Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy


Outcomes of anticancer therapy vary dramatically among patients due to diverse genetic and molecular backgrounds, highlighting extensive intertumoral heterogeneity. The fundamental tenet of precision oncology defines molecular characterization of tumors to guide optimal patient-tailored therapy. Towards this goal, we have established a compilation of pharmacological landscapes of 462 patient-derived tumor cells (PDCs) across 14 cancer types, together with genomic and transcriptomic profiling in 385 of these tumors. Compared with the traditional long-term cultured cancer cell line models, PDCs recapitulate the molecular properties and biology of the diseases more precisely. Here, we provide insights into dynamic pharmacogenomic associations, including molecular determinants that elicit therapeutic resistance to EGFR inhibitors, and the potential repurposing of ibrutinib (currently used in hematological malignancies) for EGFR-specific therapy in gliomas. Lastly, we present a potential implementation of PDC-derived drug sensitivities for the prediction of clinical response to targeted therapeutics using retrospective clinical studies.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Patient tumor and derived cell resources for pharmacogenomics analysis.
Fig. 2: Therapeutic landscape of PDCs and lineage-specific responses
Fig. 3: Pharmacogenomic interactions in PDCs.
Fig. 4: Genomic and transcriptomic correlates of panobinostat sensitivity
Fig. 5: Predictive biomarkers for response to EGFR inhibitors in EGFR-altered GBM PDCs.
Fig. 6: Clinical feasibility of PDC drug-screening-guided precision oncology.
Fig. 7: Schematic illustration of the major lineage-specific and genomic associated drug interactions.

Data availability

All sequenced data have been deposited in the European Genome-phenome Archive (EGA) under accession EGAS00001002515. Processed data and basic association analysis are publicly available through an interactive web portal (the Cancer-Drug eXplorer (cDx); see URLs).


  1. 1.

    Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Hamburg, M. A. & Collins, F. S. The path to personalized medicine. N. Engl. J. Med. 363, 301–304 (2010).

    CAS  PubMed  Google Scholar 

  4. 4.

    Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    CAS  PubMed  Google Scholar 

  5. 5.

    Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    O’Brien, S. G. et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 348, 994–1004 (2003).

    PubMed  Google Scholar 

  7. 7.

    Loeb, L. A. Human cancers express mutator phenotypes: origin, consequences and targeting. Nat. Rev. Cancer 11, 450–457 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ceccarelli, M. et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164, 550–563 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Rubio-Perez, C. et al. In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. Cancer Cell 27, 382–396 (2015).

    CAS  PubMed  Google Scholar 

  11. 11.

    Altman, R. B. Predicting cancer drug response: advancing the DREAM. Cancer Discov. 5, 237–238 (2015).

    CAS  PubMed  Google Scholar 

  12. 12.

    Geeleher, P., Cox, N. J. & Huang, R. S. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 15, R47 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Lee, J. K. et al. Spatiotemporal genomic architecture informs precision oncology in glioblastoma. Nat. Genet. 49, 594–599 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).

    CAS  PubMed  Google Scholar 

  15. 15.

    Yates, L. R. et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21, 751–759 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 6, 813–823 (2006).

    CAS  PubMed  Google Scholar 

  19. 19.

    Basu, A. et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154, 1151–1161 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Holbeck, S. L., Collins, J. M. & Doroshow, J. H. Analysis of Food and Drug Administration-approved anticancer agents in the NCI60 panel of human tumor cell lines. Mol. Cancer Ther. 9, 1451–1460 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Garnett, M. J. & McDermott, U. The evolving role of cancer cell line-based screens to define the impact of cancer genomes on drug response. Curr. Opin. Genet. Dev. 24, 114–119 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    Google Scholar 

  23. 23.

    Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 166, 740–754 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318–1325 (2015).

    CAS  Google Scholar 

  25. 25.

    Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021 (2004).

    CAS  PubMed  Google Scholar 

  26. 26.

    Joo, K. M. et al. Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. Cell Rep. 3, 260–273 (2013).

    CAS  PubMed  Google Scholar 

  27. 27.

    Lee, J. et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9, 391–403 (2006).

    CAS  PubMed  Google Scholar 

  28. 28.

    Lee, J. Y. et al. Patient-derived cell models as preclinical tools for genome-directed targeted therapy. Oncotarget 6, 25619–25630 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Xie, Y. et al. The human glioblastoma cell culture resource: validated cell models representing all molecular subtypes. EBioMedicine 2, 1351–1363 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kanabur, P. et al. Patient-derived glioblastoma stem cells respond differentially to targeted therapies. Oncotarget 7, 86406–86419 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Park, Y. H. et al. Role of HER2 mutations in refractory metastatic breast cancers: targeted sequencing results in patients with refractory breast cancer. Oncotarget 6, 32027–32038 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Lim, S. H. et al. The implication of FLT3 amplification for FLT targeted therapeutics in solid tumors. Oncotarget 8, 3237–3245 (2017).

    Google Scholar 

  33. 33.

    Yoo, K. H. et al. Genomic alterations in biliary tract cancer using targeted sequencing. Transl. Oncol. 9, 173–178 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Song, H. N. et al. Molecular characterization of colorectal cancer patients and concomitant patient-derived tumor cell establishment. Oncotarget 7, 19610–19619 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Suzuki, H. et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat. Genet. 47, 458–468 (2015).

    CAS  Google Scholar 

  36. 36.

    Trifonov, V., Pasqualucci, L., Tiacci, E., Falini, B. & Rabadan, R. SAVI: a statistical algorithm for variant frequency identification. BMC Syst. Biol. 7, S2 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Magi, A. et al. EXCAVATOR: detecting copy number variants from whole-exome sequencing data. Genome Biol. 14, R120 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Abate, F. et al. Pegasus: a comprehensive annotation and prediction tool for detection of driver gene fusions in cancer. BMC Syst. Biol. 8, 97 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Gschwind, A., Fischer, O. M. & Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat. Rev. Cancer 4, 361–370 (2004).

    CAS  Google Scholar 

  41. 41.

    Nakada, M. et al. Aberrant signaling pathways in glioma. Cancers (Basel) 3, 3242–3278 (2011).

    Google Scholar 

  42. 42.

    Joo, K. M. et al. MET signaling regulates glioblastoma stem cells. Cancer Res. 72, 3828–3838 (2012).

    CAS  Google Scholar 

  43. 43.

    Wen, P. Y., Lee, E. Q., Reardon, D. A., Ligon, K. L. & Alfred Yung, W. K. Current clinical development of PI3K pathway inhibitors in glioblastoma. Neuro. Oncol. 14, 819–829 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Filbin, M. G. et al. Coordinate activation of Shh and PI3K signaling in PTEN-deficient glioblastoma: new therapeutic opportunities. Nat. Med. 19, 1518–1523 (2013).

    Google Scholar 

  45. 45.

    Wen, P. Y. & Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 359, 492–507 (2008).

    CAS  Google Scholar 

  46. 46.

    Ohka, F., Natsume, A. & Wakabayashi, T. Current trends in targeted therapies for glioblastoma multiforme. Neurol. Res. Int. 2012, 878425 (2012).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Puputti, M. et al. Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Mol. Cancer Res. 4, 927–934 (2006).

    CAS  Google Scholar 

  48. 48.

    Taylor, T. E., Furnari, F. B. & Cavenee, W. K. Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Curr. Cancer Drug Targets 12, 197–209 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Snuderl, M. et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell. 20, 810–817 (2011).

    CAS  Google Scholar 

  50. 50.

    Szerlip, N. J. et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc. Natl Acad. Sci. USA 109, 3041–3046 (2012).

    CAS  Google Scholar 

  51. 51.

    Cloughesy, T. F., Cavenee, W. K. & Mischel, P. S. Glioblastoma: from molecular pathology to targeted treatment. Annu. Rev. Pathol. 9, 1–25 (2014).

    CAS  Google Scholar 

  52. 52.

    Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 353, 2012–2024 (2005).

    CAS  Google Scholar 

  53. 53.

    Fallahi-Sichani, M., Honarnejad, S., Heiser, L. M., Gray, J. W. & Sorger, P. K. Metrics other than potency reveal systematic variation in responses to cancer drugs. Nat. Chem. Biol. 9, 708–714 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Jang, I. S., Neto, E. C., Guinney, J., Friend, S. H. & Margolin, A. A. Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac. Symp. Biocomput. 2014, 63–74 (2014).

  55. 55.

    Huang, S. & Pang, L. Comparing statistical methods for quantifying drug sensitivity based on in vitro dose-response assays. Assay Drug Dev. Technol. 10, 88–96 (2012).

    CAS  Google Scholar 

  56. 56.

    Raub, T. J. et al. Brain exposure of two selective dual CDK4 and CDK6 inhibitors and the antitumor activity of CDK4 and CDK6 inhibition in combination with temozolomide in an intracranial glioblastoma xenograft. Drug Metab. Dispos. 43, 1360–1371 (2015).

    CAS  Google Scholar 

  57. 57.

    Cen, L. et al. p16–Cdk4–Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells. Neuro. Oncol. 14, 870–881 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Schroder, L. B. & McDonald, K. L. CDK4/6 inhibitor PD0332991 in glioblastoma treatment: does it have a future? Front. Oncol. 5, 259 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Nicolau, M., Levine, A. J. & Carlsson, G. Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc. Natl Acad. Sci. USA 108, 7265–7270 (2011).

    CAS  Google Scholar 

  60. 60.

    Camara, P. G., Rosenbloom, D. I., Emmett, K. J., Levine, A. J. & Rabadan, R. Topological data analysis generates high-resolution, genome-wide maps of human recombination. Cell Syst. 3, 83–94 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Rizvi, A. H. et al. Applied topology delineates developmental progression with single-cell resolution. Nat. Biotech. (in the press).

  62. 62.

    Bhattacharya, B. et al. Pharmacologic synergy between dual phosphoinositide-3-kinase and mammalian target of rapamycin inhibition and 5-fluorouracil in PIK3CA mutant gastric cancer cells. Cancer Biol. Ther. 13, 34–42 (2012).

    CAS  PubMed  Google Scholar 

  63. 63.

    Tapia, O. et al. The PI3K/AKT/mTOR pathway is activated in gastric cancer with potential prognostic and predictive significance. Virchows Arch. 465, 25–33 (2014).

    CAS  PubMed  Google Scholar 

  64. 64.

    Ying, J. et al. The expression of the PI3K/AKT/mTOR pathway in gastric cancer and its role in gastric cancer prognosis. OncoTargets Ther. 8, 2427–2433 (2015).

    CAS  Google Scholar 

  65. 65.

    The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Google Scholar 

  66. 66.

    Yiin, J. J. et al. ZD6474, a multitargeted inhibitor for receptor tyrosine kinases, suppresses growth of gliomas expressing an epidermal growth factor receptor mutant, EGFRvIII, in the brain. Mol. Cancer Ther. 9, 929–941 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Gao, W. et al. Selective antitumor activity of ibrutinib in EGFR-mutant non-small cell lung cancer cells. J. Natl Cancer. Inst. 106, dju204 (2014).

  68. 68.

    Byrd, J. C. et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 369, 32–42 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532–536 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Garassino, M. C. et al. Different types of K-Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer. Ann. Oncol. 22, 235–237 (2011).

    CAS  PubMed  Google Scholar 

  71. 71.

    Lievre, A. et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 66, 3992–3995 (2006).

    CAS  PubMed  Google Scholar 

  72. 72.

    Belmont, P. J. et al. Resistance to dual blockade of the kinases PI3K and mTOR in KRAS-mutant colorectal cancer models results in combined sensitivity to inhibition of the receptor tyrosine kinase EGFR. Sci. Signal. 7, ra107 (2014).

    PubMed  Google Scholar 

  73. 73.

    Hutchinson, L. Targeted therapies: dasatinib sensitizes KRAS-mutant colorectal cancer tumors to cetuximab. Nat. Rev. Clin. Oncol. 8, 193 (2011).

    PubMed  Google Scholar 

  74. 74.

    Ku, B. M. et al. BYL719, a selective inhibitor of phosphoinositide 3-kinase alpha, enhances the effect of selumetinib (AZD6244, ARRY-142886) in KRAS-mutant non-small cell lung cancer. Invest. New Drugs 33, 12–21 (2015).

    CAS  PubMed  Google Scholar 

  75. 75.

    Jing, J. et al. Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212. Mol. Cancer Ther. 11, 720–729 (2012).

    CAS  PubMed  Google Scholar 

  76. 76.

    Infante, J. R. et al. Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol. 13, 773–781 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Hatzivassiliou, G. et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature 501, 232–236 (2013).

    CAS  Google Scholar 

  78. 78.

    Blumenschein, G. R. Jr. et al. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC). Ann. Oncol. 26, 894–901 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Manchado, E. et al. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature 534, 647–651 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Yeh, J. J. et al. KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Mol. Cancer Ther. 8, 834–843 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Sun, C. et al. Intrinsic resistance to MEK inhibition in KRAS mutant lung and colon cancer through transcriptional induction of ERBB3. Cell Rep. 7, 86–93 (2014).

    CAS  Google Scholar 

  82. 82.

    Heinemann, V., Stintzing, S., Kirchner, T., Boeck, S. & Jung, A. Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR. Cancer Treat. Rev. 35, 262–271 (2009).

    CAS  PubMed  Google Scholar 

  83. 83.

    Cui, J., Jiang, W., Wang, S., Wang, L. & Xie, K. Role of Wnt/beta-catenin signaling in drug resistance of pancreatic cancer. Curr. Pharm. Des. 18, 2464–2471 (2012).

    CAS  PubMed  Google Scholar 

  84. 84.

    Yeung, J. et al. Beta-catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell 18, 606–618 (2010).

    CAS  PubMed  Google Scholar 

  85. 85.

    Nagaraj, A. B. et al. Critical role of Wnt/beta-catenin signaling in driving epithelial ovarian cancer platinum resistance. Oncotarget 6, 23720–23734 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Ivanescu, A. M., Oprea, M., Turbatu, A., Colita, A. & Lupu, A. R. Ibrutinib, a novel agent in relapsed or refractory chronic lymphocytic leukemia. Maedica (Buchar) 9, 217–218 (2014).

    Google Scholar 

  87. 87.

    Rushworth, S. A., MacEwan, D. J. & Bowles, K. M. Ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 369, 1277–1278 (2013).

    PubMed  Google Scholar 

  88. 88.

    Wang, M. L. et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 369, 507–516 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Hu, Y. & Smyth, G. K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009).

    CAS  Google Scholar 

  90. 90.

    Wang, J., Kribelbauer, J. & Rabadan, R. Network propagation reveals novel genetic features predicting drug response of cancer cell lines. Curr. Bioinform. 11, 8 (2016).

    Google Scholar 

  91. 91.

    Munarini, N. et al. Altered mammary epithelial development, pattern formation and involution in transgenic mice expressing the EphB4 receptor tyrosine kinase. J. Cell Sci. 115, 25–37 (2002).

    CAS  PubMed  Google Scholar 

  92. 92.

    Kumar, S. R. et al. Receptor tyrosine kinase EphB4 is a survival factor in breast cancer. Am. J. Pathol. 169, 279–293 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Yang, N. Y., Pasquale, E. B., Owen, L. B. & Ethell, I. M. The EphB4 receptor-tyrosine kinase promotes the migration of melanoma cells through Rho-mediated actin cytoskeleton reorganization. J. Biol. Chem. 281, 32574–32586 (2006).

    CAS  PubMed  Google Scholar 

  94. 94.

    Ferguson, B. D. et al. The EphB4 receptor tyrosine kinase promotes lung cancer growth: a potential novel therapeutic target. PLoS ONE 8, e67668 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Pasquale, E. B. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat. Rev. Cancer 10, 165–180 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Cai, Y., Yan, X., Zhang, G., Zhao, W. & Jiao, S. The predictive value of ERCC1 and p53 for the effect of panobinostat and cisplatin combination treatment in NSCLC. Oncotarget 6, 18997–19005 (2015).

  97. 97.

    Lee, E. Q. et al. Phase II study of panobinostat in combination with bevacizumab for recurrent glioblastoma and anaplastic glioma. Neuro. Oncol. 17, 862–867 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Grasso, C. S. et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat. Med. 21, 555–559 (2015).

  99. 99.

    Taylor, P. et al. REST is a novel prognostic factor and therapeutic target for medulloblastoma. Mol. Cancer Ther. 11, 1713–1723 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Wang, Z., Qin, G. & Zhao, T. C. HDAC4: mechanism of regulation and biological functions. Epigenomics 6, 139–150 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Plass, C. et al. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat. Rev. Genet. 14, 765–780 (2013).

    CAS  PubMed  Google Scholar 

  102. 102.

    Kawata, H. et al. Zinc-fingers and homeoboxes (ZHX) 2, a novel member of the ZHX family, functions as a transcriptional repressor. Biochem. J. 373, 747–757 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Walkinshaw, D. R. et al. The tumor suppressor kinase LKB1 activates the downstream kinases SIK2 and SIK3 to stimulate nuclear export of class IIa histone deacetylases. J. Biol. Chem. 288, 9345–9362 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Geng, L. et al. Histone deacetylase (HDAC) inhibitor LBH589 increases duration of gamma-H2AX foci and confines HDAC4 to the cytoplasm in irradiated non-small cell lung cancer. Cancer Res. 66, 11298–11304 (2006).

    CAS  PubMed  Google Scholar 

  105. 105.

    Geng, H. et al. HDAC4 protein regulates HIF1alpha protein lysine acetylation and cancer cell response to hypoxia. J. Biol. Chem. 286, 38095–38102 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Choi, M. C. et al. A direct HDAC4–MAP kinase crosstalk activates muscle atrophy program. Mol. Cell 47, 122–132 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Ellis, L. M. & Hicklin, D. J. Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clin. Cancer Res. 15, 7471–7478 (2009).

    CAS  PubMed  Google Scholar 

  108. 108.

    Hopper-Borge, E. A. et al. Mechanisms of tumor resistance to EGFR-targeted therapies. Expert Opin. Ther. Targets 13, 339–362 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Spaans, J. N. & Goss, G. D. Drug resistance to molecular targeted therapy and its consequences for treatment decisions in non-small-cell lung cancer. Front. Oncol. 4, 190 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Fan, Q. W. et al. EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell. 24, 438–449 (2013).

    CAS  PubMed  Google Scholar 

  111. 111.

    Nathanson, D. A. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343, 72–76 (2014).

    CAS  PubMed  Google Scholar 

  112. 112.

    Thiessen, B. et al. A phase I/II trial of GW572016 (lapatinib) in recurrent glioblastoma multiforme: clinical outcomes, pharmacokinetics and molecular correlation. Cancer Chemother. Pharmacol. 65, 353–361 (2010).

    CAS  PubMed  Google Scholar 

  113. 113.

    Reardon, D. A. et al. Phase I/randomized phase II study of afatinib, an irreversible ErbB family blocker, with or without protracted temozolomide in adults with recurrent glioblastoma. Neuro. Oncol. 17, 430–439 (2015).

    CAS  PubMed  Google Scholar 

  114. 114.

    Uhm, J. H. et al. Phase II evaluation of gefitinib in patients with newly diagnosed grade 4 astrocytoma: Mayo/North Central Cancer Treatment Group Study N0074. Int. J. Radiat. Oncol. Biol. Phys. 80, 347–353 (2011).

    CAS  PubMed  Google Scholar 

  115. 115.

    Ritch, P. S., Carroll, S. L. & Sontheimer, H. Neuregulin-1 enhances survival of human astrocytic glioma cells. Glia 51, 217–228 (2005).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Sheng, Q. et al. An activated ErbB3/NRG1 autocrine loop supports in vivo proliferation in ovarian cancer cells. Cancer Cell 17, 298–310 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Wilson, T. R., Lee, D. Y., Berry, L., Shames, D. S. & Settleman, J. Neuregulin-1-mediated autocrine signaling underlies sensitivity to HER2 kinase inhibitors in a subset of human cancers. Cancer Cell 20, 158–172 (2011).

    CAS  PubMed  Google Scholar 

  118. 118.

    Dong, X., Fernandez-Salas, E., Li, E. & Wang, S. Elucidation of resistance mechanisms to second-generation ALK inhibitors alectinib and ceritinib in non-small cell lung cancer cells. Neoplasia 18, 162–171 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Dhomen, N. S., Mariadason, J., Tebbutt, N. & Scott, A. M. Therapeutic targeting of the epidermal growth factor receptor in human cancer. Crit. Rev. Oncog. 17, 31–50 (2012).

    PubMed  Google Scholar 

  120. 120.

    Dempke, W. C. & Heinemann, V. Ras mutational status is a biomarker for resistance to EGFR inhibitors in colorectal carcinoma. Anticancer Res. 30, 4673–4677 (2010).

    CAS  PubMed  Google Scholar 

  121. 121.

    Fan, Q. W. et al. A dual phosphoinositide-3-kinase alpha/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res. 67, 7960–7965 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Yi, Y. W. et al. Inhibition of the PI3K/AKT pathway potentiates cytotoxicity of EGFR kinase inhibitors in triple-negative breast cancer cells. J. Cell. Mol. Med. 17, 648–656 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Tricker, E. M. et al. Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR-mutant lung cancer. Cancer Discov. 5, 960–971 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Huang, M. H. et al. MEK inhibitors reverse resistance in epidermal growth factor receptor mutation lung cancer cells with acquired resistance to gefitinib. Mol. Oncol. 7, 112–120 (2013).

    CAS  PubMed  Google Scholar 

  125. 125.

    Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    CAS  PubMed  Google Scholar 

  127. 127.

    Soreide, K. Receiver-operating characteristic curve analysis in diagnostic, prognostic and predictive biomarker research. J. Clin. Pathol. 62, 1–5 (2009).

    PubMed  Google Scholar 

  128. 128.

    Hajian-Tilaki, K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J. Intern. Med. 4, 627–635 (2013).

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Rich, J. N. et al. Phase II trial of gefitinib in recurrent glioblastoma. J. Clin. Oncol. 22, 133–142 (2004).

    CAS  PubMed  Google Scholar 

  130. 130.

    Lasocki, A., Gaillard, F., Tacey, M., Drummond, K. & Stuckey, S. Multifocal and multicentric glioblastoma: improved characterisation with FLAIR imaging and prognostic implications. J. Clin. Neurosci. 31, 92–98 (2016).

    PubMed  Google Scholar 

  131. 131.

    Liu, Q. et al. Genetic, epigenetic, and molecular landscapes of multifocal and multicentric glioblastoma. Acta Neuropathol. 130, 587–597 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Alshami, J. et al. Afatinib, an irreversible ErbB family blocker, with protracted temozolomide in recurrent glioblastoma: a case report. Oncotarget 6, 34030–34037 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Ma, D. J. et al. A phase II trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neuro. Oncol. 17, 1261–1269 (2015).

    CAS  Google Scholar 

  134. 134.

    Kaley, T. J. et al. Phase II trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma. Neuro. Oncol. 17, 116–121 (2015).

    CAS  Google Scholar 

  135. 135.

    Bang, Y. J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    CAS  Google Scholar 

  136. 136.

    Hecht, J. R. et al. Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma: TRIO-013/LOGiC—a randomized phase III trial. J. Clin. Oncol. 34, 443–451 (2016).

    CAS  Google Scholar 

  137. 137.

    Kim, S. T. et al. Impact of genomic alterations on lapatinib treatment outcome and cell-free genomic landscape during HER2 therapy in HER2-positive gastric cancer patients. Ann. Oncol. 29, 1037–1048 (2018).

  138. 138.

    The Cancer Genome Atlas Research Network.. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

    Google Scholar 

  139. 139.

    Fernandez-Cuesta, L. & Thomas, R. K. Molecular pathways: targeting NRG1 fusions in lung cancer. Clin. Cancer Res. 21, 1989–1994 (2015).

    CAS  Google Scholar 

  140. 140.

    Wu, H. et al. Ibrutinib selectively and irreversibly targets EGFR (L858R, Del19) mutant but is moderately resistant to EGFR (T790M) mutant NSCLC cells. Oncotarget 6, 31313–31322 (2015).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Bernard, S. et al. Activity of ibrutinib in mantle cell lymphoma patients with central nervous system relapse. Blood 126, 1695–1698 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Jain, P. et al. Early responses predict better outcomes in patients with newly diagnosed chronic myeloid leukemia: results with four tyrosine kinase inhibitor modalities. Blood 121, 4867–4874 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Louvet, C. et al. Correlation between progression free survival and response rate in patients with metastatic colorectal carcinoma. Cancer 91, 2033–2038 (2001).

    CAS  PubMed  Google Scholar 

  144. 144.

    Tsimberidou, A. M. & Kurzrock, R. Precision medicine: lessons learned from the SHIVA trial. Lancet Oncol. 16, e579–e580 (2015).

    PubMed  Google Scholar 

  145. 145.

    Baras, A., Yu, Y., Filtz, M., Kim, B. & Moskaluk, C. A. Combined genomic and gene expression microarray profiling identifies ECOP as an upregulated gene in squamous cell carcinomas independent of DNA amplification. Oncogene 28, 2919–2924 (2009).

    CAS  PubMed  Google Scholar 

  146. 146.

    DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Dobin, A. et al. STAR: ultrafast universal RNA-Seq aligner. Bioinformatics 29, (15–21 (2013).

    Google Scholar 

  148. 148.

    Iyer, M. K., Chinnaiyan, A. M. & Maher, C. A. ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics 27, 2903–2904 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Torres-Garcia, W. et al. PRADA: pipeline for RNA sequencing data analysis. Bioinformatics 30, 2224–2226 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Zhang, J. H., Chung, T. D. & Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).

    CAS  Google Scholar 

  151. 151.

    Franceschini, A. et al. STRINGv9.1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013).

    CAS  Google Scholar 

  152. 152.

    Griffith, M. et al. DGIdb: mining the druggable genome. Nat. Methods 10, 1209–1210 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Kondor, R. I. & Lafferty, J. Diffusion kernels on graphs and other discrete structures. In Proc. 19th International Conference on Machine Learning 8 (Morgan Kaufmann, 2002).

  154. 154.

    Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 20 (2005).

    Google Scholar 

  155. 155.

    Honigberg, L. A. et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl Acad. Sci. USA 107, 13075–13080 (2010).

    CAS  Google Scholar 

Download references


This research was supported by a grant of the Korea Health Technology Research and Development project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (HI14C3418). This work has been funded by NIH grants (R01 CA185486, R01 CA179044, U54 CA193313 and U54 209997) and NSF/SU2C/V Foundation Ideas Lab Multidisciplinary Team (PHY-1545805) and Hong Kong RGC grants (N_HKUST601/17 and C6002-17G). The biospecimens for this study were provided by the Samsung Medical Center BioBank.

Author information




J.-K.L., Z.L., J.K.S., S.S. and J.W. are co-first authors. J.-K.L., Z.L., J.K.S., S.S. and J.W. performed the majority of the experiments and analyses. Z.L. and M.B. analyzed the therapeutic landscape of PDCs and pharmacogenomic interactions. D.I.S.R., O.E. and T.C. designed and constructed the cDx interactive webportal. S.W.C., D.-S.K., D.-H.N., S.T.K. and J.L. interpreted the clinical data. J.-K.L., S.S., J.-W.O., M.S., H.J.K., S.H.K., G.H.R. and Y.-J.K. organized and analyzed the drug-screening experiments. Y.J.Shin, H.J.K., Y.J.Seo, M.L., S.Y.K., M.-H.S., J.K., T.L., S.-Y.S., K.-M.K., M.K., J.O.P. and Y.Y. organized and processed the specimens for patient-derived cultures and genome analysis. D.K. and M.L. conducted the animal experiments. J.K.S., H.J.C., I.-H.L., H.S., N.K.D.K., J.S.B. and W.-Y.P. analyzed the genomic profiling. D.-S.K., J.W.C., H.J.S., J.-I.L., J.-W.L., H.-C.K., J.E.L., M.G.C., S.W.S., Y.M.S., J.I.Z. and B.C.J. provided surgical specimens. J.-K.L., Z.L., J.K.S., S.S. and J.W. wrote the manuscript with the feedback from J.L., R.G.W.V., A.I., J.L., R.R. and D.-H.N. J.L., R.R. and D.-H.N. designed and supervised the entire project.

Corresponding authors

Correspondence to Jeeyun Lee, Raul Rabadan or Do-Hyun Nam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15

Reporting Summary

Supplementary Table 1

Clinical information of the pan-cancer patients included in this study

Supplementary Table 2

CancerSCAN (targeted exome sequencing) gene list

Supplementary Table 3

GliomaSCAN (targeted exome sequencing) gene list

Supplementary Table 4

List of detected genomic alterations (mutation, fusion, copy number variation)

Supplementary Table 5

List of the 60-drug panel

Supplementary Table 6

Sixty-drug library quality control

Supplementary Table 7

Area under the curve (AUC) for the dose–response curve (DRC)

Supplementary Table 8

Half-maximal inhibitory concentration of drug sensitivity

Supplementary Table 9

Cancer-type-specific drug associations

Supplementary Table 10

Topolgoical data analysis of cancer-type-specific drug associations

Supplementary Table 11

Single genomic alteration–drug associations

Supplementary Table 12

Genetic features associated with panobinostat response using dNetFS

Supplementary Table 13

Genetic features associated with EGFR inhibitor response using dNetFS

Supplementary Table 14

Clinical responses in retrospective cases

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, JK., Liu, Z., Sa, J.K. et al. Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat Genet 50, 1399–1411 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing