Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes

Abstract

To define potentially causal variants for autoimmune disease, we fine-mapped1,2 76 rheumatoid arthritis (11,475 cases, 15,870 controls)3 and type 1 diabetes loci (9,334 cases, 11,111 controls)4. After sequencing 799 1-kilobase regulatory (H3K4me3) regions within these loci in 568 individuals, we observed accurate imputation for 89% of common variants. We defined credible sets of ≤5 causal variants at 5 rheumatoid arthritis and 10 type 1 diabetes loci. We identified potentially causal missense variants at DNASE1L3, PTPN22, SH2B3, and TYK2, and noncoding variants at MEG3, CD28–CTLA4, and IL2RA. We also identified potential candidate causal variants at SIRPG and TNFAIP3. Using functional assays, we confirmed allele-specific protein binding and differential enhancer activity for three variants: the CD28–CTLA4 rs117701653 SNP, MEG3 rs34552516 indel, and TNFAIP3 rs35926684 indel.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Imputation accuracy and quality of datasets.
Fig. 2: Variants in the 95% credible sets of significant loci determined by the Bayesian factor.
Fig. 3: Analysis of the CD28–CTLA4 locus.
Fig. 4: Analysis of the MEG3 locus.
Fig. 5: Analysis of the TNFAIP3 locus.

Data availability

Summary statistics for all variants are available through the following GitHub repository: https://github.com/immunogenomics/harmjan/tree/master/RA-T1D-Finemap-SummaryStats. Genotype data have been previously published3,4 and are available from Rheumatoid Arthritis Consortium International and the Type 1 Diabetes Genetics Consortium upon request. The ATAC-Seq data discussed in this publication have been deposited in the Gene Expression Omnibus under accession number GSE116497.

References

  1. 1.

    Maller, J. B. et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Wakefield, J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 44, 1336–1340 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat. Genet. 47, 381–386 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Klareskog, L., Catrina, A. I. & Paget, S. Rheumatoid arthritis. Lancet 373, 659–672 (2009).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Palmer, J. P. et al. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science 222, 1337–1339 (1983).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Baekkeskov, S. et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347, 151–156 (1990).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Hu, X. et al. Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic immune cell subsets. Am. J. Hum. Genet. 89, 496–506 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Huang, H. et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547, 173–178 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Gaulton, K. J. et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat. Genet. 47, 1415–1425 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Jostins, L. & McVean, G. Trinculo: Bayesian and frequentist multinomial logistic regression for genome-wide association studies of multi-category phenotypes. Bioinformatics 32, 1898–1900 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Begovich, A. B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Bottini, N. et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet. 36, 337–338 (2004).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Diogo, D. et al. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS One 10, e0122271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sisirak, V. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166, 88–101 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Zochling, J. et al. An ImmunoChip-based interrogation of scleroderma susceptibility variants identifies a novel association at DNASE1L3. Arthritis Res. Ther. 16, 438 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Al-Mayouf, S. M. et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat. Genet. 43, 1186–1188 (2011).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ueki, M. et al. Caucasian-specific allele in non-synonymous single nucleotide polymorphisms of the gene encoding deoxyribonuclease I-like 3, potentially relevant to autoimmunity, produces an inactive enzyme. Clin. Chim. Acta 407, 20–24 (2009).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Nettleship, J. E. et al. Crystal structure of signal regulatory protein gamma (SIRPγ) in complex with an antibody Fab fragment. BMC Struct. Biol. 13, 13 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Brooke, G., Holbrook, J. D., Brown, M. H. & Barclay, A. N. Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family. J. Immunol. 173, 2562–2570 (2004).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Piccio, L. et al. Adhesion of human T cells to antigen-presenting cells through SIRPbeta2–CD47 interaction costimulates T-cell proliferation. Blood 105, 2421–2427 (2005).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Liu, Y. et al. Functional elements on SIRPalpha IgV domain mediate cell surface binding to CD47. J. Mol. Biol. 365, 680–693 (2007).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Sveinbjornsson, G. et al. Weighting sequence variants based on their annotation increases power of whole-genome association studies. Nat. Genet. 48, 314–317 (2016).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Simeonov, D. R. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111–115 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Fortune, M. D. et al. Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls. Nat. Genet. 47, 839–846 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384.e19 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Zhou, Y. et al. Activation of p53 by MEG3 non-coding RNA. J. Biol. Chem. 282, 24731–24742 (2007).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Wallace, C. et al. The imprinted DLK1–MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat. Genet. 42, 68–71 (2010).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Tsoi, L. C. et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44, 1341–1348 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Beecham, A. H. et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Lessard, C. J. et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren’s syndrome. Nat. Genet. 45, 1284–1292 (2013).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Cordell, H. J. et al. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nat. Commun. 6, 8019 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43, 1193–1201 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    McGovern, A. et al. Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23. Genome. Biol. 17, 212 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Hinrichs, A. S. et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 34, D590–D598 (2006).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Loh, P.-R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443–1448 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Delaneau, O., Marchini, J. & Zagury, J.-F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2011).

    Article  CAS  Google Scholar 

  49. 49.

    Durbin, R. Efficient haplotype matching and storage using the positional Burrows–Wheeler transform (PBWT). Bioinformatics 30, 1266–1272 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster genotype imputation. Bioinformatics 31, 782–784 (2015).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics. 43, 11.10.1–11.10.33 (2013).

    Google Scholar 

  53. 53.

    Powell, J. E., Visscher, P. M. & Goddard, M. E. Reconciling the analysis of IBD and IBS in complex trait studies. Nat. Rev. Genet. 11, 800–805 (2010).

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Zhernakova, D. V. et al. Identification of context-dependent expression quantitative trait loci in whole blood. Nat. Genet. 49, 139–145 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344, 519–523 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Yang, J., Fritsche, L. G., Zhou, X. & Abecasis, G. A scalable Bayesian method for integrating functional information in genome-wide association studies. Am. J. Hum. Genet. 101, 404–416 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Lonsdale, J. et al. The Genotype–Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    CAS  Article  Google Scholar 

  58. 58.

    Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  CAS  Google Scholar 

  61. 61.

    Ward, L. D. & Kellis, M. HaploRegv4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 44, D877–D881 (2016).

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Bernstein, B. E. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  63. 63.

    Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported in part by funding from the National Institutes of Health (U01GM092691, UH2AR067677, 1U01HG009088, and 1R01AR063759 to S.R.), and Doris Duke Charitable Foundation Grant number 2013097. This work is part of the research program Rubicon ALW with project number 825.14.019 (H.-J.W.), which is partly financed by the Netherlands Organization for Scientific Research. Further support was provided by Wellcome (107212/Z/15/Z) and the Juvenile Diabetes Research Foundation (5-SRA-2015-130-A-N) to the Diabetes and Inflammation Laboratory, and by Wellcome (203141/Z/16/Z) to the Wellcome Centre for Human Genetics (J.A.T.). P.K.G. was supported in part by the Feinstein Institute and a generous gift from E. L. Greenland. P.A.N. is supported by a Rheumatology Research Foundation Disease Targeted Research Grant, NIH P30 AR070253 and R01 AR065538, and the Fundación Bechara. S.S.R., W.-M.C. and S.O. were supported in part by funding from the National Institutes of Health (R01DK096926). This research makes use of resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Allergy and Infectious Diseases, National Human Genome Research Institute, National Institute of Child Health and Human Development and Juvenile Diabetes Research Foundation International, and is supported by grant U01DK062418 (S.S.R.).

Author information

Affiliations

Authors

Contributions

H.-J.W., Y.L. and S.R. performed the analyses. M.M.-B. and P.A.N. performed the functional assays. H.-J.W., M.M.-B., P.A.N. and S.R. designed the study. S.O., A.L., N.T., J.W., J.M., T.H., L.K., S.R.-D., W.-M.C., A.Q., J.A.T., S.E., P.K.G., S.S.R. and S.R. acquired the data. H.-J.W., M.M.-B., Y.L., J.A.T., P.A.N., P.K.G., S.S.R. and S.R. wrote and edited the manuscript.

Corresponding author

Correspondence to Soumya Raychaudhuri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–29 and Supplementary Note

Reporting Summary

Supplementary Tables

Supplementary Tables 1–29

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Westra, H., Martínez-Bonet, M., Onengut-Gumuscu, S. et al. Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes. Nat Genet 50, 1366–1374 (2018). https://doi.org/10.1038/s41588-018-0216-7

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing