Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis

Abstract

Osteoarthritis has a highly negative impact on quality of life because of the associated pain and loss of joint function. Here we describe the largest meta-analysis so far of osteoarthritis of the hip and the knee in samples from Iceland and the UK Biobank (including 17,151 hip osteoarthritis patients, 23,877 knee osteoarthritis patients, and more than 562,000 controls). We found 23 independent associations at 22 loci in the additive meta-analyses, of which 16 of the loci were novel: 12 for hip and 4 for knee osteoarthritis. Two associations are between rare or low-frequency missense variants and hip osteoarthritis, affecting the genes SMO (rs143083812, frequency 0.11%, odds ratio (OR) = 2.8, P = 7.9 × 10−12, p.Arg173Cys) and IL11 (rs4252548, frequency 2.08%, OR = 1.30, P = 2.1 × 10−11, p.Arg112His). A common missense variant in the COL11A1 gene also associates with hip osteoarthritis (rs3753841, frequency 61%, P = 5.2 × 10–10, OR = 1.08, p.Pro1284Leu). In addition, using a recessive model, we confirm an association between hip osteoarthritis and a variant of CHADL1 (rs117018441, P = 1.8 × 10−25, OR = 5.9). Furthermore, we observe a complex relationship between height and risk of osteoarthritis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Manhattan plots showing genome-wide association results from our meta-analysis of hip and knee osteoarthritis.
Fig. 2: Correlation between odds ratios of hip and knee osteoarthritis risk variants and effects on height and BMI.

Data availability

The Icelandic population whole-genome sequencing data have been deposited at the European Variant Archive under accession code PRJEB15197. The authors declare that the data supporting the findings of this study are available within the article, its supplementary files, and upon reasonable request.

References

  1. 1.

    Styrkarsdottir, U. et al. Whole-genome sequencing identifies rare genotypes in COMP and CHADL associated with high risk of hip osteoarthritis. Nat. Genet. 49, 801–805 (2017).

  2. 2.

    Litwic, A., Edwards, M., Dennison, E. & Cooper, C. Epidemiology and burden of osteoarthritis. Br. Med. Bull. 105, 185–199 (2013).

    Article  Google Scholar 

  3. 3.

    Felson, D. T. et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann. Intern. Med. 133, 635–646 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697–1707 (2012).

    Article  Google Scholar 

  5. 5.

    Miyamoto, Y. et al. A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat. Genet. 39, 529–533 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Valdes, A. M. et al. The GDF5 rs143383 polymorphism is associated with osteoarthritis of the knee with genome-wide statistical significance. Ann. Rheum. Dis. 70, 873–875 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Miyamoto, Y. et al. Common variants in DVWA on chromosome 3p24.3 are associated with susceptibility to knee osteoarthritis. Nat. Genet. 40, 994–998 (2008).

  8. 8.

    Kerkhof, H. J. M. et al. A genome-wide association study identifies a locus on chromosome 7q22 to influence susceptibility for osteoarthritis. Arthritis Rheum. 62, 499–510 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Evangelou, E. et al. Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22. Ann. Rheum. Dis. 70, 349–355 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    Day-Williams, A. G. et al. A variant in MCF2L is associated with osteoarthritis. Am. J. Hum. Genet. 89, 446–450 (2011).

  11. 11.

    arcOGEN Consortium. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 380, 815–823 (2012).

  12. 12.

    Evangelou, E. et al. The DOT1L rs12982744 polymorphism is associated with osteoarthritis of the hip with genome-wide statistical significance in males. Ann. Rheum. Dis. 72, 1264–1265 (2013).

  13. 13.

    Evangelou, E. et al. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip. Ann. Rheum. Dis. 73, 2130–2136 (2013).

    Article  Google Scholar 

  14. 14.

    Styrkarsdottir, U. et al. Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31. Nat. Genet. 46, 498–502 (2014).

  15. 15.

    Hackinger, S. et al. Evaluation of shared genetic aetiology between osteoarthritis and bone mineral density identifies SMAD3 as a novel osteoarthritis risk locus. Hum. Mol. Genet. 26, 3850–3858 (2017).

  16. 16.

    Liu, Y. et al. Genetic determinants of radiographic knee osteoarthritis in African Americans. J. Rheumatol. 44, 1652–1658 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    den Hollander, W. et al. Genome-wide association and functional studies identify a role for matrix Gla protein in osteoarthritis of the hand. Ann. Rheum. Dis. 76, 2046–2053 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Zengini, E. et al. Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat. Genet. 50, 549–558 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Casalone, E. et al. A novel variant in GLIS3 is associated with osteoarthritis. Ann. Rheum. Dis. 77, 620–623 (2018).

  20. 20.

    Sveinbjornsson, G. et al. Weighting sequence variants based on their annotation increases power of whole-genome association studies. Nat. Genet. 48, 314–317 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Wang, Y. et al. HFE C282Y homozygosity is associated with an increased risk of total hip replacement for osteoarthritis. Semin. Arthritis Rheum. 41, 872–878 (2012).

  22. 22.

    Elmberg, M., Hultcrantz, R., Simard, J. F., Carlsson, Å. & Askling, J. Increased risk of arthropathies and joint replacement surgery in patients with genetic hemochromatosis: a study of 3,531 patients and their 11,794 first-degree relatives. Arthritis Care Res. 65, 678–685 (2013).

  23. 23.

    Guggenbuhl, P., Brissot, P. & Loréal, O. Haemochromatosis: the bone and the joint. Best Pract. Res. Clin. Rheumatol. 25, 649–664 (2011).

    Article  Google Scholar 

  24. 24.

    Ingham, P. W., Nakano, Y. & Seger, C. Mechanisms and functions of Hedgehog signalling across the metazoa. Nat. Rev. Genet. 12, 393–406 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    Wu, F., Zhang, Y., Sun, B., McMahon, A. P. & Wang, Y. Hedgehog signaling: from basic biology to cancer therapy. Cell Chem. Biol. 24, 252–280 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Alman, B. A. The role of hedgehog signalling in skeletal health and disease. Nat. Rev. Rheumatol. 11, 552–560 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Lin, A. C. et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat. Med. 15, 1421–1425 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    Byrne, E. F. X. et al. Structural basis of smoothened regulation by its extracellular domains. Nature 535, 517–522 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Styrkarsdottir, U. et al. Sequence variants in the PTCH1 gene associate with spine bone mineral density and osteoporotic fractures. Nat. Commun. 7, 10129 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Sims, N. A. Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption. Int. J. Biochem. Cell. Biol. 79, 14–23 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Lanktree, M. B. et al. Meta-analysis of dense genecentric association studies reveals common and uncommon variants associated with height. Am. J. Hum. Genet. 88, 6–18 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. Nature 542, 186–190 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Lokau, J. et al. The SNP rs4252548 (R112H) which is associated with reduced human height compromises the stability of IL-11. Biochim. Biophys. Acta Mol. Cell Res. 1865, 496–506 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Rodriguez-Fontenla, C. et al. Assessment of osteoarthritis candidate genes in a meta-analysis of nine genome-wide association studies. Arthritis Rheumatol. 66, 940–949 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Vithana, E. N. et al. Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma. Nat. Genet. 44, 1142–1146 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Mio, F. et al. A functional polymorphism in COL11A1, which encodes the α1 chain of type XI collagen, is associated with susceptibility to lumbar disc herniation. Am. J. Hum. Genet. 81, 1271–1277 (2007).

  37. 37.

    Ramos, Y. F. M. et al. Genes involved in the osteoarthritis process identified through genome wide expression analysis in articular cartilage; the RAAK study. PLoS ONE 9, e103056 (2014).

    Article  Google Scholar 

  38. 38.

    Hjorten, R. et al. Type XXVII collagen at the transition of cartilage to bone during skeletogenesis. Bone 41, 535–542 (2007).

    CAS  Article  Google Scholar 

  39. 39.

    Nakoshi, Y. et al. Distribution and role of tenascin-C in human osteoarthritic cartilage. J. Orthop. Sci. 15, 666–673 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    Chantry, A. WWP2 ubiquitin ligase and its isoforms: new biological insight and promising disease targets. Cell Cycle 10, 2437–2439 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    Haro, E. et al. Lmx1b-targeted cis-regulatory modules involved in limb dorsalization. Development 144, 2009–2020 (2017).

  42. 42.

    Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Xu, X. et al. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res. 6, 2 (2018).

    Article  Google Scholar 

  44. 44.

    Dabovic, B. et al. Bone abnormalities in latent TGF-β binding protein (Ltbp)-3-null mice indicate a role for Ltbp-3 in modulating TGF-β bioavailability. J. Cell Biol. 156, 227–232 (2002).

    CAS  Article  Google Scholar 

  45. 45.

    Dabovic, B. et al. Osteopetrosis-like phenotype in latent TGF-β binding protein 3 deficient mice. Bone 37, 25–31 (2005).

    CAS  Article  Google Scholar 

  46. 46.

    Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

  47. 47.

    Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

  48. 48.

    Liu, B. et al. Relationship of height, weight and body mass index to the risk of hip and knee replacements in middle-aged women. Rheumatology 46, 861–867 (2007).

    CAS  Article  Google Scholar 

  49. 49.

    Maiju, W. et al. Association between height and osteoarthritis of the knee and hip: the Northern Finland Birth Cohort 1966 Study. Int. J. Rheum. Dis. 20, 1095–1104 (2017).

    Article  Google Scholar 

  50. 50.

    Turner, S. D. qqman: an R package for visualizing GWAS results using Q-Q and Manhattan plots. Preprint at bioRxiv https://doi.org/10.1101/005165 (2014).

  51. 51.

    Kerkhof, H. J. M. et al. Recommendations for standardization and phenotype definitions in genetic studies of osteoarthritis: the TREAT-OA consortium. Osteoarthritis Cartilage 19, 254–264 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    Schiphof, D. et al. Impact of different descriptions of the Kellgren and Lawrence classification criteria on the diagnosis of knee osteoarthritis. Ann. Rheum. Dis. 70, 1422–1427 (2011).

    CAS  Article  Google Scholar 

  53. 53.

    Ingvarsson, T., Hagglund, G., Jonsson, H. & Lohmander, L. S. Incidence of total hip replacement for primary osteoarthrosis in Iceland 1982–1996. Acta Orthop. 70, 229–233 (1999).

    CAS  Article  Google Scholar 

  54. 54.

    Franklin, J., Ingvarsson, T., Englund, M. & Lohmander, S. Association between occupation and knee and hip replacement due to osteoarthritis: a case–control study. Arthritis Res. Ther. 12, R102 (2010).

  55. 55.

    Sigurdardottir, L. G. et al. Data quality at the Icelandic Cancer Registry: comparability, validity, timeliness and completeness. Acta Oncol. 51, 880–889 (2012).

    Article  Google Scholar 

  56. 56.

    Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).

    CAS  Article  Google Scholar 

  57. 57.

    Jónsson, H. et al. Whole genome characterization of sequence diversity of 15,220 Icelanders. Sci. Data 4, 170115 (2017).

    Article  Google Scholar 

  58. 58.

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  Article  Google Scholar 

  59. 59.

    Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat. Genet. 40, 1068–1075 (2008).

    CAS  Article  Google Scholar 

  60. 60.

    Kong, A. et al. Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009).

    CAS  Article  Google Scholar 

  61. 61.

    Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    CAS  Article  Google Scholar 

  62. 62.

    Wain, L. V. et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Resp. Med. 3, 769–781 (2015).

    Article  Google Scholar 

  63. 63.

    Welsh, S., Peakman, T., Sheard, S. & Almond, R. Comparison of DNA quantification methodology used in the DNA extraction protocol for the UK Biobank cohort. BMC Genomics 18, 26 (2017).

    Article  Google Scholar 

  64. 64.

    1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

  65. 65.

    Haplotype Reference Consortium. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

  66. 66.

    Bycroft, C. et al. Genome-wide genetic data on ~500,000 UK Biobank participants. Preprint at bioRxiv https://doi.org/10.1101/166298 (2017).

  67. 67.

    Mantel, N. & Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719–748 (1959).

    CAS  PubMed  Google Scholar 

  68. 68.

    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    Google Scholar 

  69. 69.

    Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS  Article  Google Scholar 

  70. 70.

    ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  71. 71.

    Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

  72. 72.

    Schmitt, A. D. et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 17, 2042–2059 (2016).

    CAS  Article  Google Scholar 

  73. 73.

    Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    CAS  Article  Google Scholar 

  74. 74.

    Cao, Q. et al. Reconstruction of enhancer–target networks in 935 samples of human primary cells, tissues and cell lines. Nat. Genet. 49, 1428–1436 (2017).

    CAS  Article  Google Scholar 

  75. 75.

    Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    CAS  Article  Google Scholar 

  76. 76.

    Sigurdsson, S. et al. Sequence variants in ARHGAP15, COLQ and FAM155A associate with diverticular disease and diverticulitis. Nat. Commun. 8, 15789 (2017).

  77. 77.

    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36–R36 (2013).

  78. 78.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  Article  Google Scholar 

  79. 79.

    Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25–R25 (2010).

  80. 80.

    Gudbjartsson, D. F. et al. Sequence variants from whole genome sequencing a large group of Icelanders. Sci. Data 2, 150011 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the study subjects for their valuable participation. This research has been conducted using the UK Biobank Recourse under application number 23359.

Author information

Affiliations

Authors

Contributions

U.S., U.T., G.T., and K.S. designed the study and interpreted the results. S.H.L., G.T., F.Z., J.K.S., K.J., K.N., G.S., A.O., A.S., L.S., G.M., D.F.G., and U.S. coordinated or performed statistical and bioinformatics analyses. R.L.G. and G.H. analysed the RNA expression data. O.A.S. performed analyses of regulatory regions. E.S., G.L.N., K.B., and S.S. coordinated and performed experiments. S.J. performed X-ray structure analysis. H.J., T.I., T.R., I.J., G.T., G.B., and U.S. managed phenotype data on the Icelandic subjects. U.S. and G.T. managed phenotype data for the UK Biobank dataset. F.Z., G.T., and G.M. coordinated association analyses of the UK Biobank dataset. U.S., U.T., P.S., D.F.G., and K.S. drafted the manuscript. All authors contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Unnur Styrkarsdottir or Kari Stefansson.

Ethics declarations

Competing interests

Authors U.S., S.H.L., G.T., F.Z., O.A.S., J.K.S., K.J., K.B., S.J., K.N., L.S., G.S., A.O., G.B., R.L.G., A.S., T.R., G.L.N., I.J., G.M., P.S., D.F.G., U.T., and K.S. are employed by deCODE genetics/Amgen, Inc.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Note

Reporting Summary

Supplementary Tables

Supplementary Tables 1–13

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Styrkarsdottir, U., Lund, S.H., Thorleifsson, G. et al. Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis. Nat Genet 50, 1681–1687 (2018). https://doi.org/10.1038/s41588-018-0247-0

Download citation

Further reading