The copy number variation landscape of congenital anomalies of the kidney and urinary tract

Abstract

Congenital anomalies of the kidney and urinary tract (CAKUT) are a major cause of pediatric kidney failure. We performed a genome-wide analysis of copy number variants (CNVs) in 2,824 cases and 21,498 controls. Affected individuals carried a significant burden of rare exonic (that is, affecting coding regions) CNVs and were enriched for known genomic disorders (GD). Kidney anomaly (KA) cases were most enriched for exonic CNVs, encompassing GD-CNVs and novel deletions; obstructive uropathy (OU) had a lower CNV burden and an intermediate prevalence of GD-CNVs; and vesicoureteral reflux (VUR) had the fewest GD-CNVs but was enriched for novel exonic CNVs, particularly duplications. Six loci (1q21, 4p16.1-p16.3, 16p11.2, 16p13.11, 17q12 and 22q11.2) accounted for 65% of patients with GD-CNVs. Deletions at 17q12, 4p16.1-p16.3 and 22q11.2 were specific for KA; the 16p11.2 locus showed extensive pleiotropy. Using a multidisciplinary approach, we identified TBX6 as a driver for the CAKUT subphenotypes in the 16p11.2 microdeletion syndrome.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Burden of rare copy number variants in CAKUT cases compared with controls.
Fig. 2: Common genomic disorders loci in CAKUT cases and their prevalence in controls.
Fig. 3: Analysis of urinary tract phenotypes in Tbx6rv/– mutants.
Fig. 4: Analysis of urinary tract phenotypes in Tbx6rv/rv mutants.

Data availability

Raw data that support the findings of this study will in part be available from the corresponding authors upon reasonable request and are in part available from dbGaP (https://www.ncbi.nlm.nih.gov/gap; accession pending). Some restrictions may apply according to participants’ consent and privacy protection. All images generated from mouse experiments reported in this study will also be available from the corresponding authors upon reasonable request.

References

  1. 1.

    Wuhl, E. et al. Timing and outcome of renal replacement therapy in patients with congenital malformations of the kidney and urinary tract. Clin. J. Am. Soc. Nephrol. 8, 67–74 (2013).

    Article  Google Scholar 

  2. 2.

    Chesnaye, N. C. et al. Mortality risk disparities in children receiving chronic renal replacement therapy for the treatment of end-stage renal disease across Europe: an ESPN-ERA/EDTA registry analysis. Lancet 389, 2128–2137 (2017).

    Article  Google Scholar 

  3. 3.

    Sanna-Cherchi, S. et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int. 76, 528–533 (2009).

    Article  Google Scholar 

  4. 4.

    Goodyer, P. R. Renal dysplasia/hypoplasia. in Pediatric Nephrology 5th edn. (eds. Avner, E. D., Harmon, W. E. & Niaudet, P.) 83–91 (Lippincott Williams & Wilkins, Philadelphia, 2004).

  5. 5.

    Sanna-Cherchi, S., Westland, R., Ghiggeri, G. M. & Gharavi, A. G. Genetic basis of human congenital anomalies of the kidney and urinary tract. J. Clin. Invest. 128, 4–15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Schedl, A. Renal abnormalities and their developmental origin. Nat. Rev. Genet. 8, 791–802 (2007).

    Article  CAS  Google Scholar 

  7. 7.

    Costantini, F. & Kopan, R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev. Cell. 18, 698–712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Short, K. M. & Smyth, I. M. The contribution of branching morphogenesis to kidney development and disease. Nat. Rev. Nephrol. 12, 754–767 (2016).

    Article  CAS  Google Scholar 

  9. 9.

    dos Santos Junior, A. C., de Miranda, D. M. & Simoes e Silva, A. C. Congenital anomalies of the kidney and urinary tract: an embryogenetic review. Birth Defects Res. C. Embryo Today 102, 374–381 (2014).

    Article  CAS  Google Scholar 

  10. 10.

    Chen, F. Genetic and developmental basis for urinary tract obstruction. Pediatr. Nephrol. 24, 1621–1632 (2009).

    Article  Google Scholar 

  11. 11.

    Vainio, S. & Lin, Y. Coordinating early kidney development: lessons from gene targeting. Nat. Rev. Genet. 3, 533–543 (2002).

    Article  CAS  Google Scholar 

  12. 12.

    Sanna-Cherchi, S. et al. Genetic approaches to human renal agenesis/hypoplasia and dysplasia. Pediatr. Nephrol. 22, 1675–1684 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Nicolaou, N., Renkema, K. Y., Bongers, E. M., Giles, R. H. & Knoers, N. V. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat. Rev. Nephrol. 11, 720–731 (2015).

    Article  CAS  Google Scholar 

  14. 14.

    Georgas, K. M. et al. An illustrated anatomical ontology of the developing mouse lower urogenital tract. Development 142, 1893–1908 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Thomas, R. et al. HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort. Pediatr. Nephrol. 26, 897–903 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Weber, S. et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J. Am. Soc. Nephrol. 17, 2864–2870 (2006).

    Article  CAS  Google Scholar 

  17. 17.

    Nicolaou, N. et al. Prioritization and burden analysis of rare variants in 208 candidate genes suggest they do not play a major role in CAKUT. Kidney Int. 89, 476–486 (2016).

    Article  CAS  Google Scholar 

  18. 18.

    Sanna-Cherchi, S. et al. Mutations in DSTYK and dominant urinary tract malformations. N. Engl. J. Med. 369, 621–629 (2013).

    Article  CAS  Google Scholar 

  19. 19.

    Vivante, A. et al. Mutations in TBX18 cause dominant urinary tract malformations via transcriptional dysregulation of ureter development. Am. J. Hum. Genet. 97, 291–301 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Schimmenti, L. A. et al. Further delineation of renal-coloboma syndrome in patients with extreme variability of phenotype and identical PAX2 mutations. Am. J. Hum. Genet. 60, 869–878 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Bekheirnia, M. R. et al. Whole-exome sequencing in the molecular diagnosis of individuals with congenital anomalies of the kidney and urinary tract and identification of a new causative gene. Genet. Med. 19, 412–420 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Ichikawa, I., Kuwayama, F., Pope, J. Ct, Stephens, F. D. & Miyazaki, Y. Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int. 61, 889–898 (2002).

    Article  PubMed  Google Scholar 

  23. 23.

    Lopez-Rivera, E. et al. Genetic drivers of kidney defects in the DiGeorge syndrome. N. Engl. J. Med. 376, 742–754 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Hwang, D. Y. et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 85, 1429–1433 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Vivante, A., Kohl, S., Hwang, D. Y., Dworschak, G. C. & Hildebrandt, F. Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatr. Nephrol. 29, 695–704 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Sanna-Cherchi, S. et al. Copy-number disorders are a common cause of congenital kidney malformations. Am. J. Hum. Genet. 91, 987–997 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Verbitsky, M. et al. Genomic imbalances in pediatric patients with chronic kidney disease. J. Clin. Invest. 125, 2171–2178 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Westland, R. et al. Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney. Kidney Int. 88, 1402–1410 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Ulinski, T. et al. Renal phenotypes related to hepatocyte nuclear factor-1beta (TCF2) mutations in a pediatric cohort. J. Am. Soc. Nephrol. 17, 497–503 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Madariaga, L. et al. Severe prenatal renal anomalies associated with mutations in HNF1B or PAX2 genes. Clin. J. Am. Soc. Nephrol. 8, 1179–1187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Hoskins, B. E. et al. Missense mutations in EYA1 and TCF2 are a rare cause of urinary tract malformations. Nephrol. Dial. Transplant. 23, 777–779 (2008).

    Article  CAS  Google Scholar 

  32. 32.

    Heidet, L. et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin. J. Am. Soc. Nephrol. 5, 1079–1090 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Carvalho, C. M. & Lupski, J. R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 17, 224–238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Lupski, J. R. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 14, 417–422 (1998).

    Article  CAS  Google Scholar 

  35. 35.

    Miller, D. T. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86, 749–764 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    South, S. T. et al. ACMG Standards and Guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision 2013. Genet. Med. 15, 901–909 (2013).

    Article  CAS  Google Scholar 

  37. 37.

    Swaminathan, G. J. et al. DECIPHER: web-based, community resource for clinical interpretation of rare variants in developmental disorders. Hum. Mol. Genet. 21, R37–R44 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Firth, H. V. et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using Ensembl resources. Am. J. Hum. Genet. 84, 524–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Grisaru, S., Ramage, I. J. & Rosenblum, N. D. Vesicoureteric reflux associated with renal dysplasia in the Wolf-Hirschhorn syndrome. Pediatr. Nephrol. 14, 146–148 (2000).

    Article  CAS  Google Scholar 

  40. 40.

    Mefford, H. C. et al. Recurrent reciprocal genomic rearrangements of 17q12 are associated with renal disease, diabetes, and epilepsy. Am. J. Hum. Genet. 81, 1057–1069 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Portnoi, M. F. Microduplication 22q11.2: a new chromosomal syndrome. Eur. J. Med. Genet. 52, 88–93 (2009).

    Article  Google Scholar 

  42. 42.

    Kobrynski, L. J. & Sullivan, K. E. Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet 370, 1443–1452 (2007).

    Article  CAS  Google Scholar 

  43. 43.

    Weber, S. et al. Mapping candidate regions and genes for congenital anomalies of the kidneys and urinary tract (CAKUT) by array-based comparative genomic hybridization. Nephrol. Dial. Transplant. 26, 136–143 (2011).

    Article  CAS  Google Scholar 

  44. 44.

    Hildebrandt, F. et al. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat. Genet. 17, 149–153 (1997).

    Article  CAS  Google Scholar 

  45. 45.

    Willatt, L. et al. 3q29 microdeletion syndrome: clinical and molecular characterization of a new syndrome. Am. J. Hum. Genet. 77, 154–160 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Mattina, T., Perrotta, C. S. & Grossfeld, P. Jacobsen syndrome. Orphanet. J. Rare. Dis. 4, 9 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Sampson, M. G. et al. Evidence for a recurrent microdeletion at chromosome 16p11.2 associated with congenital anomalies of the kidney and urinary tract (CAKUT) and Hirschsprung disease. Am. J. Med. Genet. A 152A, 2618–2622 (2010).

    Article  CAS  Google Scholar 

  48. 48.

    Fontes, M. I. et al. Genotype-phenotype correlation of 16p13.3 terminal duplication and 22q13.33 deletion: Natural history of a patient and review of the literature. Am. J. Med. Genet. A 170, 766–772 (2016).

    Article  CAS  Google Scholar 

  49. 49.

    Goh, E. S. et al. Definition of a critical genetic interval related to kidney abnormalities in the Potocki-Lupski syndrome. Am. J. Med. Genet. A 158A, 1579–1588 (2012).

    Article  CAS  Google Scholar 

  50. 50.

    Yamamoto, T. et al. A large interstitial deletion of 17p13.1p11.2 involving the Smith-Magenis chromosome region in a girl with multiple congenital anomalies. Am. J. Med. Genet. A 140, 88–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Kim, Y. M. et al. Phelan-McDermid syndrome presenting with developmental delays and facial dysmorphisms. Korean J. Pediatr. 59, S25–S28 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Ozgun, M. T. et al. Prenatal diagnosis of a fetus with partial trisomy 7p. Fetal. Diagn. Ther. 22, 229–232 (2007).

    Article  Google Scholar 

  53. 53.

    Trachoo, O., Assanatham, M., Jinawath, N. & Nongnuch, A. Chromosome 20p inverted duplication deletion identified in a Thai female adult with mental retardation, obesity, chronic kidney disease and characteristic facial features. Eur. J. Med. Genet. 56, 319–324 (2013).

    Article  Google Scholar 

  54. 54.

    Westland, R. et al. Phenotypic expansion of DGKE-associated diseases. J. Am. Soc. Nephrol. 25, 1408–1414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Karczewski, K. J. et al. The ExAC browser: displaying reference data information from over 60,000 exomes. Nucleic Acids Res. 45, D840–D845 (2017).

    Article  CAS  Google Scholar 

  56. 56.

    Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Materna-Kiryluk, A. et al. The emerging role of genomics in the diagnosis and workup of congenital urinary tract defects: a novel deletion syndrome on chromosome 3q13.31-22.1. Pediatr. Nephrol. 29, 257–267 (2014).

    Article  Google Scholar 

  58. 58.

    Lata, S. et al. Whole-exome sequencing in adults with chronic kidney disease: A pilot study. Ann. Intern. Med. 168, 100–109 (2018).

    Article  Google Scholar 

  59. 59.

    Wu, N. et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N. Engl. J. Med. 372, 341–350 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Al-Kateb, H. et al. Scoliosis and vertebral anomalies: additional abnormal phenotypes associated with chromosome 16p11.2 rearrangement. Am. J. Med. Genet. A 164A, 1118–1126 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Chapman, D. L. & Papaioannou, V. E. Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6. Nature 391, 695–697 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Chapman, D. L., Agulnik, I., Hancock, S., Silver, L. M. & Papaioannou, V. E. Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation. Dev. Biol. 180, 534–542 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Abe, K. et al. Novel ENU-induced mutation in Tbx6 causes dominant spondylocostal dysostosis-like vertebral malformations in the rat. PLoS ONE. 10, e0130231 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Lefebvre, M. et al. Autosomal recessive variations of TBX6, from congenital scoliosis to spondylocostal dysostosis. Clin. Genet. 91, 908–912 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. 66.

    Sparrow, D. B. et al. Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6. Hum. Mol. Genet. 22, 1625–1631 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    MacEwen, G. D., Winter, R. B., Hardy, J. H. & Sherk, H. H. Evaluation of kidney anomalies in congenital scoliosis. 1972. Clin. Orthop. Relat. Res. 434, 4–7 (2005).

  68. 68.

    Cowell, H. R., MacEwen, G. D. & Hubben, C. Incidence of abnormalities of the kidney and ureter in congenital scoliosis. Birth Defects. Orig. Artic. Ser. 10, 142–145 (1974).

    CAS  PubMed  Google Scholar 

  69. 69.

    MacEwen, G. D., Winter, R. B. & Hardy, J. H. Evaluation of kidney anomalies in congenital scoliosis. J. Bone Joint Surg. Am. 54, 1451–1454 (1972).

    Article  CAS  PubMed  Google Scholar 

  70. 70.

    Hadjantonakis, A. K., Pisano, E. & Papaioannou, V. E. Tbx6 regulates left/right patterning in mouse embryos through effects on nodal cilia and perinodal signaling. PLoS ONE. 3, e2511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Watabe-Rudolph, M., Schlautmann, N., Papaioannou, V. E. & Gossler, A. The mouse rib-vertebrae mutation is a hypomorphic Tbx6 allele. Mech. Dev. 119, 251–256 (2002).

    Article  CAS  Google Scholar 

  72. 72.

    Batourina, E. et al. Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat. Genet. 32, 109–115 (2002).

    Article  CAS  Google Scholar 

  73. 73.

    Batourina, E. et al. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat. Genet. 27, 74–78 (2001).

    Article  CAS  Google Scholar 

  74. 74.

    Batourina, E. et al. Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat. Genet. 37, 1082–1089 (2005).

    Article  CAS  Google Scholar 

  75. 75.

    Harambat, J., van Stralen, K. J., Kim, J. J. & Tizard, E. J. Epidemiology of chronic kidney disease in children. Pediatr. Nephrol. 27, 363–373 (2012).

    Article  Google Scholar 

  76. 76.

    Westland, R., Kurvers, R. A., van Wijk, J. A. & Schreuder, M. F. Risk factors for renal injury in children with a solitary functioning kidney. Pediatrics 131, e478–e485 (2013).

    Article  Google Scholar 

  77. 77.

    Westland, R., Schreuder, M. F., Bokenkamp, A., Spreeuwenberg, M. D. & van Wijk, J. A. Renal injury in children with a solitary functioning kidney: the KIMONO study. Nephrol. Dial. Transplant. 26, 1533–1541 (2011).

    Article  Google Scholar 

  78. 78.

    Westland, R., Schreuder, M. F., van Goudoever, J. B., Sanna-Cherchi, S. & van Wijk, J. A. Clinical implications of the solitary functioning kidney. Clin. J. Am. Soc. Nephrol. 9, 978–986 (2014).

    Article  Google Scholar 

  79. 79.

    Verbitsky, M. et al. Genomic disorders and neurocognitive impairment in pediatric CKD. J. Am. Soc. Nephrol. 28, 2303–2309 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Cooper, G. M. et al. A copy number variation morbidity map of developmental delay. Nat. Genet. 43, 838–846 (2011).

  81. 81.

    Greenway, S. C. et al. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat. Genet. 41, 931–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Osoegawa, K. et al. Identification of novel candidate genes associated with cleft lip and palate using array comparative genomic hybridisation. J. Med. Genet. 45, 81–86 (2008).

    Article  CAS  Google Scholar 

  83. 83.

    Serra-Juhe, C. et al. Contribution of rare copy number variants to isolated human malformations. PLoS ONE. 7, e45530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Brunetti-Pierri, N. et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat. Genet. 40, 1466–1471 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Stefansson, H. et al. Large recurrent microdeletions associated with schizophrenia. Nature 455, 232–236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Yu, L. et al. De novo copy number variants are associated with congenital diaphragmatic hernia. J. Med. Genet. 49, 650–659 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Mannik, K. et al. Copy number variations and cognitive phenotypes in unselected populations. JAMA 313, 2044–2054 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Golzio, C. & Katsanis, N. Genetic architecture of reciprocal CNVs. Curr. Opin. Genet. Dev. 23, 240–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Golzio, C. et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature 485, 363–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Gandelman, K. Y., Gibson, L., Meyn, M. S. & Yang-Feng, T. L. Molecular definition of the smallest region of deletion overlap in the Wolf-Hirschhorn syndrome. Am. J. Hum. Genet. 51, 571–578 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Driscoll, D. A., Budarf, M. L. & Emanuel, B. S. A genetic etiology for DiGeorge syndrome: consistent deletions and microdeletions of 22q11. Am. J. Hum. Genet. 50, 924–933 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Concepcion, D. et al. Cell lineage of timed cohorts of Tbx6-expressing cells in wild-type and Tbx6 mutant embryos. Biol. Open 6, 1065–1073 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Wang, K. et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17, 1665–1674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Fasel, D., Verbitsky, M. & Sanna-Cherchi, S. CNVkit: software tools for analyzing genomic structural variants. J. Am. Soc. Nephrol. 26 (Abstract edition), 443A (2015).

  99. 99.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009).

  100. 100.

    McKinney, W. Data Structures for Statistical Computing in Python. in Proc. 9th Python in Sci. Conference (eds. van der Walt, S. & Millman, J.) 51–56 (Austin, Texas, USA, 2010).

Download references

Acknowledgements

We thank all patients and family members for participating in this study. We thank J. R. Lupski for critical review of this manuscript. This work was supported by grants (1R01DK103184, 1R21DK098531 and UL1 TR000040, to S.S.-C.; 2R01DK080099, to A.G.G.; 3U54DK104309, to A.G.G., C.L.M. and J.M.B.; R37HD033082, to V.E.P.; and 1R01DK105124 to K.K.) from the National Institutes of Health (NIH); a grant-in-aid (13GRNT14680075, to S.S.-C.) from the American Heart Association; a grant (RF-2010–2307403, to S.S.-C. and G.M.G.) from the Joint Italian Ministry of Health and NIH Young Investigators Finalized Research; a grant (to G.M.G.) from the Fondazione Malattie Renali nel Bambino; grants to D.E.B. and P.P. from the National Children’s Research Centre and the Irish Health Research Board (HRA-POR-2014–693); a grant (AAE07007KSA, to C.J.) from the GIS-Institut des Maladies Rares; by the Polish Ministry of Health (to A.M.K. and A.L.-B.); by the Polish Kidney Genetics Network (POLYGENES), the Polish Registry of Congenital Malformations (PRCM) and the NZOZ Center for Medical Genetics (GENESIS); by grants (to the Chronic Kidney Disease in Children Study) from the National Institute of Diabetes and Digestive and Kidney Diseases and the Eunice Kennedy Shriver National Institute of Child Health and Human Development; by grants (U01DK66143, U01DK66174, U01DK082194, U01DK66116 and RO1DK082394) from the National Heart, Lung, and Blood Institute; and by the Paul Marks Scholar Award (to S.S.-C.); CNPq grant 460334/2014-0 and FAPEMIG grant PPM-005555-15 (to D.M.M., E.A.O. and A.C.S.-e.-S.); and a Kolff Postdoc Fellowship Abroad grant (15OKK95, to R.W.) from the Dutch Kidney Foundation. S.S.-C. is supported as the Florence Irving Assistant Professor of Medicine at Columbia University. We thank D.B. Goldstein for providing infrastructure for whole-exome sequencing at the Institute for Genomic Medicine (IGM) at Columbia University, and for critical review of the manuscript. Acknowledgments to the investigators who contributed of whole-exome sequencing data for 15,469 controls from the IGM warehouse can be found in the Supplementary Note.

Author information

Affiliations

Authors

Contributions

S.S.-C. directed the project. V.E.P., C.L.M., A.G.G. and S.S.-C. designed the project. M.V., R.W., A.P., Q.L., P.K., D.A.F., E.B., M.W., J.M., V.P.C., Y.-J.N., T.Y.L., D.A. and H.W. performed the experiments and/or data generation. M.G.S., M.G.D., J.M.D., P.P., D.E.B., S.L.F., B.A.W., C.J., D.M.M., E.A.O., A.C.S.-e.-S., F.H. and H.H. contributed array genotype data for CNV analyses. M.V., R.W., P.K., A.P., E.B., A.M., V.E.P., C.L.M. and S.S.-C. analyzed the data. K.K., J.M.B. and B.L. provided critical intellectual content for the design of the study. All other authors (A.M., M.B., C.K., A.V., S.S., B.H.K., M.M., J.Y.Z., P.L.W., E.L.H., A.C., G.P., L.G., V.M., G.M., M.G., D.C., C.I., F.S., J.A.E.v.W., M. Saraga, D.S., G.C., P.Z., D.D., K.Z., M.M., M.T., D.T., A.K., P.S., T.J., M.K.B.-K., R.P., M. Szczepanska., P.A., M.M.-W., G.K., A.S., M.Z., Z.G., V.J.L., V.T., I.P., L.A., L.M.R., J.M.C., S.A., P.C., F.L., W.N., G.M.G., A.L.-B., A.M.-K., C.S.W., N.W. and F.Z.) recruited cases and submitted clinical information for the study. M.V., R.W., V.E.P., C.L.M., A.G.G. and S.S.-C. wrote the draft of the manuscript. All authors critically revised the manuscript.

Corresponding authors

Correspondence to Virginia E. Papaioannou or Cathy L. Mendelsohn or Ali G. Gharavi or Simone Sanna-Cherchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1–6 and 15, and Supplementary Note

Reporting Summary

Supplementary Tables 7–14

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verbitsky, M., Westland, R., Perez, A. et al. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet 51, 117–127 (2019). https://doi.org/10.1038/s41588-018-0281-y

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing