Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Cancer genetics, precision prevention and a call to action

A Publisher Correction to this article was published on 12 December 2018

This article has been updated

Abstract

More than 15 years have passed since the identification, through linkage, of ‘first-wave’ susceptibility genes for common cancers (BRCA1, BRCA2, MLH1 and MSH2). These genes have strong frequency-penetrance profiles, such that the associated clinical utility probably remains relevant regardless of the context of ascertainment. ‘Second-wave’ genes, not tractable by linkage, were subsequently identified by mutation screening of candidate genes (PALB2, ATM, CHEK2, BRIP1, RAD51C and RAD51D). Their innately weaker frequency-penetrance profiles have rendered delineation of cancer associations, risks and variant pathogenicity challenging, thereby compromising their clinical application. Early germline exome-sequencing endeavors for common cancers did not yield the long-anticipated slew of ‘next-wave’ genes but instead implied a highly polygenic genomic architecture requiring much larger experiments to make any substantive inroads into gene discovery. As such, the ‘genetic economics’ of frequency penetrance clearly indicates that focused identification of carriers of first-wave-gene mutations is most impactful for cancer control. With screening, prevention and early detection at the forefront of the cancer management agenda, we propose that the time is nigh for the initiation of national population-testing programs to identify carriers of first-wave gene mutation. To fully deliver a precision prevention program, long-term, large-scale mutation studies that capture longitudinal clinical data and serial biosamples are required.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Risk penetrance profiles for genetic susceptibility factors.
Fig. 2: Attributes for a precision prevention program, by cancer type.

Similar content being viewed by others

Change history

  • 12 December 2018

    In the version of this article originally published, there was an error in the second-to-last sentence of the abstract. In this sentence, the final phrase “to identify carriers of first-wave gene mutation carriers” should have instead read “to identify carriers of first-wave gene mutation.” The error has been corrected in the HTML and PDF versions of the paper.

References

  1. Cancer Research UK. Cancer Incidence Statistics (Cancer Research UK, London, 2017).

    Google Scholar 

  2. Burrell, R. A. & Swanton, C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol. Oncol. 8, 1095–1111 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Prasad, V. Perspective: the precision-oncology illusion. Nature 537, S63 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer: analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Chanock, S. Charting a course toward precision cancer prevention. Cancer Currents Blog https://www.cancer.gov/news-events/cancer-currents-blog/2016/precision-prevention-chanock/ (2016).

  6. Houlston, R. & Peto, J. Genetics and the common cancers. in Genetic Predisposition to Cancer (eds. Eeles, R., Ponder, B.A., Easton, D. & Horwich, A.) 208–226 (Chapman & Hall Medical, London, 1996).

  7. Fletcher, O. & Houlston, R. S. Architecture of inherited susceptibility to common cancer. Nat. Rev. Cancer 10, 353–361 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Wooster, R. et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789–792 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Papadopoulos, N. et al. Mutation of a mutL homolog in hereditary colon cancer. Science 263, 1625–1629 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Leach, F. S. et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75, 1215–1225 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Hussussian, C. J. et al. Germline p16 mutations in familial melanoma. Nat. Genet. 8, 15–21 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Elston, R. C. & Cordell, H. J. Overview of model-free methods for linkage analysis. Adv. Genet. 42, 135–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Risch, N. The genetic epidemiology of cancer: interpreting family and twin studies and their implications for molecular genetic approaches. Cancer Epidemiol. Biomarkers Prev. 10, 733–741 (2001).

    CAS  PubMed  Google Scholar 

  15. Al-Tassan, N. et al. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat. Genet. 30, 227–232 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Loveday, C. et al. Germline RAD51C mutations confer susceptibility to ovarian cancer. Nat. Genet. 44, 475–476 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Loveday, C. et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat. Genet. 43, 879–882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rahman, N. et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat. Genet. 39, 165–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Renwick, A. et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat. Genet. 38, 873–875 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Seal, S. et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat. Genet. 38, 1239–1241 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Meijers-Heijboer, H. et al. Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat. Genet. 31, 55–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Erkko, H. et al. A recurrent mutation in PALB2 in Finnish cancer families. Nature 446, 316–319 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Turnbull, C. & Rahman, N. Genetic predisposition to breast cancer: past, present, and future. Annu. Rev. Genomics Hum. Genet. 9, 321–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Cybulski, C. et al. Germline RECQL mutations are associated with breast cancer susceptibility. Nat. Genet. 47, 643–646 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Heikkinen, K. et al. RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis 27, 1593–1599 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Tommiska, J. et al. Evaluation of RAD50 in familial breast cancer predisposition. Int. J. Cancer 118, 2911–2916 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Slavin, T. P. et al. The contribution of pathogenic variants in breast cancer susceptibility genes to familial breast cancer risk. NPJ Breast Cancer 3, 22 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Buys, S. S. et al. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 123, 1721–1730 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Easton, D. F. et al. No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing. J. Med. Genet. 53, 298–309 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Sopik, V. & Foulkes, W. D. Risky business: getting a grip on BRIP. J. Med. Genet. 53, 296–297 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Rafnar, T. et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nat. Genet. 43, 1104–1107 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Pelttari, L. M. et al. RAD51C is a susceptibility gene for ovarian cancer. Hum. Mol. Genet. 20, 3278–3288 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Couch, F. J. et al. Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol. 3, 1190–1196 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Osorio, A. et al. Predominance of pathogenic missense variants in the RAD51C gene occurring in breast and ovarian cancer families. Hum. Mol. Genet. 21, 2889–2898 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Meindl, A. et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat. Genet. 42, 410–414 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Pharoah, P. D. P. et al. PPM1D mosaic truncating variants in ovarian cancer cases may be treatment-related somatic mutations. J. Natl. Cancer Inst. 108, djv347 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  37. Swisher, E. M. et al. Somatic mosaic mutations in PPM1D and TP53 in the blood of women with ovarian carcinoma. JAMA Oncol. 2, 370–372 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zajkowicz, A. et al. Truncating mutations of PPM1D are found in blood DNA samples of lung cancer patients. Br. J. Cancer 112, 1114–1120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ruark, E. et al. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature 493, 406–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Southey, M. C. et al. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J. Med. Genet. 53, 800–811 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Antoniou, A. C. et al. Breast-cancer risk in families with mutations in PALB2. N. Engl. J. Med. 371, 497–506 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Concannon, P. ATM heterozygosity and cancer risk. Nat. Genet. 32, 89–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Gatti, R. A., Tward, A. & Concannon, P. Cancer risk in ATM heterozygotes: a model of phenotypic and mechanistic differences between missense and truncating mutations. Mol. Genet. Metab. 68, 419–423 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Swift, M., Reitnauer, P. J., Morrell, D. & Chase, C. L. Breast and other cancers in families with ataxia-telangiectasia. N. Engl. J. Med. 316, 1289–1294 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt, M. K. et al. Age- and tumor subtype-specific breast cancer risk estimates for CHEK2*1100delC carriers. J. Clin. Oncol. 34, 2750–2760 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hale, V., Weischer, M. & Park, J. Y. CHEK2*1100delC mutation and risk of prostate cancer. Prostate Cancer 2014, 294575 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Han, F. F., Guo, C. L. & Liu, L. H. The effect of CHEK2 variant I157T on cancer susceptibility: evidence from a meta-analysis. DNA Cell Biol. 32, 329–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, C., Wang, Q. S. & Wang, Y. J. The CHEK2 I157T variant and colorectal cancer susceptibility: a systematic review and meta-analysis. Asian Pac. J. Cancer Prev. 13, 2051–2055 (2012).

    Article  PubMed  Google Scholar 

  49. Weischer, M., Bojesen, S. E., Ellervik, C., Tybjaerg-Hansen, A. & Nordestgaard, B. G. CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls. J. Clin. Oncol. 26, 542–548 (2008).

    Article  PubMed  Google Scholar 

  50. Schutte, M. et al. Variants in CHEK2 other than 1100delC do not make a major contribution to breast cancer susceptibility. Am. J. Hum. Genet. 72, 1023–1028 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dong, C. et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 24, 2125–2137 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Findlay, G.M. et al. Accurate functional classification of thousands of BRCA1 variants with saturation genome editing. Preprint at https://www.biorxiv.org/content/early/2018/04/05/294520 (2018).

  53. Starita, L. M. et al. Massively parallel functional analysis of BRCA1 RING domain variants. Genetics 200, 413–422 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Easton, D. F. et al. Gene-panel sequencing and the prediction of breast-cancer risk. N. Engl. J. Med. 372, 2243–2257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Osher, D. J. et al. Mutation analysis of RAD51D in non-BRCA1/2 ovarian and breast cancer families. Br. J. Cancer 106, 1460–1463 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tung, N. et al. Counselling framework for moderate-penetrance cancer-susceptibility mutations. Nat. Rev. Clin. Oncol. 13, 581–588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. DeRycke, M. S. et al. Targeted sequencing of 36 known or putative colorectal cancer susceptibility genes. Mol. Genet. Genomic Med. 5, 553–569 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hampel, H. et al. Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res. 66, 7810–7817 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Hampel, H. et al. Cancer risk in hereditary nonpolyposis colorectal cancer syndrome: later age of onset. Gastroenterology 129, 415–421 (2005).

    Article  PubMed  Google Scholar 

  60. Antoniou, A. C., Pharoah, P. P., Smith, P. & Easton, D. F. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br. J. Cancer 91, 1580–1590 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Antoniou, A. et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet. 72, 1117–1130 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Antoniou, A. C. et al. A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br. J. Cancer 86, 76–83 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rich, T., Lotito, M., Kidd, J., Saam, J. & Lancaster, J. Abstract PD7–03: characterization of Li-Fraumeni syndrome diagnosed using a 25-gene hereditary cancer panel. Cancer Res. 76, PD7–03 (2016).

    Article  CAS  Google Scholar 

  64. Susswein, L. R. et al. Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet. Med. 18, 823–832 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. de Andrade, K. C. et al. Higher-than-expected population prevalence of potentially pathogenic germline TP53 variants in individuals unselected for cancer history. Hum. Mutat. 38, 1723–1730 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim, J., Field, A., Schultz, K. A. P., Hill, D. A. & Stewart, D. R. The prevalence of DICER1 pathogenic variation in population databases. Int. J. Cancer 141, 2030–2036 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Loveday, C. et al. p.Val804Met, the most frequent pathogenic mutation in RET, confers a very low lifetime risk of medullary thyroid cancer. J. Clin. Endocrinol. Metab. https://doi.org/10.1210/jc.2017-02529 (2018).

  68. Narod, S. A. The tip of the iceberg: a countercurrents series. Curr. Oncol. 19, 129–130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Easton, D. F. & Eeles, R. A. Genome-wide association studies in cancer. Hum. Mol. Genet. 17, R109–R115 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hunter, D. J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 39, 870–874 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Broderick, P. et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat. Genet. 39, 1315–1317 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Tomlinson, I. et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat. Genet. 39, 984–988 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Yeager, M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 39, 645–649 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Gudmundsson, J. et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet. 39, 631–637 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Michailidou, K. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat. Genet. 45, 353–361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Turnbull, C. et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat. Genet. 42, 504–507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. Nature 551, 92–94 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Amos, C. I. et al. The OncoArray Consortium: a network for understanding the genetic architecture of common cancers. Cancer Epidemiol. Biomarkers Prev. 26, 126–135 (2017).

    Article  PubMed  Google Scholar 

  80. Al Olama, A. A. et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat. Genet. 46, 1103–1109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sakoda, L. C., Jorgenson, E. & Witte, J. S. Turning of COGS moves forward findings for hormonally mediated cancers. Nat. Genet. 45, 345–348 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Sud, A., Kinnersley, B. & Houlston, R. S. Genome-wide association studies of cancer: current insights and future perspectives. Nat. Rev. Cancer 17, 692–704 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Guo, M. H. et al. Determinants of power in gene-based burden testing for monogenic disorders. Am. J. Hum. Genet. 99, 527–539 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chubb, D. et al. Rare disruptive mutations and their contribution to the heritable risk of colorectal cancer. Nat. Commun. 7, 11883 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Manchanda, R. et al. Current detection rates and time-to-detection of all identifiable BRCA carriers in the Greater London population. J. Med. Genet. 55, 538–545 (2018).

    Article  PubMed  Google Scholar 

  86. Manchanda, R. et al. Cost-effectiveness of population-based BRCA1, BRCA2, RAD51C, RAD51D, BRIP1, PALB2 mutation testing in unselected general population women. J. Natl. Cancer Inst. 110, 714–725 (2018).

    Article  PubMed  Google Scholar 

  87. Manchanda, R. et al. Cost-effectiveness of population based BRCA testing with varying Ashkenazi Jewish ancestry. Am. J. Obstet. Gynecol. 217, 578.e1–578.e12 (2017).

    Article  Google Scholar 

  88. Manchanda, R. et al. Cost-effectiveness of population screening for BRCA mutations in Ashkenazi jewish women compared with family history-based testing. J. Natl. Cancer Inst. 107, 380 (2014).

    PubMed  Google Scholar 

  89. Manchanda, R. et al. Population testing for cancer predisposing BRCA1/BRCA2 mutations in the Ashkenazi-Jewish community: a randomized controlled trial. J. Natl. Cancer Inst. 107, 379 (2014).

    PubMed  Google Scholar 

  90. Lieberman, S. et al. Population screening for BRCA1/BRCA2 founder mutations in Ashkenazi Jews: proactive recruitment compared with self-referral. Genet. Med. 19, 754–762 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Levy-Lahad, E., Lahad, A. & King, M.-C. Precision medicine meets public health: population screening for BRCA1 and BRCA2. J. Natl. Cancer Inst. 107, 420 (2014).

    Article  PubMed  Google Scholar 

  92. Pashayan, N. et al. Polygenic susceptibility to prostate and breast cancer: implications for personalised screening. Br. J. Cancer 104, 1656–1663 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Garcia-Closas, M., Gunsoy, N. B. & Chatterjee, N. Combined associations of genetic and environmental risk factors: implications for prevention of breast cancer. J. Natl. Cancer Inst. 106, dju305 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Mavaddat, N. et al. Prediction of breast cancer risk based on profiling with common genetic variants. J. Natl. Cancer Inst. 107, djv036 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Frampton, M. J. et al. Implications of polygenic risk for personalised colorectal cancer screening. Ann. Oncol. 27, 429–434 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Litchfield, K. et al. Polygenic susceptibility to testicular cancer: implications for personalised health care. Br. J. Cancer 114, e22 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kong, S. W. et al. Summarizing polygenic risks for complex diseases in a clinical whole-genome report. Genet. Med. 17, 536–544 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Li, H. et al. Breast cancer risk prediction using a polygenic risk score in the familial setting: a prospective study from the Breast Cancer Family Registry and kConFab. Genet. Med. 19, 30–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Gray, E. et al. Evaluation of a stratified national breast screening program in the United Kingdom: an early model-based cost-effectiveness analysis. Value Health 20, 1100–1109 (2017).

    Article  PubMed  Google Scholar 

  100. Evans, D. G. et al. The impact of a panel of 18 SNPs on breast cancer risk in women attending a UK familial screening clinic: a case-control study. J. Med. Genet. 54, 111–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Jervis, S. et al. A risk prediction algorithm for ovarian cancer incorporating BRCA1, BRCA2, common alleles and other familial effects. J. Med. Genet. 52, 465–475 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, A. J. et al. Incorporating truncating variants in PALB2, CHEK2, and ATM into the BOADICEA breast cancer risk model. Genet. Med. 18, 1190–1198 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jones, M. R., Kamara, D., Karlan, B. Y., Pharoah, P. D. P. & Gayther, S. A. Genetic epidemiology of ovarian cancer and prospects for polygenic risk prediction. Gynecol. Oncol. 147, 705–713 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Møller, P. et al. Cancer incidence and survival in Lynch syndrome patients receiving colonoscopic and gynaecological surveillance: first report from the prospective Lynch syndrome database. Gut 66, 464–472 (2017).

    Article  PubMed  Google Scholar 

  105. Milne, R. L. & Antoniou, A. C. Modifiers of breast and ovarian cancer risks for BRCA1 and BRCA2 mutation carriers. Endocr. Relat. Cancer 23, T69–T84 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Cancer Research UK. UK Cancer Incidence Statistics (Cancer Research UK, London, 2018).

  107. Wilson, J. M. G. & Jungner, G. Principles and Practices of Screening for Disease. Report no. Public Health Papers 34 (World Health Organization, Geneva, 1968).

  108. Yurgelun, M. B., Chenevix-Trench, G. & Lippman, S. M. Translating germline cancer risk into precision prevention. Cell 168, 566–570 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Spira, A. et al. Leveraging premalignant biology for immune-based cancer prevention. Proc. Natl. Acad. Sci. USA 113, 10750–10758 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nolan, E. et al. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nat. Med. 22, 933–939 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Kloor, M. et al. Vaccination of MSI-H colorectal cancer patients with frameshift peptide antigens: A phase I/IIa clinical trial. J. Clin. Oncol. 33, 3020 (2015).

    Article  Google Scholar 

  112. Milne, R. L. & Antoniou, A. C. Genetic modifiers of cancer risk for BRCA1 and BRCA2 mutation carriers. Ann. Oncol. 22 (Suppl. 1), i11–i17 (2011).

  113. Spurdle, A. B. et al. BRCA1 R1699Q variant displaying ambiguous functional abrogation confers intermediate breast and ovarian cancer risk. J. Med. Genet. 49, 525–532 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Moghadasi, S. et al. The BRCA1 c. 5096G>A p.Arg1699Gln (R1699Q) intermediate risk variant: breast and ovarian cancer risk estimation and recommendations for clinical management from the ENIGMA consortium. J. Med. Genet. 55, 15–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Rebbeck, T. R. et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA 313, 1347–1361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Cheung, R. et al. Large-scale screening of rare genetic variants in humans reveals frequent splicing disruptions. Preprint at https://www.biorxiv.org/content/early/2017/10/08/199927 (2017).

Download references

Acknowledgements

We thank our many colleagues for decades of interesting discussions around these themes, in particular W. Foulkes, M. Tischkowitz, H. Hanson, A. Taylor, K. Snape and A. Kulkani for their invaluable and wise thoughts. We also thank D. Easton (University of Cambridge, UK) and P. Devilee (Leiden University Medical Center, the Netherlands) for providing the data used to generate Fig. 1a. R.S.H. is supported by Cancer Research UK (C1298/A8362 Bobby Moore Fund for Cancer Research UK). C.T. is supported by the Movember Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.T., A.S. and R.S.H. researched, reviewed, drafted and edited the manuscript. A.S. and C.T. generated the images.

Corresponding author

Correspondence to Clare Turnbull.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turnbull, C., Sud, A. & Houlston, R.S. Cancer genetics, precision prevention and a call to action. Nat Genet 50, 1212–1218 (2018). https://doi.org/10.1038/s41588-018-0202-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-018-0202-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer