Adam Auton
    • , Robert K. Bell
    • , Katarzyna Bryc
    • , Sarah L. Elson
    • , Pierre Fontanillas
    • , Nicholas A. Furlotte
    • , Jennifer C. McCreight
    • , Karen E. Huber
    • , Nadia K. Litterman
    • , Matthew H. McIntyre
    • , Joanna L. Mountain
    • , Elizabeth S. Noblin
    • , Carrie A. M. Northover
    • , Steven J. Pitts
    • , J. Fah Sathirapongsasuti
    • , Olga V. Sazonova
    • , Janie F. Shelton
    • , Suyash Shringarpure
    • , Chao Tian
    • , Joyce Y. Tung
    • , Vladimir Vacic
    • , Catherine H. Wilson
    •  & David A. Hinds
  9. Research Institute of the McGill University Health Centre, Montréal, Québec, Canada

    • Loan Nguyen-Yamamoto
    • , Aimee-Lee Luco
    •  & David Goltzman
  10. McGill University and Genome Quebec Innovation Centre, Montréal, Québec, Canada

    • Jinchu Vijay
    • , Marie-Michelle Simon
    • , Albena Pramatarova
    •  & Elin Grundberg
  11. Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands

    • Carolina Medina-Gomez
    • , Katerina Trajanoska
    •  & Fernando Rivadeneira
  12. Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA

    • Michael-John G. Beltejar
  13. Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA

    • Douglas J. Adams
  14. Department of Medicine, McGill University, Montréal, Québec, Canada

    • Suzanne M. Vaillancourt
    •  & J. Brent Richards
  15. Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK

    • Stephen Kaptoge
  16. MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK

    • Cyrus Cooper
    •  & Nicholas C. Harvey
  17. NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK

    • Cyrus Cooper
    •  & Nicholas C. Harvey
  18. NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK

    • Cyrus Cooper
    •  & Jonathan Reeve
  19. Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece

    • Evangelia E. Ntzani
    •  & Evangelos Evangelou
  20. Center for Evidence Synthesis in Health, Department of Health Services, Policy and Practice, School of Public Health, Brown University, Providence, RI, USA

    • Evangelia E. Ntzani
  21. Department of Epidemiology and Biostatistics, Imperial College London, London, UK

    • Evangelos Evangelou
  22. Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden

    • Claes Ohlsson
  23. Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA

    • David Karasik
    • , Douglas P. Kiel
    •  & Yi-Hsiang Hsu
  24. Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA

    • Douglas P. Kiel
    •  & Yi-Hsiang Hsu
  25. Department of Medicine, Harvard Medical School, Boston, MA, USA

    • Douglas P. Kiel
    •  & Yi-Hsiang Hsu
  26. Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, MA, USA

    • Douglas P. Kiel
    •  & Yi-Hsiang Hsu
  27. Musculoskeletal Research Unit, Department of Translational Health Sciences, University of Bristol, Bristol, UK

    • Jonathan H. Tobias
    •  & Celia L. Gregson
  28. Children’s Mercy Hospitals and Clinics, Kansas City, MO, USA

    • Elin Grundberg
  29. Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK

    • David J. Adams
    •  & Christopher J. Lelliott
  30. Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, Rochester, NY, USA

    • Cheryl L. Ackert-Bicknell
  31. Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montréal, Québec, Canada

    • J. Brent Richards
  32. Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK

    • J. Brent Richards


  1. Search for John A. Morris in:

  2. Search for John P. Kemp in:

  3. Search for Scott E. Youlten in:

  4. Search for Laetitia Laurent in:

  5. Search for John G. Logan in:

  6. Search for Ryan C. Chai in:

  7. Search for Nicholas A. Vulpescu in:

  8. Search for Vincenzo Forgetta in:

  9. Search for Aaron Kleinman in:

  10. Search for Sindhu T. Mohanty in:

  11. Search for C. Marcelo Sergio in:

  12. Search for Julian Quinn in:

  13. Search for Loan Nguyen-Yamamoto in:

  14. Search for Aimee-Lee Luco in:

  15. Search for Jinchu Vijay in:

  16. Search for Marie-Michelle Simon in:

  17. Search for Albena Pramatarova in:

  18. Search for Carolina Medina-Gomez in:

  19. Search for Katerina Trajanoska in:

  20. Search for Elena J. Ghirardello in:

  21. Search for Natalie C. Butterfield in:

  22. Search for Katharine F. Curry in:

  23. Search for Victoria D. Leitch in:

  24. Search for Penny C. Sparkes in:

  25. Search for Anne-Tounsia Adoum in:

  26. Search for Naila S. Mannan in:

  27. Search for Davide S. K. Komla-Ebri in:

  28. Search for Andrea S. Pollard in:

  29. Search for Hannah F. Dewhurst in:

  30. Search for Thomas A. D. Hassall in:

  31. Search for Michael-John G. Beltejar in:

  32. Search for Douglas J. Adams in:

  33. Search for Suzanne M. Vaillancourt in:

  34. Search for Stephen Kaptoge in:

  35. Search for Paul Baldock in:

  36. Search for Cyrus Cooper in:

  37. Search for Jonathan Reeve in:

  38. Search for Evangelia E. Ntzani in:

  39. Search for Evangelos Evangelou in:

  40. Search for Claes Ohlsson in:

  41. Search for David Karasik in:

  42. Search for Fernando Rivadeneira in:

  43. Search for Douglas P. Kiel in:

  44. Search for Jonathan H. Tobias in:

  45. Search for Celia L. Gregson in:

  46. Search for Nicholas C. Harvey in:

  47. Search for Elin Grundberg in:

  48. Search for David Goltzman in:

  49. Search for David J. Adams in:

  50. Search for Christopher J. Lelliott in:

  51. Search for David A. Hinds in:

  52. Search for Cheryl L. Ackert-Bicknell in:

  53. Search for Yi-Hsiang Hsu in:

  54. Search for Matthew T. Maurano in:

  55. Search for Peter I. Croucher in:

  56. Search for Graham R. Williams in:

  57. Search for J. H. Duncan Bassett in:

  58. Search for David M. Evans in:

  59. Search for J. Brent Richards in:


  1. 23andMe Research Team


J.A.M., J.P.K., A.P., C.L.A-B., C.L.G., C.O., D.K., D.P.K., E.E., E.G., F.R., G.R.W., J.H.D.B., J.H.T., M.T.M., N.C.H., P.I.C., V.F., Y-H.H., D.M.E. and J.B.R. conceived of and designed experiments. J.A.M., J.P.K., A.K., A.S.P., A.-T.A., C.C., D.A.H., D.G., D.S.K.K.-E., E.E.N., E.J.G., H.F.D., J.G.L., J.R., K.F.C., K.T., M.-J.G.B., N.A.V., N.C.B., N.S.M., P.C.S., R.C.C., S.E.Y., S.M.V., S.K., T.A.D.H., V.D.L., A.P., C.L.A.-B., C.L.G., D.M.E., E.G., G.R.W., J.H.D.B., M.T.M., N.C.H., V.F., Y.-H.H. and J.B.R. performed data analysis. J.A.M., J.P.K, A-L.L., A-T.A., C.J.L., C.M-G., C.M.S., D.G., David J. Adams, Douglas J. Adams, E.J.G., H.F.D., J.G.L., J.Q., J.V., K.F.C., L.L., L.N-Y., M.-J.G.B., M-M.S., N.S.M., P.B., P.C.S., R.C.C., S.E.Y., S.T.M., A.P., C.L.A.-B., and Y.-H.H. conducted experiments. J.A.M., J.P.K., G.R.W., J.H.D.B., D.M.E. and J.B.R. wrote the manuscript. J.A.M. and J.P.K. were the lead analysts. All authors revised and reviewed the paper.

Competing interests

A.K. and D.A.H. are employees of 23andMe, Inc.

Corresponding authors

Correspondence to David M. Evans or J. Brent Richards.

Supplementary information

  1. Supplementary Text and Figures

    Supplementary Figures 1–23 and Supplementary Note

  2. Reporting Summary

  3. Supplementary Tables

    Supplementary Tables 1–22

About this article

Publication history




Issue Date


Further reading